1
|
Wu M, Wan Q, Dan X, Wang Y, Chen P, Chen C, Li Y, Yao X, He ML. Targeting Ser78 phosphorylation of Hsp27 achieves potent antiviral effects against enterovirus A71 infection. Emerg Microbes Infect 2024; 13:2368221. [PMID: 38932432 PMCID: PMC11212574 DOI: 10.1080/22221751.2024.2368221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
A positive-sense (+) single-stranded RNA (ssRNA) virus (e.g. enterovirus A71, EV-A71) depends on viral polypeptide translation for initiation of virus replication after entry. We reported that EV-A71 hijacks Hsp27 to induce hnRNP A1 cytosol redistribution to initiate viral protein translation, but the underlying mechanism is still elusive. Here, we show that phosphorylation-deficient Hsp27-3A (Hsp27S15/78/82A) and Hsp27S78A fail to translocate into the nucleus and induce hnRNP A1 cytosol redistribution, while Hsp27S15A and Hsp27S82A display similar effects to the wild type Hsp27. Furthermore, we demonstrate that the viral 2A protease (2Apro) activity is a key factor in regulating Hsp27/hnRNP A1 relocalization. Hsp27S78A dramatically decreases the IRES activity and viral replication, which are partially reduced by Hsp27S82A. However, Hsp27S15A displays the same activity as the wild-type Hsp27. Peptide S78 potently suppresses EV-A71 protein translation and reproduction through blockage of EV-A71-induced Hsp27 phosphorylation and Hsp27/hnRNP A1 relocalization. A point mutation (S78A) on S78 impairs its inhibitory functions on Hsp27/hnRNP A1 relocalization and viral replication. Taken together, we demonstrate the importance of Ser78 phosphorylation of Hsp27 regulated by virus infection in nuclear translocation, hnRNP A1 cytosol relocation, and viral replication, suggesting a new path (such as peptide S78) for target-based antiviral strategy.
Collapse
Affiliation(s)
- Mandi Wu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Qianya Wan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Xuelian Dan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yiran Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Peiran Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Cien Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Yichen Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
- CityU Shenzhen Research Institute, Shenzhen, People’s Republic of China
| |
Collapse
|
2
|
Bieńkowska-Tokarczyk A, Stelmaszczyk-Emmel A, Demkow U, Małecki M. Hyperthermia Enhances Adeno-Associated Virus Vector Transduction Efficiency in Melanoma Cells. Curr Issues Mol Biol 2023; 45:8519-8538. [PMID: 37886980 PMCID: PMC10604982 DOI: 10.3390/cimb45100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Gene therapy perfectly fits in the current needs of medicine for patients with melanoma. One of the major challenges of gene therapy is to increase gene transfer. The role of hyperthermia in the improvement of AAV (adeno-associated virus) transduction efficiency has been indicated. The aim of the present study was to assess the transduction efficacy of melanoma cell lines (A375, G-361, and SK-MEL-1) with the use of the rAAV/DJ mosaic vector under hyperthermia conditions. The analysis of changes in the transduction efficacy and expression of HSPs (heat shock proteins) and receptors for AAV was performed. The transduction was performed at 37 °C and at 43 °C (1 h). Hyperthermia enhanced gene transfer in all the tested cell lines. The most efficient transducing cell line under hyperthermia was A375 (increase by 17%). G361 and SK-MEL-1 cells showed an increase of 7%. The changes in the expression of the AAV receptors and HSPs after hyperthermia were observed. A key role in the improvement of gene transfer may be played by AAVR, HSPB1, HSP6, DNAJC4, HSPD1, HSPA8, HSPA9, HSP90AB1, and AHSA1. This study showed the possibility of the use of hyperthermia as a factor enabling the stimulation of cell transduction with rAAV vectors, thereby providing tools for the improvement in the efficacy of gene therapy based on rAAV.
