1
|
Chase EE, Pitot T, Bouchard S, Triplet S, Przybyla C, Gobet A, Desnues C, Blanc G. Viral dynamics in a high-rate algal pond reveals a burst of Phycodnaviridae diversity correlated with episodic algal mortality. mBio 2024:e0280324. [PMID: 39530688 DOI: 10.1128/mbio.02803-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
This study explores virus-host dynamics in a unique environment: an industrial high-rate algal pond (HRAP). A wealth of novel DNA algal viruses are revealed, including members of Nucleocytoviricota "giant viruses" and the enigmatic Preplasmiviricota (e.g., virophages and polinton-like viruses). Several species of single-celled eukaryotic photosynthetic algae are identified (Chlorophyta) as putative hosts, with alternating dominant populations during the year of study. We specifically observe a surprising diversity of giant viruses from the family Phycodnaviridae (Nucleocytoviricota), including phylogenetically related but highly diversified genotypes appearing in the HRAP that we suggest are implicated in bloom collapse. We hypothesize that these related Phycodnaviridae lineages infect the same algal species of the genus Picochlorum that has been identified in the HRAP. This study establishes a baseline for comprehending the role viruses play in algal farming and emphasizes the necessity of controlling the viral load in future culture system development to optimize algal growth. IMPORTANCE The virosphere is ubiquitous, but we have yet to characterize many environments where viruses exist. In an industrial polyculture of microalgae, a wealth of viruses persist, their diversity and dynamics changing over time and consequently give evidence of their evolution and ecological strategies. Several notable infectious agents of the culture's algae appear, including giant viruses, polinton-like viruses, and a virophage. As our reliance and interest in algal compound-based cosmetics, pharmaceuticals, and bio-plastics increases, so must our understanding of these systems, including the unique viruses that appear there.
Collapse
Affiliation(s)
- E E Chase
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d'Océanologie, Campus de Luminy, Marseille, France
- Institut hospitalo-universitaire (IHU) Méditerranée infection, Marseille, France
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| | - T Pitot
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, Québec, Canada
| | - S Bouchard
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d'Océanologie, Campus de Luminy, Marseille, France
| | - S Triplet
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - C Przybyla
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - A Gobet
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - C Desnues
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d'Océanologie, Campus de Luminy, Marseille, France
- Institut hospitalo-universitaire (IHU) Méditerranée infection, Marseille, France
| | - G Blanc
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d'Océanologie, Campus de Luminy, Marseille, France
| |
Collapse
|
2
|
Pérez-Núñez D, Madden DW, Vigara-Astillero G, Meekins DA, McDowell CD, Libanori-Artiaga B, García-Belmonte R, Bold D, Trujillo JD, Cool K, Kwon T, Balaraman V, Morozov I, Gaudreault NN, Revilla Y, Richt JA. Generation and Genetic Stability of a PolX and 5' MGF-Deficient African Swine Fever Virus Mutant for Vaccine Development. Vaccines (Basel) 2024; 12:1125. [PMID: 39460292 PMCID: PMC11511218 DOI: 10.3390/vaccines12101125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
The African swine fever virus (ASFV) causes fatal disease in pigs and is currently spreading globally. Commercially safe vaccines are urgently required. Aiming to generate a novel live attenuated vaccine (LAV), a recombinant ASFV was generated by deleting the viral O174L (PolX) gene. However, during in vitro generation, an additional spontaneous deletion of genes belonging to the multigene families (MGF) occurred, creating a mixture of two viruses, namely, Arm-ΔPolX and Arm-ΔPolX-ΔMGF. This mixture was used to inoculate pigs in a low and high dose to assess the viral dynamics of both populations in vivo. Although the Arm-ΔPolX population was a much lower proportion of the inoculum, in the high-dose immunized animals, it was the only resulting viral population, while Arm-ΔPolX-ΔMGF only appeared in low-dose immunized animals, revealing the role of deleted MGFs in ASFV fitness in vivo. Furthermore, animals in the low-dose group survived inoculation, whereas animals in the high-dose group died, suggesting that the lack of MGF and PolX genes, and not the PolX gene alone, led to attenuation. The two recombinant viruses were individually isolated and inoculated into piglets, confirming this hypothesis. However, immunization with the Arm-ΔPolX-ΔMGF virus did not induce protection against challenge with the virulent parental ASFV strain. This study demonstrates that deletion of the PolX gene alone neither leads to attenuation nor induces an increased mutation rate in vivo.
