1
|
Kibenge F, Kibenge M, Montes de Oca M, Godoy M. Parvoviruses of Aquatic Animals. Pathogens 2024; 13:625. [PMID: 39204226 PMCID: PMC11357303 DOI: 10.3390/pathogens13080625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Family Parvoviridae consists of small, non-enveloped viruses with linear, single-stranded DNA genomes of approximately 4-6 kilobases, subdivided into three subfamilies, Parvovirinae, Densovirinae, and Hamaparvovirinae, and unassigned genus Metalloincertoparvovirus. Parvoviruses of aquatic animals infect crustaceans, mollusks, and finfish. This review describes these parvoviruses, which are highly host-specific and associated with mass morbidity and mortality in both farmed and wild aquatic animals. They include Cherax quadricarinatus densovirus (CqDV) in freshwater crayfish in Queensland, Australia; sea star-associated densovirus (SSaDV) in sunflower sea star on the Northeastern Pacific Coast; Clinch densovirus 1 in freshwater mussels in the Clinch River, Virginia, and Tennessee, USA, in subfamily Densovirinae; hepatopancreatic parvovirus (HPV) and infectious hypodermal and hematopoietic necrosis virus (IHHNV) in farmed shrimp worldwide; Syngnathid ichthamaparvovirus 1 in gulf pipefish in the Gulf of Mexico and parts of South America; tilapia parvovirus (TiPV) in farmed tilapia in China, Thailand, and India, in the subfamily Hamaparvovirinae; and Penaeus monodon metallodensovirus (PmMDV) in Vietnamese P. monodon, in unassigned genus Metalloincertoparvovirus. Also included in the family Parvoviridae are novel parvoviruses detected in both diseased and healthy animals using metagenomic sequencing, such as zander parvovirus from zander in Hungary and salmon parvovirus from sockeye salmon smolts in British Columbia, Canada.
Collapse
Affiliation(s)
- Frederick Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada;
| | - Molly Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada;
| | - Marco Montes de Oca
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Puerto Montt 5480000, Chile; (M.M.d.O.); or (M.G.)
| | - Marcos Godoy
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Puerto Montt 5480000, Chile; (M.M.d.O.); or (M.G.)
- Laboratorio de Biotecnología Aplicada, Facultad de Ciencias de la Naturaleza, Escuela de Medicina Veterinaria, Sede de la Patagonia, Universidad San Sebastián, Puerto Montt 5480000, Chile
| |
Collapse
|
2
|
Aranguren Caro LF, Gomez-Sanchez MM, Piedrahita Y, Mai HN, Cruz-Flores R, Alenton RRR, Dhar AK. Current status of infection with infectious hypodermal and hematopoietic necrosis virus (IHHNV) in the Peruvian and Ecuadorian shrimp industry. PLoS One 2022; 17:e0272456. [PMID: 35947538 PMCID: PMC9365166 DOI: 10.1371/journal.pone.0272456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022] Open
Abstract
Infection with infectious hypodermal and hematopoietic necrosis virus (IHHNV) is a crustacean disease that caused large-scale mortality in Penaeus stylirostris, deformity and growth retardation in Penaeus vannamei and Penaeus monodon. We surveyed the presence of IHHNV in three major shrimp-producing regions in Ecuador, namely Guayas, El Oro, and Esmeralda. The data show that IHHNV is endemic (3.3–100% prevalence) to shrimp farms in these regions. The whole genome sequences of representative circulating IHHNV genotypes in Ecuador and Peru showed that these genotypes formed a separate cluster within the Type II genotypes and were divergent from other geographical isolates of IHHNV originating in Asia, Africa, Australia, and Brazil. In experimental bioassays using specific pathogen-free (SPF) P. vannamei, P. monodon, and P. stylirostris and representative IHHNV isolates from Ecuador and Peru, the virus did not cause any mortality or induce clinical signs in any of the three penaeid species. Although IHHNV-specific Cowdry type A inclusion bodies were histologically detected in experimentally challenged P. vannamei and P. monodon and confirmed by in situ hybridization, no such inclusions were observed in P. stylirostris. Moreover, P. vannamei had the highest viral load, followed by P. monodon and P. stylirostris. Based on IHHNV surveillance data, we conclude that the currently farmed P. vannamei lines in Ecuador are tolerant to circulating IHHNV genotypes. The genome sequence and experimental bioassay data showed that, although the currently circulating genotypes are infectious, they do not induce clinical lesions in the three commercially important penaeid species. These findings suggest a potentially evolving virus-host relationship where circulating genotypes of IHHNV co-exist in equilibrium with P. vannamei raised in Peru and Ecuador.