Collapse
Affiliation(s)
- Alicja Bieńkowska-Tokarczyk
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland
| | - Anna Stelmaszczyk-Emmel
- Department of Laboratory Medicine and Clinical Immunology of Developmental Age, Faculty of Medicine, Medical University of Warsaw, 63a Żwirki i Wigury Street, 02-091 Warsaw, Poland
| | - Urszula Demkow
- Department of Laboratory Medicine and Clinical Immunology of Developmental Age, Faculty of Medicine, Medical University of Warsaw, 63a Żwirki i Wigury Street, 02-091 Warsaw, Poland
| | - Maciej Małecki
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland
- Laboratory of Gene Therapy, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland
| |
Collapse
|
3
|
HSP27 Interacts with Nonstructural Proteins of Porcine Reproductive and Respiratory Syndrome Virus and Promotes Viral Replication. Pathogens 2023; 12:pathogens12010091. [PMID: 36678439 PMCID: PMC9860683 DOI: 10.3390/pathogens12010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Heat shock protein 27 (HSP27) is a multifunctional protein and belongs to the small HSP family. It has been shown that HSP27 is involved in viral replication as a cellular chaperone, but the function of HSP27 during porcine reproductive and respiratory syndrome virus (PRRSV) infections remains unexplored. Here, we found that PRRSV replication can induce HSP27 expression and phosphorylation in vitro. HSP27 overexpression promoted PRRSV replication, whereas its knockdown reduced PRRSV proliferation. Additionally, suppressing HSP27 phosphorylation reduced PRRSV replication and the level of viral double-stranded RNA (dsRNA), a marker of the viral replication and transcription complexes (RTCs). Furthermore, HSP27 can interact with multiple viral nonstructural proteins (nsps), including nsp1α, nsp1β, nsp5, nsp9, nsp11 and nsp12. Suppressing the phosphorylation of HSP27 almost completely disrupted its interaction with nsp1β and nsp12. Altogether, our study revealed that HSP27 plays an important role in PRRSV replication.
Collapse
|
4
|
HSP27 Attenuates cGAS-Mediated IFN-β Signaling through Ubiquitination of cGAS and Promotes PRV Infection. Viruses 2022; 14:v14091851. [PMID: 36146658 PMCID: PMC9502172 DOI: 10.3390/v14091851] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Pseudorabies (PR) is a domestic and wild animal infectious disease caused by the pseudorabies virus (PRV) and is one of the major infectious diseases that endanger the global swine industry. Studies have reported that PRV may achieve cross-species transmission from pigs to humans in recent years. Therefore, in-depth exploration of the relationship between PRV and host proteins is of great significance for elucidating the pathogenic mechanism of PRV and anti-PRV infection. Here, we report that heat shock protein 27 (HSP27) ubiquitinates and degrades cyclic GMP-AMP synthase (cGAS) and attenuates cGAS-mediated antiviral responses, thereby promoting PRV infection. Overexpression of HSP27 promoted PRV proliferation in vitro, while knockdown of HSP27 inhibited PRV infection. Importantly, we found that HSP27 inhibited PRV infection or poly(dA:dT)-activated IFN-β expression. Further studies found that HSP27 may inhibit cGAS-STING-mediated IFN-β expression through targeting cGAS. In addition, we found that HSP27 can suppress the expression of endogenous cGAS in different cells at both gene transcription and protein expression levels, and that HSP27 interacts with and ubiquitinates cGAS. In conclusion, we reveal for the first time that HSP27 is a novel negative regulator of the cGAS-STING signaling pathway induced by PRV infection or poly(dA:dT) activation and demonstrate that HSP27 plays a crucial role in PRV infection.
Collapse
|
5
|
Lv Q, Wang T, Liu S, Zhu Y. Porcine circovirus type 2 exploits cap to inhibit PKR activation through interaction with Hsp40. Vet Microbiol 2020; 252:108929. [PMID: 33254057 DOI: 10.1016/j.vetmic.2020.108929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022]
Abstract
Porcine circovirus type 2 is the main pathogen of porcine circovirus disease, which has caused enormous economic losses to the pig industry worldwide. The PKR signaling pathway is important for the cellular antiviral response, but its role in the process of PCV2 infection is unknown. In this study, we first found that dsRNA was produced and that PKR was activated in PCV2 infection. However, interestingly, the activation of PKR was inhibited when the Cap protein was exogenously expressed in PAMs, and this inhibition was reversed by the expression of DNAJC7. The interaction between Cap and DNAJC7 was confirmed by laser confocal microscopy, coimmunoprecipitation and GST pull-down, and it was found that PCV2 infection or the expression of Cap protein could induce DNAJC7 to migrate to the nucleus and release P58IPK, an inhibitor of PKR activation. Downregulating the expression of DNAJC7 by a specific inhibitor or recombinant lentivirus-mediated shRNA, inhibited the replication of the PCV2 genome and the production of virions, which was consistent with the increase of DNAJC7 expression in multiple tissues of weaned piglets infected with PCV2. These data indicate that although PKR was activated by PCV2 infection, the activation was inhibited by Cap through an interaction with DNAJC7. These results help to understand the molecular mechanism of immune escape after PCV2 infection.