Collapse
Affiliation(s)
- Daniel Pérez-Núñez
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, c/ Nicolás Cabrera 1, 28049 Madrid, Spain; (D.P.-N.); (G.V.-A.); (R.G.-B.)
| | - Daniel W. Madden
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Gonzalo Vigara-Astillero
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, c/ Nicolás Cabrera 1, 28049 Madrid, Spain; (D.P.-N.); (G.V.-A.); (R.G.-B.)
| | - David A. Meekins
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Chester D. McDowell
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Bianca Libanori-Artiaga
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Raquel García-Belmonte
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, c/ Nicolás Cabrera 1, 28049 Madrid, Spain; (D.P.-N.); (G.V.-A.); (R.G.-B.)
| | - Dashzeveg Bold
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Jessie D. Trujillo
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Konner Cool
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Taeyong Kwon
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Velmurugan Balaraman
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Igor Morozov
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Natasha N. Gaudreault
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Yolanda Revilla
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, c/ Nicolás Cabrera 1, 28049 Madrid, Spain; (D.P.-N.); (G.V.-A.); (R.G.-B.)
| | - Juergen A. Richt
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| |
Collapse
|
3
|
Jácome R. Structural and Evolutionary Analysis of Proteins Endowed with a Nucleotidyltransferase, or Non-canonical Palm, Catalytic Domain. J Mol Evol 2024:10.1007/s00239-024-10207-7. [PMID: 39297932 DOI: 10.1007/s00239-024-10207-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
Many polymerases and other proteins are endowed with a catalytic domain belonging to the nucleotidyltransferase fold, which has also been deemed the non-canonical palm domain, in which three conserved acidic residues coordinate two divalent metal ions. Tertiary structure-based evolutionary analyses provide valuable information when the phylogenetic signal contained in the primary structure is blurry or has been lost, as is the case with these proteins. Pairwise structural comparisons of proteins with a nucleotidyltransferase fold were performed in the PDBefold web server: the RMSD, the number of superimposed residues, and the Qscore were obtained. The structural alignment score (RMSD × 100/number of superimposed residues) and the 1-Qscore were calculated, and distance matrices were constructed, from which a dendogram and a phylogenetic network were drawn for each score. The dendograms and the phylogenetic networks display well-defined clades, reflecting high levels of structural conservation within each clade, not mirrored by primary sequence. The conserved structural core between all these proteins consists of the catalytic nucleotidyltransferase fold, which is surrounded by different functional domains. Hence, many of the clades include proteins that bind different substrates or partake in non-related functions. Enzymes endowed with a nucleotidyltransferase fold are present in all domains of life, and participate in essential cellular and viral functions, which suggests that this domain is very ancient. Despite the loss of evolutionary traces in their primary structure, tertiary structure-based analyses allow us to delve into the evolution and functional diversification of the NT fold.
