1
|
Chi Y, Zhang H, Chen S, Cheng Y, Zhang X, Jia D, Chen Q, Chen H, Wei T. Leafhopper salivary carboxylesterase suppresses JA-Ile synthesis to facilitate initial arbovirus transmission in rice phloem. PLANT COMMUNICATIONS 2024; 5:100939. [PMID: 38725245 PMCID: PMC11412928 DOI: 10.1016/j.xplc.2024.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 06/09/2024]
Abstract
Plant jasmonoyl-L-isoleucine (JA-Ile) is a major defense signal against insect feeding, but whether or how insect salivary effectors suppress JA-Ile synthesis and thus facilitate viral transmission in the plant phloem remains elusive. Insect carboxylesterases (CarEs) are the third major family of detoxification enzymes. Here, we identify a new leafhopper CarE, CarE10, that is specifically expressed in salivary glands and is secreted into the rice phloem as a saliva component. Leafhopper CarE10 directly binds to rice jasmonate resistant 1 (JAR1) and promotes its degradation by the proteasome system. Moreover, the direct association of CarE10 with JAR1 clearly impairs JAR1 enzyme activity for conversion of JA to JA-Ile in an in vitro JA-Ile synthesis system. A devastating rice reovirus activates and promotes the co-secretion of virions and CarE10 via virus-induced vesicles into the saliva-storing salivary cavities of the leafhopper vector and ultimately into the rice phloem to establish initial infection. Furthermore, a virus-mediated increase in CarE10 secretion or overexpression of CarE10 in transgenic rice plants causes reduced levels of JAR1 and thus suppresses JA-Ile synthesis, promoting host attractiveness to insect vectors and facilitating initial viral transmission. Our findings provide insight into how the insect salivary protein CarE10 suppresses host JA-Ile synthesis to promote initial virus transmission in the rice phloem.
Collapse
Affiliation(s)
- Yunhua Chi
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hongxiang Zhang
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Siyu Chen
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yu Cheng
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaofeng Zhang
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Dongsheng Jia
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qian Chen
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hongyan Chen
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Taiyun Wei
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
2
|
Wang X, Wu H, Yu Z, Wu J, Lu C, Wei T, Chen Q. Plant viruses exploit insect salivary GAPDH to modulate plant defenses. Nat Commun 2024; 15:6918. [PMID: 39134555 PMCID: PMC11319438 DOI: 10.1038/s41467-024-51369-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Salivary proteins of insect herbivores can suppress plant defenses, but the roles of many remain elusive. One such protein is glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from the saliva of the Recilia dorsalis (RdGAPDH) leafhopper, which is known to transmit rice gall dwarf virus (RGDV). Here we show that RdGAPDH was loaded into exosomes and released from salivary glands into the rice phloem through an exosomal pathway as R. dorsalis fed. In infected salivary glands of R. dorsalis, the virus upregulated the accumulation and subsequent release of exosomal RdGAPDH into the phloem. Once released, RdGAPDH consumed H2O2 in rice plants owing to its -SH groups reacting with H2O2. This reduction in H2O2 of rice plant facilitated R. dorsalis feeding and consequently promoted RGDV transmission. However, overoxidation of RdGAPDH could cause potential irreversible cytotoxicity to rice plants. In response, rice launched emergency defense by utilizing glutathione to S-glutathionylate the oxidization products of RdGAPDH. This process counteracts the potential cellular damage from RdGAPDH overoxidation, helping plant to maintain a normal phenotype. Additionally, salivary GAPDHs from other hemipterans vectors similarly suppressed H2O2 burst in plants. We propose a strategy by which plant viruses exploit insect salivary proteins to modulate plant defenses, thus enabling sustainable insect feeding and facilitating viral transmission.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Haibo Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhongkai Yu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jing Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chengcong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qian Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
3
|
Jia D, Liang Q, Chen H, Liu H, Li G, Zhang X, Chen Q, Wang A, Wei T. Autophagy mediates a direct synergistic interaction during co-transmission of two distinct arboviruses by insect vectors. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-022-2228-y. [PMID: 36917406 DOI: 10.1007/s11427-022-2228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/21/2022] [Indexed: 03/16/2023]
Abstract
Multiple viral infections in insect vectors with synergistic effects are common in nature, but the underlying mechanism remains elusive. Here, we find that rice gall dwarf reovirus (RGDV) facilitates the transmission of rice stripe mosaic rhabdovirus (RSMV) by co-infected leafhopper vectors. RSMV nucleoprotein (N) alone activates complete anti-viral autophagy, while RGDV nonstructural protein Pns11 alone induces pro-viral incomplete autophagy. In co-infected vectors, RSMV exploits Pns11-induced autophagosomes to assemble enveloped virions via N-Pns11-ATG5 interaction. Furthermore, RSMV could effectively propagate in Sf9 cells. Expression of Pns11 in Sf9 cells or leafhopper vectors causes the recruitment of N from the ER to Pns11-induced autophagosomes and inhibits N-induced complete autophagic flux, finally facilitating RSMV propagation. In summary, these results demonstrate a previously unappreciated role of autophagy in the regulation of the direct synergistic interaction during co-transmission of two distinct arboviruses by insect vectors and reveal the functional importance of virus-induced autophagosomes in rhabdovirus assembly.