Collapse
Affiliation(s)
- Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, No. 1303 Jiaoyu East Road, Yulin, 537000, Guangxi, China; Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, No. 1303 Jiaoyu East Road, Yulin, 537000, Guangxi, China
| | - Tao Wang
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Shanchuan Liu
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Yulin Zhu
- College of Biology & Pharmacy, Yulin Normal University, No. 1303 Jiaoyu East Road, Yulin, 537000, Guangxi, China.
| |
Collapse
|
6
|
Wan Q, Song D, Li H, He ML. Stress proteins: the biological functions in virus infection, present and challenges for target-based antiviral drug development. Signal Transduct Target Ther 2020; 5:125. [PMID: 32661235 PMCID: PMC7356129 DOI: 10.1038/s41392-020-00233-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/26/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023] Open
Abstract
Stress proteins (SPs) including heat-shock proteins (HSPs), RNA chaperones, and ER associated stress proteins are molecular chaperones essential for cellular homeostasis. The major functions of HSPs include chaperoning misfolded or unfolded polypeptides, protecting cells from toxic stress, and presenting immune and inflammatory cytokines. Regarded as a double-edged sword, HSPs also cooperate with numerous viruses and cancer cells to promote their survival. RNA chaperones are a group of heterogeneous nuclear ribonucleoproteins (hnRNPs), which are essential factors for manipulating both the functions and metabolisms of pre-mRNAs/hnRNAs transcribed by RNA polymerase II. hnRNPs involve in a large number of cellular processes, including chromatin remodelling, transcription regulation, RNP assembly and stabilization, RNA export, virus replication, histone-like nucleoid structuring, and even intracellular immunity. Dysregulation of stress proteins is associated with many human diseases including human cancer, cardiovascular diseases, neurodegenerative diseases (e.g., Parkinson’s diseases, Alzheimer disease), stroke and infectious diseases. In this review, we summarized the biologic function of stress proteins, and current progress on their mechanisms related to virus reproduction and diseases caused by virus infections. As SPs also attract a great interest as potential antiviral targets (e.g., COVID-19), we also discuss the present progress and challenges in this area of HSP-based drug development, as well as with compounds already under clinical evaluation.
Collapse
Affiliation(s)
- Qianya Wan
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Dan Song
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Huangcan Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China. .,CityU Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
7
|
Huang S, Fei D, Ma Y, Wang C, Shi D, Liu K, Li M, Ma M. Identification of a novel host protein interacting with the structural protein VP2 of deformed wing virus by yeast two-hybrid screening. Virus Res 2020; 286:198072. [PMID: 32659307 DOI: 10.1016/j.virusres.2020.198072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 10/23/2022]
Abstract
Deformed wing virus (DWV) interacting with Varroa destructor is a possible cause of honeybee colony mortality. VP2 is the structural protein of DWV but its function remains unknown. To clarify the function of VP2 and screen for novel binding proteins that interact with VP2, we carried out a membrane protein yeast two-hybrid screening using VP2 as bait. Subsequently, the interaction between VP2 and the host interacting protein [heat shock protein 10 (Hsp10)] was further verified using glutathione S-transferase pull-down assay in vitro and co-immunoprecipitation assay in cells. Furthermore, fluorescence confocal microscopy revealed that VP2 and Hsp10 were mainly co-localized in the cytoplasm. Using real-time polymerase chain reaction, we found that Hsp10 expression in DWV-infected worker honey bees were downregulated compared with that in healthy honey bees. Additionally, we showed that overexpression of VP2 protein could reduce the expression of Hsp10. These results suggest that Hsp10 plays a vital role in host immunity and antiviral effects.