Collapse
Affiliation(s)
- Rodrigo Jácome
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, México.
| |
Collapse
|
4
|
Lad SB, Upadhyay M, Thorat P, Nair D, Moseley GW, Srivastava S, Pradeepkumar PI, Kondabagil K. Biochemical Reconstitution of the Mimiviral Base Excision Repair Pathway. J Mol Biol 2023; 435:168188. [PMID: 37380013 DOI: 10.1016/j.jmb.2023.168188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
Viruses are believed to be the obligate intracellular parasites that only carry genes essential for infecting and hijacking the host cell machinery. However, a recently discovered group of viruses belonging to the phylum nucleocytovirocota, also known as the nucleo-cytoplasmic large DNA viruses (NCLDVs), possess a number of genes that code for proteins predicted to be involved in metabolism, and DNA replication, and repair. In the present study, first, using proteomics of viral particles, we show that several proteins required for the completion of the DNA base excision repair (BER) pathway are packaged within the virions of Mimivirus as well as related viruses while they are absent from the virions of Marseillevirus and Kurlavirus that are NCLDVs with smaller genomes. We have thoroughly characterized three putative base excision repair enzymes from Mimivirus, a prototype NCLDV and successfully reconstituted the BER pathway using the purified recombinant proteins. The mimiviral uracil-DNA glycosylase (mvUDG) excises uracil from both ssDNA and dsDNA, a novel finding contrary to earlier studies. The putative AP-endonuclease (mvAPE) specifically cleaves at the abasic site created by the glycosylase while also exhibiting the 3'-5' exonuclease activity. The Mimivirus polymerase X protein (mvPolX) can bind to gapped DNA substrates and perform single nucleotide gap-filling followed by downstream strand displacement. Furthermore, we show that when reconstituted in vitro, mvUDG, mvAPE, and mvPolX function cohesively to repair a uracil-containing DNA predominantly by long patch BER and together, may participate in the BER pathway during the early phase of Mimivirus life-cycle.
Collapse
Affiliation(s)
- Shailesh B Lad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India. https://twitter.com/shailesh2603
| | - Monica Upadhyay
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India; Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia. https://twitter.com/upadhyaymonica
| | - Pracheta Thorat
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Divya Nair
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Gregory W Moseley
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India. https://twitter.com/sanjeeva_IITB
| | - P I Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India. https://twitter.com/pradeepkumarpi
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| |
Collapse
|
5
|
Fan J, Lv X, Yang S, Geng S, Yang J, Zhao Y, Zhang Z, Liu Z, Guan G, Luo J, Zeng Q, Yin H, Niu Q. OGG1 inhibition suppresses African swine fever virus replication. Virol Sin 2023; 38:96-107. [PMID: 36435451 PMCID: PMC10006199 DOI: 10.1016/j.virs.2022.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022] Open
Abstract
African swine fever virus (ASFV) is an important pathogen that causes a highly contagious and lethal disease in swine, for which neither a vaccine nor treatment is available. The DNA repair enzyme 8-oxoguanine DNA glycosylase 1 (OGG1), which excises the oxidative base lesion 8-oxo-7,8-dihydroguanine (8-oxoG), has been linked to the pathogenesis of different diseases associated with viral infections. However, the role of OGG1-base excision repair (BER) in ASFV infection has been poorly investigated. Our study aimed to characterize the alteration of host reactive oxygen species (ROS) and OGG1 and to analyse the role of OGG1 in ASFV infection. We found that ASFV infection induced high levels and dynamic changes in ROS and 8-oxoG and consistently increased the expression of OGG1. Viral yield, transcription level, and protein synthesis were reduced in ASFV-infected primary alveolar macrophages (PAMs) treated by TH5487 or SU0268 inhibiting OGG1. The expression of BER pathway associated proteins of ASFV was also suppressed in OGG1-inhibited PAMs. Furthermore, OGG1 was found to negatively regulate interferon β (IFN-β) production during ASFV infection and IFN-β could be activated by OGG1 inhibition with TH5487 and SU0268, which blocked OGG1 binding to 8-oxoG. Additionally, the interaction of OGG1 with viral MGF360-14-L protein could disturb IFN-β production to further affect ASFV replication. These results suggest that OGG1 plays the crucial role in successful viral infection and OGG1 inhibitors SU0268 or TH5487 could be used as antiviral agents for ASFV infection.
