1
|
CUEVAS-ROMERO JS, CERRITEÑO-SÁNCHEZ JL, LARA-ROMERO R, VEGA-LÓPEZ MA, RAMÍREZ-ESTUDILLO C, RAMÍREZ-MENDOZA H, BERG M, LÖVGREN-BENGTSSON K. Immunogenicity of a recombinant hemagglutinin neuraminidase-Porcine rubulavirus produced by Escherichia coli of Porcine rubulavirus gives protective immunity of litter after challenge. J Vet Med Sci 2022; 84:1595-1604. [PMID: 36273875 PMCID: PMC9791230 DOI: 10.1292/jvms.22-0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Porcine rubulavirus (PRV) is a contagious virus that affects the Mexican swine industry. This work aimed to evaluate the immunogenicity of an recombinant hemagglutinin neuraminidase-Porcine rubulavirus (rHN-PorPV) candidate vaccine on pregnant sows, and the protective efficacy afforded to their 7-day-old suckling piglets against PRV lethal challenge. Three sows were immunized with rHN-PorPV formulated with immune-stimulating complex (ISCOMs) and two sows with rHN-PorPV protein alone as well as a mock-immunized pregnant sow (negative control). Quantitative ELISA detected a high concentration of anti-rHN-PorPV Immunoglobulin G (IgG) antibodies in sow sera after the second dose of vaccine administered on day 14 until farrowing, showing viral-neutralizing and cross-neutralization activity against different variants of PRV. Sera samples from piglets of immunized sows (with or without adjuvant), showed high concentrations of IgG antibodies. As expected, piglets from the negative control sow (n=5), exhibited severe signs of disease and 100% of mortality after PRV challenge study. Conversely, 75% and 87.5% of the piglets born from the rHN-PorPV and the rHN-PorPV-ISCOMs-immunized sows (n=8), survived, respectively, showing milder PRV clinical signs. Our data indicate that rHN-PorPV candidate vaccine produced in Escherichia coli induces efficient humoral response in pregnant sows and that the maternally derived immunity provides high protection to suckling piglets against PRV lethal challenge.
Collapse
Affiliation(s)
- Julieta Sandra CUEVAS-ROMERO
- Centro Nacional de Investigación Disciplinaria en Salud
Animal e Inocuidad, INIFAP, México City, Mexico,Correspondence to: Cuevas-Romero JS: , Centro
Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, INIFAP, KM. 15.5
Carretera México-Toluca. Col, Palo Alto, Cuajimalpa CP, 05110, Ciudad de México,
Mexico
| | | | - Rocío LARA-ROMERO
- Facultad de Estudios Superiores Cuautitlán FESC-UNAM,
Cuautitlán Izcalli, Estado de México, Mexico
| | - Marco Antonio VEGA-LÓPEZ
- Centro de Investigación y Estudios Avanzados del Instituto
Politécnico Nacional, México City, Mexico
| | - Carmen RAMÍREZ-ESTUDILLO
- Centro de Investigación y Estudios Avanzados del Instituto
Politécnico Nacional, México City, Mexico
| | | | - Mikael BERG
- Section of Virology, Department of Biomedical Sciences and
Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala,
Sweden
| | - Karin LÖVGREN-BENGTSSON
- Section of Virology, Department of Biomedical Sciences and
Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala,
Sweden,Isconova AB, Uppsala, Sweden
| |
Collapse
|
2
|
Siañez-Estrada LI, Rivera-Benítez JF, Rosas-Murrieta NH, Reyes-Leyva J, Santos-López G, Herrera-Camacho I. Immunoinformatics approach for predicting epitopes in HN and F proteins of Porcine rubulavirus. PLoS One 2020; 15:e0239785. [PMID: 32976525 PMCID: PMC7518572 DOI: 10.1371/journal.pone.0239785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
Porcine rubulavirus (PRV), which belongs to the family Paramyxoviridae, causes blue eye disease in pigs, characterized by encephalitis and reproductive failure in newborn and adult pigs, respectively. There is no effective treatment against PRV and no information on the effectiveness of the available vaccines. Continuous outbreaks have occurred in Mexico since the early 1980s, which have caused serious economic losses to pig producers. Vaccination can be used to control this disease. Searching for effective antigen candidates against PRV, we first sequenced the PAC1 F protein, then we used various immunoinformatics tools to predict antigenic determinants of B-cells and T-cells against the two glycoproteins of the virus (HN and F proteins). Finally, we used AutoDock Vina to determine the binding energies. We obtained the F gene sequence of a PRV strain collected in the early 1990s in Mexico and compared its amino acid profile with previous and more recent strains, obtaining an identity similarity of 97.78 to 99.26%. For the F proteins, seven linear B-cell epitopes, six conformational B-cell epitopes and twenty-nine T-cell MHC class I epitopes were predicted. For the HN proteins, sixteen linear B-cell epitopes, seven conformational B-cell epitopes and thirty-four T-cell MHC class I epitopes were predicted. The ATRSETDYY and AAYTTTTCF epitopes of the HN protein might be important for neutralizing the viral infection. We determined the in silico binding energy between the predicted epitopes on the F and HN proteins and swine MHC-I molecules. The binding energy of these epitopes ranged from -5.8 to -7.8 kcal/mol. The present study aimed to assess the use of HN and F proteins as antigens, either as recombinant proteins or as a series of peptides that could activate different responses of the immune system. This may help identify relevant immunogens, saving time and costs in the development of new vaccines or diagnostic tools.