Collapse
Affiliation(s)
- Luis Fernando Aranguren Caro
- Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| | - Muriel Maria Gomez-Sanchez
- Subdireccion de Sanidad, Dirección de Sanidad e inocuidad, National Fisheries Health Agency in Peru (SANIPES), San Isidro, Lima, Perú
| | - Yahira Piedrahita
- Camara Nacional de Acuacultura, CNA, Avenida Francisco de Orellana y Miguel H Alcivar, Guayaquil, Ecuador
| | - Hung Nam Mai
- Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, United States of America
| | - Roberto Cruz-Flores
- Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, United States of America
- Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, Baja California, México
| | - Rod Russel R. Alenton
- Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, United States of America
| | - Arun K. Dhar
- Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
3
|
Huerlimann R, Cowley JA, Wade NM, Wang Y, Kasinadhuni N, Chan CKK, Jabbari JS, Siemering K, Gordon L, Tinning M, Montenegro JD, Maes GE, Sellars MJ, Coman GJ, McWilliam S, Zenger KR, Khatkar MS, Raadsma HW, Donovan D, Krishna G, Jerry DR. Genome assembly of the Australian black tiger shrimp (Penaeus monodon) reveals a novel fragmented IHHNV EVE sequence. G3 (BETHESDA, MD.) 2022; 12:6526390. [PMID: 35143647 PMCID: PMC8982415 DOI: 10.1093/g3journal/jkac034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/02/2022] [Indexed: 01/08/2023]
Abstract
Shrimp are a valuable aquaculture species globally; however, disease remains a major hindrance to shrimp aquaculture sustainability and growth. Mechanisms mediated by endogenous viral elements have been proposed as a means by which shrimp that encounter a new virus start to accommodate rather than succumb to infection over time. However, evidence on the nature of such endogenous viral elements and how they mediate viral accommodation is limited. More extensive genomic data on Penaeid shrimp from different geographical locations should assist in exposing the diversity of endogenous viral elements. In this context, reported here is a PacBio Sequel-based draft genome assembly of an Australian black tiger shrimp (Penaeus monodon) inbred for 1 generation. The 1.89 Gbp draft genome is comprised of 31,922 scaffolds (N50: 496,398 bp) covering 85.9% of the projected genome size. The genome repeat content (61.8% with 30% representing simple sequence repeats) is almost the highest identified for any species. The functional annotation identified 35,517 gene models, of which 25,809 were protein-coding and 17,158 were annotated using interproscan. Scaffold scanning for specific endogenous viral elements identified an element comprised of a 9,045-bp stretch of repeated, inverted, and jumbled genome fragments of infectious hypodermal and hematopoietic necrosis virus bounded by a repeated 591/590 bp host sequence. As only near complete linear ∼4 kb infectious hypodermal and hematopoietic necrosis virus genomes have been found integrated in the genome of P. monodon previously, its discovery has implications regarding the validity of PCR tests designed to specifically detect such linear endogenous viral element types. The existence of joined inverted infectious hypodermal and hematopoietic necrosis virus genome fragments also provides a means by which hairpin double-stranded RNA could be expressed and processed by the shrimp RNA interference machinery.
Collapse
Affiliation(s)
- Roger Huerlimann
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Jeff A Cowley
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia
| | - Nicholas M Wade
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia
| | - Yinan Wang
- Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Naga Kasinadhuni
- Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Chon-Kit Kenneth Chan
- Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Jafar S Jabbari
- Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Kirby Siemering
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Lavinia Gordon
- Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Matthew Tinning
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Juan D Montenegro
- Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Gregory E Maes
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.,Laboratory of Biodiversity and Evolutionary Genomics, Biogenomics-consultancy, KU Leuven, Leuven 3000, Belgium.,Center for Human Genetics, UZ Leuven- Genomics Core, KU Leuven, Leuven 3000, Belgium
| | | | - Greg J Coman
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,CSIRO Agriculture and Food, Bribie Island Research Centre, Woorim, QLD 4507, Australia
| | - Sean McWilliam
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia
| | - Kyall R Zenger
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Mehar S Khatkar
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Herman W Raadsma
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Dallas Donovan
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Seafarms Group Ltd, Darwin, NT 0800, Australia
| | - Gopala Krishna
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Seafarms Group Ltd, Darwin, NT 0800, Australia
| | - Dean R Jerry
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
6
|
Wei YW, Fan DD, Chen J. Development of an overlapping PCR method to clone the full genome of infectious hypodermal and hematopoietic necrosis virus (IHHNV). J Virol Methods 2015; 224:16-9. [PMID: 26277910 DOI: 10.1016/j.jviromet.2015.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 08/05/2015] [Accepted: 08/11/2015] [Indexed: 11/25/2022]
Abstract
Decapod Penstyldensovirus 1, previously named as infectious hypodermal and hematopoietic necrosis virus (IHHNV), is an economically important pathogen that causes shrimp diseases worldwide. However, a rapid method for cloning full-length IHHNV genome sequences is still lacking, which makes it difficult to study the genomics and molecular epidemiology of IHHNV. Here, a novel and rapid PCR technique was developed to determine the complete genomic sequences of IHHNV. The IHHNV genome was amplified in two overlapping fragments which each yielded a 2kb PCR product covering the first half or the second half of IHHNV genome, respectively. Using this method, six complete genomic sequences of IHHNV, which were collected from different regions of Zhejiang province in China, were cloned and sequenced successfully. The new cloning method will greatly facilitate the study on the genomics and molecular epidemiology of IHHNV.
Collapse
Affiliation(s)
- Yong-Wei Wei
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Dong-Dong Fan
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; The Donghai Sea Collaborative Innovation Center for Industrial Upgrading Mariculture, Ningbo University, Ningbo 315211, China.
| |
Collapse
|