Collapse
Affiliation(s)
- Jie Fan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China; African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Xinqian Lv
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Saixia Yang
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Shuxian Geng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China; African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Jifei Yang
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yaru Zhao
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Zhonghui Zhang
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Zhijie Liu
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Guiquan Guan
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Jianxun Luo
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Qiaoying Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Hong Yin
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Qingli Niu
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| |
Collapse
|
6
|
Matsushima N, Kretsinger RH. Numerous variants of leucine rich repeats in proteins from nucleo-cytoplasmic large DNA viruses. Gene X 2022; 817:146156. [PMID: 35032616 DOI: 10.1016/j.gene.2021.146156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/15/2021] [Indexed: 11/04/2022] Open
Abstract
Leucine rich repeats (LRRs) occurring in tandem are 20-29 amino acids long. Eleven LRR types have been recognized. Sequence features of LRRs from viruses were investigated using over 600 LRR proteins from 89 species. Directly before, metagenome data of nucleo-cytoplasmic large dsDNA viruses (NCLDVs) have been published; the 2,074 NCLDVs encode 199,021 proteins. From the NCLDVs 547 LRR proteins were identified and 502 were used for analysis. Various variants of known LRR types were identified in viral LRRs. A comprehensive analysis of TpLRR and FNIP that belong to an LRR type was first performed. The repeating unit lengths (RULs) in five types are 19 residues which is the shortest among all LRRs. The RULs of eight LRR types including FNIP are one to five residues shorter than those of the known, corresponding LRR types. The conserved hydrophobic residues such as Leu, Val or Ile in the consensus sequences are frequently substituted by cysteine at one or two positions. Four unique LRR motifs that are different from those identified previously are observed. The present study enhances the previous result. An evolutionary scenario of short or unique LRR was discussed.
Collapse
Affiliation(s)
- Norio Matsushima
- Division of Bioinformatics, Institute of Tandem Repeats, Noboribetsu 059-0464, Japan; Center for Medical Education, Sapporo Medical University, Sapporo 060-8556, Japan.
| | - Robert H Kretsinger
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
7
|
African Swine Fever Virus as a Difficult Opponent in the Fight for a Vaccine-Current Data. Viruses 2021; 13:v13071212. [PMID: 34201761 PMCID: PMC8310326 DOI: 10.3390/v13071212] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 12/13/2022] Open
Abstract
Prevention and control of African swine fever virus (ASFV) in Europe, Asia, and Africa seem to be extremely difficult in view of the ease with which it spreads, its high resistance to environmental conditions, and the many obstacles related to the introduction of effective specific immunoprophylaxis. Biological properties of ASFV indicate that the African swine fever (ASF) pandemic will continue to develop and that only the implementation of an effective and safe vaccine will ensure a reduction in the spread of ASFV. At present, vaccines against ASF are not available. The latest approaches to the ASFV vaccine’s design concentrate on the development of either modified live vaccines by targeted gene deletion from different isolates or subunit vaccines. The construction of an effective vaccine is hindered by the complex structure of the virus, the lack of an effective continuous cell line for the isolation and propagation of ASFV, unpredictable and stain-specific phenotypes after the genetic modification of ASFV, a risk of reversion to virulence, and our current inability to differentiate infected animals from vaccinated ones. Moreover, the design of vaccines intended for wild boars and oral administration is desirable. Despite several obstacles, the design of a safe and effective vaccine against ASFV seems to be achievable.