Collapse
Affiliation(s)
- Luis I. Siañez-Estrada
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
- Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social (IMSS), Metepec, México
| | - José F. Rivera-Benítez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Ciudad de México, México
| | - Nora H. Rosas-Murrieta
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Julio Reyes-Leyva
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social (IMSS), Metepec, México
| | - Gerardo Santos-López
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social (IMSS), Metepec, México
| | - Irma Herrera-Camacho
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
3
|
Randall RE, Griffin DE. Within host RNA virus persistence: mechanisms and consequences. Curr Opin Virol 2017; 23:35-42. [PMID: 28319790 PMCID: PMC5474179 DOI: 10.1016/j.coviro.2017.03.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/02/2017] [Indexed: 12/15/2022]
Abstract
In a prototypical response to an acute viral infection it would be expected that the adaptive immune response would eliminate all virally infected cells within a few weeks of infection. However many (non-retrovirus) RNA viruses can establish 'within host' persistent infections that occasionally lead to chronic or reactivated disease. Despite the importance of 'within host' persistent RNA virus infections, much has still to be learnt about the molecular mechanisms by which RNA viruses establish persistent infections, why innate and adaptive immune responses fail to rapidly clear these infections, and the epidemiological and potential disease consequences of such infections.
Collapse
Affiliation(s)
| | - Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Cuevas-Romero JS, Rivera-Benítez JF, Hernández-Baumgarten E, Hernández-Jaúregui P, Vega M, Blomström AL, Berg M, Baule C. Cloning, expression and characterization of potential immunogenic recombinant hemagglutinin-neuraminidase protein of Porcine rubulavirus. Protein Expr Purif 2016; 128:1-7. [PMID: 27496728 DOI: 10.1016/j.pep.2016.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/26/2016] [Accepted: 08/01/2016] [Indexed: 10/21/2022]
Abstract
Blue eye disease caused by Porcine rubulavirus (PorPV) is an endemic viral infection of swine causing neurological and respiratory disease in piglets, and reproductive failure in sows and boars. The hemagglutinin-neuraminidase (HN) glycoprotein of PorPV is the most abundant component in the viral envelope and the main target of the immune response in infected animals. In this study, we expressed the HN-PorPV-recombinant (rHN-PorPV) protein in an Escherichia coli system and analyzed the immune responses in mice. The HN gene was cloned from the reference strain PorPV-La Piedad Michoacan Virus (GenBank accession number BK005918), into the pDual expression vector. The expressed protein was identified at a molecular weight of 61.7 kDa. Three-dimensional modeling showed that the main conformational and functional domains of the rHN-PorPV protein were preserved. The antigenicity of the expressed protein was confirmed by Western blot with a monoclonal antibody recognizing the HN, and by testing against serum samples from pigs experimentally infected with PorPV. The immunogenicity of the rHN-PorPV protein was tested by inoculation of BALB/c mice with AbISCO-100(®) as adjuvant. Analysis of the humoral immune responses in mice showed an increased level of specific antibodies 14 days after the first immunization, compared to the control group (P < 0.0005). The results show the ability of the rHN-PorPV protein to induce an antibody response in mice. Due to its immunogenic potential, the rHN-PorPV protein will be further evaluated in pig trials for its suitability for prevention and control of blue eye disease.
Collapse
Affiliation(s)
- Julieta Sandra Cuevas-Romero
- Centro Nacional de Investigación Disciplinaria en Microbiología Animal, INIFAP, CP. 05110, Mexico City, Mexico; Division of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, S-751 89, Uppsala, Sweden.