Collapse
Affiliation(s)
- Sichao Huang
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Dongliang Fei
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Yueyu Ma
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Chen Wang
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Donghui Shi
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Kunyang Liu
- Liaoning Provincial Agricultural Development Service Center, China
| | - Ming Li
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China.
| | - Mingxiao Ma
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
8
|
Affiliation(s)
- Yashpal Singh Malik
- ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Uttar Pradesh India
| | - Raj Kumar Singh
- ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Uttar Pradesh India
| | - Mahendra Pal Yadav
- ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Uttar Pradesh, India, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
| |
Collapse
|
9
|
Ling S, Luo M, Jiang S, Liu J, Ding C, Zhang Q, Guo H, Gong W, Tu C, Sun J. Cellular Hsp27 interacts with classical swine fever virus NS5A protein and negatively regulates viral replication by the NF-κB signaling pathway. Virology 2018. [PMID: 29525670 DOI: 10.1016/j.virol.2018.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Classical swine fever virus (CSFV) nonstructural protein NS5A is a multifunctional protein functioning in regulation of viral genome replication, protein translation and assembly by interaction with viral or host proteins. Here, heat shock protein 27 (Hsp27) has been identified as a novel binding partner of NS5A by using His tag "pull down" coupled with shotgun LC-MS/MS, with interaction of both proteins further confirmed by co-immunoprecipitation and laser confocal assays. In PK-15 cells, silencing of Hsp27 expression by siRNA enhanced CSFV replication, and upregulation of Hsp27 inhibited viral proliferation. Additionally, we have shown that overexpression of Hsp27 increased NF-κB signaling induced by TNFα. Blocking NF-κB signaling in PK-15 cells overexpressing Hsp27 by ammonium pyrrolidinedithiocarbamate (PDTC) eliminated the inhibition of CSFV replication by Hsp27. These findings clearly demonstrate that the inhibition of CSFV replication by Hsp27 is mediated via the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shifeng Ling
- Institute of Biotechnology, College of Life and Health Sciences, Northeastern University, No. 195, Chuangxin Road, Shenyang 110000, PR China
| | - Mingyang Luo
- Institute of Biotechnology, College of Life and Health Sciences, Northeastern University, No. 195, Chuangxin Road, Shenyang 110000, PR China
| | - Shengnan Jiang
- Institute of Biotechnology, College of Life and Health Sciences, Northeastern University, No. 195, Chuangxin Road, Shenyang 110000, PR China
| | - Jiayu Liu
- Institute of Biotechnology, College of Life and Health Sciences, Northeastern University, No. 195, Chuangxin Road, Shenyang 110000, PR China
| | - Chunying Ding
- Institute of Biotechnology, College of Life and Health Sciences, Northeastern University, No. 195, Chuangxin Road, Shenyang 110000, PR China
| | - Qinghuan Zhang
- Institute of Biotechnology, College of Life and Health Sciences, Northeastern University, No. 195, Chuangxin Road, Shenyang 110000, PR China
| | - Huancheng Guo
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, No. 666 Liuying West Road, Changchun 130122, PR China
| | - Wenjie Gong
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, No. 666 Liuying West Road, Changchun 130122, PR China
| | - Changchun Tu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, No. 666 Liuying West Road, Changchun 130122, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, No. 48 Wenhui East Road, Yangzhou 225009, China.
| | - Jinfu Sun
- Institute of Biotechnology, College of Life and Health Sciences, Northeastern University, No. 195, Chuangxin Road, Shenyang 110000, PR China.