Collapse
|
8
|
Sun TW, Yang CL, Kao TT, Wang TH, Lai MW, Ku C. Host Range and Coding Potential of Eukaryotic Giant Viruses. Viruses 2020; 12:E1337. [PMID: 33233432 PMCID: PMC7700475 DOI: 10.3390/v12111337] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Giant viruses are a group of eukaryotic double-stranded DNA viruses with large virion and genome size that challenged the traditional view of virus. Newly isolated strains and sequenced genomes in the last two decades have substantially advanced our knowledge of their host diversity, gene functions, and evolutionary history. Giant viruses are now known to infect hosts from all major supergroups in the eukaryotic tree of life, which predominantly comprises microbial organisms. The seven well-recognized viral clades (taxonomic families) have drastically different host range. Mimiviridae and Phycodnaviridae, both with notable intrafamilial genome variation and high abundance in environmental samples, have members that infect the most diverse eukaryotic lineages. Laboratory experiments and comparative genomics have shed light on the unprecedented functional potential of giant viruses, encoding proteins for genetic information flow, energy metabolism, synthesis of biomolecules, membrane transport, and sensing that allow for sophisticated control of intracellular conditions and cell-environment interactions. Evolutionary genomics can illuminate how current and past hosts shape viral gene repertoires, although it becomes more obscure with divergent sequences and deep phylogenies. Continued works to characterize giant viruses from marine and other environments will further contribute to our understanding of their host range, coding potential, and virus-host coevolution.
Collapse
Affiliation(s)
- Tsu-Wang Sun
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (T.-W.S.); (C.-L.Y.); (T.-T.K.); (T.-H.W.); (M.-W.L.)
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| | - Chia-Ling Yang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (T.-W.S.); (C.-L.Y.); (T.-T.K.); (T.-H.W.); (M.-W.L.)
| | - Tzu-Tong Kao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (T.-W.S.); (C.-L.Y.); (T.-T.K.); (T.-H.W.); (M.-W.L.)
| | - Tzu-Haw Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (T.-W.S.); (C.-L.Y.); (T.-T.K.); (T.-H.W.); (M.-W.L.)
| | - Ming-Wei Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (T.-W.S.); (C.-L.Y.); (T.-T.K.); (T.-H.W.); (M.-W.L.)
| | - Chuan Ku
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (T.-W.S.); (C.-L.Y.); (T.-T.K.); (T.-H.W.); (M.-W.L.)
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
9
|
Shrinking of repeating unit length in leucine-rich repeats from double-stranded DNA viruses. Arch Virol 2020; 166:43-64. [PMID: 33052487 DOI: 10.1007/s00705-020-04820-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
Abstract
Leucine-rich repeats (LRRs) are present in over 563,000 proteins from viruses to eukaryotes. LRRs repeat in tandem and have been classified into fifteen classes in which the repeat unit lengths range from 20 to 29 residues. Most LRR proteins are involved in protein-protein or ligand interactions. The amount of genome sequence data from viruses is increasing rapidly, and although viral LRR proteins have been identified, a comprehensive sequence analysis has not yet been done, and their structures, functions, and evolution are still unknown. In the present study, we characterized viral LRRs by sequence analysis and identified over 600 LRR proteins from 89 virus species. Most of these proteins were from double-stranded DNA (dsDNA) viruses, including nucleocytoplasmic large dsDNA viruses (NCLDVs). We found that the repeating unit lengths of 11 types are one to five residues shorter than those of the seven known corresponding LRR classes. The repeating units of six types are 19 residues long and are thus the shortest among all LRRs. In addition, two of the LRR types are unique and have not been observed in bacteria, archae or eukaryotes. Conserved strongly hydrophobic residues such as Leu, Val or Ile in the consensus sequences are replaced by Cys with high frequency. Phylogenetic analysis indicated that horizontal gene transfer of some viral LRR genes had occurred between the virus and its host. We suggest that the shortening might contribute to the survival strategy of viruses. The present findings provide a new perspective on the origin and evolution of LRRs.