| | | | | | | | - Marco Vega
- Instituto Politécnico Nacional. Centro de Investigación y Estudios Avanzados, Mexico City, Mexico
| | - Anne-Lie Blomström
- Division of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, S-751 89, Uppsala, Sweden
| | - Mikael Berg
- Division of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, S-751 89, Uppsala, Sweden
| | - Claudia Baule
- Division of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, S-751 89, Uppsala, Sweden
| |
Collapse
|
5
|
Production of an enzymatically active and immunogenic form of ectodomain of Porcine rubulavirus hemagglutinin-neuraminidase in the yeast Pichia pastoris. J Biotechnol 2016; 223:52-61. [PMID: 26940828 DOI: 10.1016/j.jbiotec.2016.02.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/23/2015] [Accepted: 02/26/2016] [Indexed: 11/20/2022]
Abstract
Blue-eye disease (BED) of swine is a viral disease endemic in Mexico. The etiological agent is a paramyxovirus classified as Porcine rubulavirus (PoRV-LPMV), which exhibits in its envelope the hemagglutinin-neuraminidase (HN) glycoprotein, the most immunogenic and a major target for vaccine development. We report in this study the obtaining of ectodomain of PoRV HN (eHN) through the Pichia pastoris expression system. The expression vector (pPICZαB-HN) was integrated by displacement into the yeast chromosome and resulted in a Mut(+) phenotype. Expressed eHN in the P. pastoris X33 strain was recovered from cell-free medium, featuring up to 67 nmol/min/mg after 6 days of expression. eHN was recognized by the serum of infected pigs with strains currently circulating in the Mexican Bajio region. eHN induces antibodies in mice after 28 days of immunization with specific recognition in ELISA test. These antibodies were able to inhibit >80% replication by viral neutralization assays in cell culture. These studies show the obtaining of a protein with similar characteristics to the native HN and which may be a candidate to propose a vaccine or to use the antigen in a serologic diagnostic test.
Collapse
|
6
|
Cuevas-Romero JS, Blomström AL, Berg M. Molecular and epidemiological studies of Porcine rubulavirus infection - an overview. Infect Ecol Epidemiol 2015; 5:29602. [PMID: 26584829 PMCID: PMC4653323 DOI: 10.3402/iee.v5.29602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/07/2015] [Accepted: 10/21/2015] [Indexed: 11/27/2022] Open
Abstract
Porcine rubulavirus-La Piedad-Michoacan-Mexico virus (PorPV-LPMV) was identified as the causative agent of a viral disease that emerged spontaneously in Mexican swine in the 1980s. Since the report of the initial outbreak of the disease, only one full-length genome from a strain isolated in 1984 (PorPV-LPMV/1984) has been sequenced; sequence data are scarce from other isolates. The genetic variation of this virus that has spread throughout the main endemic region of Mexico is almost a complete mystery. The development of molecular techniques for improved diagnostics and to investigate the persistence, molecular epidemiology, and the possible reservoirs of PorPV are needed. Together, this will provide greater knowledge regarding the molecular genetic changes and useful data to establish new strategies in the control of this virus in Mexico.
Collapse
Affiliation(s)
- Julieta Sandra Cuevas-Romero
- Centro Nacional de Investigaciones Disciplinarias en Microbiología Animal, INIFAP, México City, Mexico.,Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden;
| | - Anne-Lie Blomström
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mikael Berg
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
7
|
Pisanelli G, Laurent-Rolle M, Manicassamy B, Belicha-Villanueva A, Morrison J, Lozano-Dubernard B, Castro-Peralta F, Iovane G, García-Sastre A. La Piedad Michoacán Mexico Virus V protein antagonizes type I interferon response by binding STAT2 protein and preventing STATs nuclear translocation. Virus Res 2015; 213:11-22. [PMID: 26546155 DOI: 10.1016/j.virusres.2015.10.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 12/24/2022]
Abstract
La Piedad Michoacán Mexico Virus (LPMV) is a member of the Rubulavirus genus within the Paramyxoviridae family. LPMV is the etiologic agent of "blue eye disease", causing a significant disease burden in swine in Mexico with long-term implications for the agricultural industry. This virus mainly affects piglets and is characterized by meningoencephalitis and respiratory distress. It also affects adult pigs, causing reduced fertility and abortions in females, and orchitis and epididymitis in males. Viruses of the Paramyxoviridae family evade the innate immune response by targeting components of the interferon (IFN) signaling pathway. The V protein, expressed by most paramyxoviruses, is a well-characterized IFN signaling antagonist. Until now, there were no reports on the role of the LPMV-V protein in inhibiting the IFN response. In this study we demonstrate that LPMV-V protein antagonizes type I but not type II IFN signaling by binding STAT2, a component of the type I IFN cascade. Our results indicate that the last 18 amino acids of LPMV-V protein are required for binding to STAT2 in human and swine cells. While LPMV-V protein does not affect the protein levels of STAT1 or STAT2, it does prevent the IFN-induced phosphorylation and nuclear translocation of STAT1 and STAT2 thereby inhibiting cellular responses to IFN α/β.
Collapse
Affiliation(s)
- Giuseppe Pisanelli
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy
| | - Maudry Laurent-Rolle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| | - Balaji Manicassamy
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| | - Alan Belicha-Villanueva
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| | - Juliet Morrison
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| | - Bernardo Lozano-Dubernard
- Departamento de Investigación y Desarrollo, Laboratorio Avi-Mex, SA de CV, Bartolache 1862, Colonia del Valle, D.F. México 01900, Mexico
| | - Felipa Castro-Peralta
- Departamento de Investigación y Desarrollo, Laboratorio Avi-Mex, SA de CV, Bartolache 1862, Colonia del Valle, D.F. México 01900, Mexico
| | - Giuseppe Iovane
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Department of Medicine, Division of Infectious Disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States.
| |
Collapse
|