| |
Collapse
|
10
|
Sun M, Yu Z, Ma J, Pan Z, Lu C, Yao H. Down-regulating heat shock protein 27 is involved in porcine epidemic diarrhea virus escaping from host antiviral mechanism. Vet Microbiol 2017. [DOI: 10.1016/j.vetmic.2017.04.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
BOOTH LAURENCE, ROBERTS JANEL, ECROYD HEATH, TRITSCH SARAHR, BAVARI SINA, REID STPATRICK, PRONIUK STEFAN, ZUKIWSKI ALEXANDER, JACOB ABRAHAM, SEPÚLVEDA CLAUDIAS, GIOVANNONI FEDERICO, GARCÍA CYBELEC, DAMONTE ELSA, GONZÁLEZ-GALLEGO JAVIER, TUÑÓN MARÍAJ, DENT PAUL. AR-12 Inhibits Multiple Chaperones Concomitant With Stimulating Autophagosome Formation Collectively Preventing Virus Replication. J Cell Physiol 2016; 231:2286-302. [PMID: 27187154 PMCID: PMC6327852 DOI: 10.1002/jcp.25431] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 01/13/2023]
Abstract
We have recently demonstrated that AR-12 (OSU-03012) reduces the function and ATPase activities of multiple HSP90 and HSP70 family chaperones. Combined knock down of chaperones or AR-12 treatment acted to reduce the expression of virus receptors and essential glucosidase proteins. Combined knock down of chaperones or AR-12 treatment inactivated mTOR and elevated ATG13 S318 phosphorylation concomitant with inducing an endoplasmic reticulum stress response that in an eIF2α-dependent fashion increased Beclin1 and LC3 expression and autophagosome formation. Over-expression of chaperones prevented the reduction in receptor/glucosidase expression, mTOR inactivation, the ER stress response, and autophagosome formation. AR-12 reduced the reproduction of viruses including Mumps, Influenza, Measles, Junín, Rubella, HIV (wild type and protease resistant), and Ebola, an effect replicated by knock down of multiple chaperone proteins. AR-12-stimulated the co-localization of Influenza, EBV and HIV virus proteins with LC3 in autophagosomes and reduced viral protein association with the chaperones HSP90, HSP70, and GRP78. Knock down of Beclin1 suppressed drug-induced autophagosome formation and reduced the anti-viral protection afforded by AR-12. In an animal model of hemorrhagic fever virus, a transient exposure of animals to low doses of AR-12 doubled animal survival from ∼30% to ∼60% and suppressed liver damage as measured by ATL, GGT and LDH release. Thus through inhibition of chaperone protein functions; reducing the production, stability and processing of viral proteins; and stimulating autophagosome formation/viral protein degradation, AR-12 acts as a broad-specificity anti-viral drug in vitro and in vivo. We argue future patient studies with AR-12 are warranted. J. Cell. Physiol. 231: 2286-2302, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- LAURENCE BOOTH
- Department of Biochemistry and Molecular Biology, Virginia
Commonwealth University, Richmond, Virginia
| | - JANE L. ROBERTS
- Department of Biochemistry and Molecular Biology, Virginia
Commonwealth University, Richmond, Virginia
| | - HEATH ECROYD
- School of Biological Sciences and Illawarra Health and
Medical Research Institute, University of Wollongong, New South Wales,
Australia
| | - SARAH R. TRITSCH
- Molecular and Translational Science, United States Army
Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick,
Frederick, Maryland
| | - SINA BAVARI
- Molecular and Translational Science, United States Army
Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick,
Frederick, Maryland
| | - ST. PATRICK REID
- Molecular and Translational Science, United States Army
Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick,
Frederick, Maryland
| | | | | | - ABRAHAM JACOB
- Department of Otolaryngology, University of Arizona Ear
Institute, Tucson, Arizona
| | - CLAUDIA S. SEPÚLVEDA
- FCEN-UBA, Ciudad Universitaria, Pabellón 2 Piso 4,
lab QB-17, Buenos Aires, Argentina
| | - FEDERICO GIOVANNONI
- FCEN-UBA, Ciudad Universitaria, Pabellón 2 Piso 4,
lab QB-17, Buenos Aires, Argentina
| | - CYBELE C. GARCÍA
- FCEN-UBA, Ciudad Universitaria, Pabellón 2 Piso 4,
lab QB-17, Buenos Aires, Argentina
| | - ELSA DAMONTE
- FCEN-UBA, Ciudad Universitaria, Pabellón 2 Piso 4,