Collapse
|
10
|
Teklue T, Sun Y, Abid M, Luo Y, Qiu HJ. Current status and evolving approaches to African swine fever vaccine development. Transbound Emerg Dis 2019; 67:529-542. [PMID: 31538406 DOI: 10.1111/tbed.13364] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022]
Abstract
African swine fever (ASF) is a highly lethal haemorrhagic disease of swine caused by African swine fever virus (ASFV), a unique and genetically complex virus. The disease continues to be a huge burden to the pig industry in Africa, Europe and recently in Asia, especially China. The purpose of this review was to recapitulate the current scenarios and evolving trends in ASF vaccine development. The unavailability of an applicable ASF vaccine is partly due to the complex nature of the virus, which encodes various proteins associated with immune evasion. Moreover, the incomplete understanding of immune protection determinants of ASFV hampers the rational vaccine design. Developing an effective ASF vaccine continues to be a challenging task due to many undefined features of ASFV immunobiology. Recent attempts on DNA and live attenuated ASF vaccines have been reported with promising efficacy, and especially live attenuated vaccines have been proved to provide complete homologous protection. Single-cycle viral vaccines have been developed for various diseases such as Rift Valley fever and bluetongue, and the rational extension of these strategies could be helpful for developing single-cycle ASF vaccines. Therefore, live attenuated vaccines in short term and single-cycle vaccines in long term would be the next generation of ASF vaccines.
Collapse
Affiliation(s)
- Teshale Teklue
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Tigray Agricultural Research Institute, Mekelle, Ethiopia
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Muhammad Abid
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuzi Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
11
|
Dixon LK, Islam M, Nash R, Reis AL. African swine fever virus evasion of host defences. Virus Res 2019; 266:25-33. [PMID: 30959069 PMCID: PMC6505686 DOI: 10.1016/j.virusres.2019.04.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 12/24/2022]
Abstract
African swine fever virus causes a haemorrhagic fever in domestic pigs and wild boar. The continuing spread in Africa, Europe and Asia threatens the global pig industry. The lack of a vaccine limits disease control. To underpin rational strategies for vaccine development improved knowledge is needed of how the virus interacts with and modulates the host's responses to infection. The virus long double-stranded DNA genome codes for more than 160 proteins of which many are non-essential for replication in cells but can have important roles in evading the host's defences. Here we review knowledge of the pathways targeted by ASFV and the mechanisms by which these are inhibited. The impact of deleting single or multiple ASFV genes on virus replication in cells and infection in pigs is summarised providing information on strategies for rational development of modified live vaccines.
Collapse
Affiliation(s)
- L K Dixon
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK.
| | - M Islam
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | - R Nash
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | - A L Reis
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| |
Collapse
|
12
|
A Proteomic Atlas of the African Swine Fever Virus Particle. J Virol 2018; 92:JVI.01293-18. [PMID: 30185597 DOI: 10.1128/jvi.01293-18] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022] Open
Abstract
African swine fever virus (ASFV) is a large and complex DNA virus that causes a highly lethal swine disease for which there is no vaccine available. The ASFV particle, with an icosahedral multilayered structure, contains multiple polypeptides whose identity is largely unknown. Here, we analyzed by mass spectroscopy the protein composition of highly purified extracellular ASFV particles and performed immunoelectron microscopy to localize several of the detected proteins. The proteomic analysis identified 68 viral proteins, which account for 39% of the genome coding capacity. The ASFV proteome includes essentially all the previously described virion proteins and, interestingly, 44 newly identified virus-packaged polypeptides, half of which have an unknown function. A great proportion of the virion proteins are committed to the virus architecture, including two newly identified structural proteins, p5 and p8, which are derived from the core polyproteins pp220 and pp62, respectively. In addition, the virion contains a full complement of enzymes and factors involved in viral transcription, various enzymes implicated in DNA repair and protein modification, and some proteins concerned with virus entry and host defense evasion. Finally, 21 host proteins, many of them localized at the cell surface and related to the cortical actin cytoskeleton, were reproducibly detected in the ASFV particle. Immunoelectron microscopy strongly supports the suggestion that these host membrane-associated proteins are recruited during virus budding at actin-dependent membrane protrusions. Altogether, the results of this study provide a comprehensive model of the ASFV architecture that integrates both compositional and structural information.IMPORTANCE African swine fever virus causes a highly contagious and lethal disease of swine that currently affects many countries of sub-Saharan Africa, the Caucasus, the Russian Federation, and Eastern Europe and has very recently spread to China. Despite extensive research, effective vaccines or antiviral strategies are still lacking, and many basic questions on the molecular mechanisms underlying the infective cycle remain. One such gap regards the composition and structure of the infectious virus particle. In the study described in this report, we identified the set of viral and host proteins that compose the virion and determined or inferred the localization of many of them. This information significantly increases our understanding of the biological and structural features of an infectious African swine fever virus particle and will help direct future research efforts.