lab QB-17, Buenos Aires, Argentina
| | | | - MARÍA J. TUÑÓN
- Institute of Biomedicine and CIBEREhd, University of
León, León, Spain
| | - PAUL DENT
- Department of Biochemistry and Molecular Biology, Virginia
Commonwealth University, Richmond, Virginia
| |
Collapse
|
12
|
Booth L, Roberts JL, Ecroyd H, Reid SP, Proniuk S, Zukiwski A, Jacob A, Damonte E, Tuñón MJ, Dent P. AR-12 Inhibits Chaperone Proteins Preventing Virus Replication and the Accumulation of Toxic Misfolded Proteins. ACTA ACUST UNITED AC 2016; 7. [PMID: 27957385 PMCID: PMC5146995 DOI: 10.4172/2155-9899.1000454] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jane L Roberts
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Heath Ecroyd
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, NSW 2522, Australia
| | - St Patrick Reid
- Molecular and Translational Science, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD 21702-5011, USA
| | | | | | - Abraham Jacob
- Department of Otolaryngology, The University of Arizona Ear Institute, 1515 North Campbell Avenue, PO Box 245024, Tucson AZ 85724, USA
| | - Elsa Damonte
- FCEN-UBA, Ciudad Universitaria, Pabellón 2 Piso 4, lab QB-17, 1428 Buenos Aires, Argentina
| | - María J Tuñón
- Institute of Biomedicine and CIBEREhd, University of León, 24071, Spain
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
13
|
Liu J, Zhang X, Ma C, Jiang P, Yun S. Hsp90 inhibitor reduces porcine circovirus 2 replication in the porcine monocytic line 3D4/31. Virus Genes 2016; 53:95-99. [DOI: 10.1007/s11262-016-1385-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 08/19/2016] [Indexed: 12/19/2022]
|
14
|
Liu J, Zhang X, Ma C, You J, Dong M, Yun S, Jiang P. Heat shock protein 90 is essential for replication of porcine circovirus type 2 in PK-15 cells. Virus Res 2016; 224:29-37. [PMID: 27553861 DOI: 10.1016/j.virusres.2016.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/17/2016] [Accepted: 08/17/2016] [Indexed: 12/20/2022]
Abstract
Porcine circovirus type 2 (PCV2) is recognized as the causative agent of porcine circovirus-associated disease (PCVAD). However, the mechanism of PCV2 replication has not been understood completely. Heat shock protein 90 (Hsp90) plays an important role in viral genome replication, viral genes expression, and viral particle packaging. In this study, we firstly found that inhibition of Hsp90 by pretreatment of host cells with 17-AAG, a specific inhibitor of Hsp90, or blocking Hsp90α/Hsp90β with siRNA, resulted in significantly reduced viral replication in PK-15 cells. But inhibition of Hsp90 by 17-AAG did not affect PCV2 entry into the host cells. Meanwhile, over-expression of Hsp90α/Hsp90β enhanced PCV2 genome replication and virion production. In addition, Hsp90β was enriched in the nuclear zone in the cells infected with PCV2. But it did not interact with the viral Cap/Rep proteins. It suggested that Hsp90 is required for PCV2 production in PK-15 cells culture. It should be helpful for further evaluating the mechanism of replication and pathogenesis of PCV2 and developing novel antiviral therapies.
Collapse
Affiliation(s)
- Jie Liu
- Department of Comparative Medicine, Jinling Hospital, 305 East Zhongshan Road, Nanjing 210002, PR China
| | - Xuliang Zhang
- Department of Comparative Medicine, Jinling Hospital, 305 East Zhongshan Road, Nanjing 210002, PR China
| | - Chang Ma
- Department of Comparative Medicine, Jinling Hospital, 305 East Zhongshan Road, Nanjing 210002, PR China
| | - Jinwei You
- Department of Comparative Medicine, Jinling Hospital, 305 East Zhongshan Road, Nanjing 210002, PR China
| | - Min Dong
- Department of Comparative Medicine, Jinling Hospital, 305 East Zhongshan Road, Nanjing 210002, PR China
| | - Shifeng Yun
- Department of Comparative Medicine, Jinling Hospital, 305 East Zhongshan Road, Nanjing 210002, PR China.
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
15
|
Ren L, Chen X, Ouyang H. Interactions of porcine circovirus 2 with its hosts. Virus Genes 2016; 52:437-44. [DOI: 10.1007/s11262-016-1326-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/19/2016] [Indexed: 12/11/2022]
|