Collapse
|
13
|
Phaeocystis globosa Virus DNA Polymerase X: a "Swiss Army knife", Multifunctional DNA polymerase-lyase-ligase for Base Excision Repair. Sci Rep 2017; 7:6907. [PMID: 28761124 PMCID: PMC5537341 DOI: 10.1038/s41598-017-07378-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/27/2017] [Indexed: 01/04/2023] Open
Abstract
Phaeocystis globosa virus 16T is a giant virus that belongs to the so-called nucleo-cytoplasmic large DNA virus (NCLDV) group. Its linear dsDNA genome contains an almost full complement of genes required to participate in viral base excision repair (BER). Among them is a gene coding for a bimodular protein consisting of an N-terminal Polβ-like core fused to a C-terminal domain (PgVPolX), which shows homology with NAD+-dependent DNA ligases. Analysis of the biochemical features of the purified enzyme revealed that PgVPolX is a multifunctional protein that could act as a “Swiss army knife” enzyme during BER since it is endowed with: 1) a template-directed DNA polymerization activity, preferentially acting on DNA structures containing gaps; 2) 5′-deoxyribose-5-phosphate (dRP) and abasic (AP) site lyase activities; and 3) an NAD+-dependent DNA ligase activity. We show how the three activities act in concert to efficiently repair BER intermediates, leading us to suggest that PgVPolX may constitute, together with the viral AP-endonuclease, a BER pathway. This is the first time that this type of protein fusion has been demonstrated to be functional.
Collapse
|
14
|
Unraveling the Armor of a Killer: Evasion of Host Defenses by African Swine Fever Virus. J Virol 2017; 91:JVI.02338-16. [PMID: 28031363 PMCID: PMC5331812 DOI: 10.1128/jvi.02338-16] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
African swine fever is an acute hemorrhagic disease of pigs. Extensive recent spread in the Russian Federation and Eastern Europe has increased the risk to global pig production. The virus is a large DNA virus and is the only member of the Asfarviridae family. In pigs, the virus replicates predominantly in macrophages. We review how the virus overcomes the barriers to replication in the macrophage and the virus mechanism to inhibit key host defense pathways.
Collapse
|
15
|
DNA repair genes in the Megavirales pangenome. Curr Opin Microbiol 2016; 31:94-100. [PMID: 27042991 DOI: 10.1016/j.mib.2016.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 12/12/2022]
Abstract
The order 'Megavirales' represents a group of eukaryotic viruses with a large genome encoding a few hundred up to two thousand five hundred genes. Several members of Megavirales possess genes involved in major DNA repair pathways. Some of these genes were likely inherited from an ancient virus world and some others were derived from the genomes of their hosts. Here we examine molecular phylogenies of key DNA repair enzymes in light of recent hypotheses on the origin of Megavirales, and propose that the last common ancestors of the individual families of the order Megavirales already possessed DNA repair functions to achieve and maintain a moderately large genome and that this repair capacity gradually increased, in a family-dependent manner, during their recent evolution.
Collapse
|
16
|
Long AM, Short SM. Seasonal determinations of algal virus decay rates reveal overwintering in a temperate freshwater pond. ISME JOURNAL 2016; 10:1602-12. [PMID: 26943625 DOI: 10.1038/ismej.2015.240] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 10/30/2015] [Accepted: 11/18/2015] [Indexed: 11/09/2022]
Abstract
To address questions about algal virus persistence (i.e., continued existence) in the environment, rates of decay of infectivity for two viruses that infect Chlorella-like algae, ATCV-1 and CVM-1, and a virus that infects the prymnesiophyte Chrysochromulina parva, CpV-BQ1, were estimated from in situ incubations in a temperate, seasonally frozen pond. A series of experiments were conducted to estimate rates of decay of infectivity in all four seasons with incubations lasting 21 days in spring, summer and autumn, and 126 days in winter. Decay rates observed across this study were relatively low compared with previous estimates obtained for other algal viruses, and ranged from 0.012 to 11% h(-1). Overall, the virus CpV-BQ1 decayed most rapidly whereas ATCV-1 decayed most slowly, but for all viruses the highest decay rates were observed during the summer and the lowest were observed during the winter. Furthermore, the winter incubations revealed the ability of each virus to overwinter under ice as ATCV-1, CVM-1 and CpV-BQ1 retained up to 48%, 19% and 9% of their infectivity after 126 days, respectively. The observed resilience of algal viruses in a seasonally frozen freshwater pond provides a mechanism that can support the maintenance of viral seed banks in nature. However, the high rates of decay observed in the summer demonstrate that virus survival and therefore environmental persistence can be subject to seasonal bottlenecks.
Collapse
Affiliation(s)
- Andrew M Long
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Steven M Short
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
17
|
Karentz D. Beyond xeroderma pigmentosum: DNA damage and repair in an ecological context. A tribute to James E. Cleaver. Photochem Photobiol 2014; 91:460-74. [PMID: 25395165 DOI: 10.1111/php.12388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/29/2014] [Indexed: 12/12/2022]
Abstract
The ability to repair DNA is a ubiquitous characteristic of life on Earth and all organisms possess similar mechanisms for dealing with DNA damage, an indication of a very early evolutionary origin for repair processes. James E. Cleaver's career (initiated in the early 1960s) has been devoted to the study of mammalian ultraviolet radiation (UVR) photobiology, specifically the molecular genetics of xeroderma pigmentosum and other human diseases caused by defects in DNA damage recognition and repair. This work by Jim and others has influenced the study of DNA damage and repair in a variety of taxa. Today, the field of DNA repair is enhancing our understanding of not only how to treat and prevent human disease, but is providing insights on the evolutionary history of life on Earth and how natural populations are coping with UVR-induced DNA damage from anthropogenic changes in the environment such as ozone depletion.
Collapse
Affiliation(s)
- Deneb Karentz
- Department of Biology, University of San Francisco, San Francisco, CA
| |
Collapse
|
18
|
The virion of Cafeteria roenbergensis virus (CroV) contains a complex suite of proteins for transcription and DNA repair. Virology 2014; 466-467:82-94. [PMID: 24973308 DOI: 10.1016/j.virol.2014.05.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 05/25/2014] [Accepted: 05/27/2014] [Indexed: 11/20/2022]
Abstract
Cafeteria roenbergensis virus (CroV) is a giant virus of the Mimiviridae family that infects the marine phagotrophic flagellate C. roenbergensis. CroV possesses a DNA genome of ~730 kilobase pairs that is predicted to encode 544 proteins. We analyzed the protein composition of purified CroV particles by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and identified 141 virion-associated CroV proteins and 60 host proteins. Data are available via ProteomeXchange with identifier PXD000993. Predicted functions could be assigned to 36% of the virion proteins, which include structural proteins as well as enzymes for transcription, DNA repair, redox reactions and protein modification. Homologs of 36 CroV virion proteins have previously been found in the virion of Acanthamoeba polyphaga mimivirus. The overlapping virion proteome of CroV and Mimivirus reveals a set of conserved virion protein functions that were presumably present in the last common ancestor of the Mimiviridae.
Collapse
|