Collapse
Affiliation(s)
- Dongsheng Jia
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qifu Liang
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hongyan Chen
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huan Liu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guangjun Li
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaofeng Zhang
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qian Chen
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - Taiyun Wei
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
4
|
Wang P, Liu J, Lyu Y, Huang Z, Zhang X, Sun B, Li P, Jing X, Li H, Zhang C. A Review of Vector-Borne Rice Viruses. Viruses 2022; 14:v14102258. [PMID: 36298813 PMCID: PMC9609659 DOI: 10.3390/v14102258] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022] Open
Abstract
Rice (Oryza sativa L.) is one of the major staple foods for global consumption. A major roadblock to global rice production is persistent loss of crops caused by plant diseases, including rice blast, sheath blight, bacterial blight, and particularly various vector-borne rice viral diseases. Since the late 19th century, 19 species of rice viruses have been recorded in rice-producing areas worldwide and cause varying degrees of damage on the rice production. Among them, southern rice black-streaked dwarf virus (SRBSDV) and rice black-streaked dwarf virus (RBSDV) in Asia, rice yellow mottle virus (RYMV) in Africa, and rice stripe necrosis virus (RSNV) in America currently pose serious threats to rice yields. This review systematizes the emergence and damage of rice viral diseases, the symptomatology and transmission biology of rice viruses, the arm races between viruses and rice plants as well as their insect vectors, and the strategies for the prevention and control of rice viral diseases.
Collapse
Affiliation(s)
- Pengyue Wang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Jianjian Liu
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
- Hubei Engineering Research Center for Pest Forewarning and Management, College of Agronomy, Yangtze University, Jingzhou 434025, China
| | - Yajing Lyu
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Ziting Huang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoli Zhang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Bingjian Sun
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Pengbai Li
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinxin Jing
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Honglian Li
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Chao Zhang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence:
| |
Collapse
|
5
|
Jia D, Liang Q, Liu H, Li G, Zhang X, Chen Q, Wang A, Wei T. A nonstructural protein encoded by a rice reovirus induces an incomplete autophagy to promote viral spread in insect vectors. PLoS Pathog 2022; 18:e1010506. [PMID: 35533206 PMCID: PMC9119444 DOI: 10.1371/journal.ppat.1010506] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/19/2022] [Accepted: 04/06/2022] [Indexed: 01/04/2023] Open
Abstract
Viruses can hijack autophagosomes as the nonlytic release vehicles in cultured host cells. However, how autophagosome-mediated viral spread occurs in infected host tissues or organs in vivo remains poorly understood. Here, we report that an important rice reovirus, rice gall dwarf virus (RGDV) hijacks autophagosomes to traverse multiple insect membrane barriers in the midgut and salivary gland of leafhopper vector to enhance viral spread. Such virus-containing double-membraned autophagosomes are prevented from degradation, resulting in increased viral propagation. Mechanistically, viral nonstructural protein Pns11 induces autophagy and embeds itself in the autophagosome membranes. The autophagy-related protein 5 (ATG5)-ATG12 conjugation is essential for initial autophagosome membrane biogenesis. RGDV Pns11 specifically interacts with ATG5, both in vitro and in vivo. Silencing of ATG5 or Pns11 expression suppresses ATG8 lipidation, autophagosome formation, and efficient viral propagation. Thus, Pns11 could directly recruit ATG5-ATG12 conjugation to induce the formation of autophagosomes, facilitating viral spread within the insect bodies. Furthermore, Pns11 potentially blocks autophagosome degradation by directly targeting and mediating the reduced expression of N-glycosylated Lamp1 on lysosomal membranes. Taken together, these results highlight how RGDV remodels autophagosomes to benefit viral propagation in its insect vector. Numerous plant viruses replicate inside the cells of their insect vectors. Here, we demonstrate that the progeny virions of rice gall dwarf virus in leafhopper vector are engulfed within virus-induced double-membraned autophagosomes. Such autophagosomes are modified to evade degradation, thus can be persistently exploited by viruses to safely transport virions across multiple insect membrane barriers. Viral nonstructural protein Pns11 induces the formation of autophagosomes via interaction with ATG5, and potentially blocks autophagosome degradation via mediating the reduced expression of N-glycosylated Lamp1 on lysosomal membranes. For the first time, we reveal that a nonstructural protein encoded by a persistent plant virus can induce an incomplete autophagy to benefit viral propagation in its insect vectors.
Collapse
Affiliation(s)
- Dongsheng Jia
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qifu Liang
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Huan Liu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Guangjun Li
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaofeng Zhang
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qian Chen
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Taiyun Wei
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- * E-mail:
| |
Collapse
|
6
|
A leafhopper saliva protein mediates horizontal transmission of viral pathogens from insect vectors into rice phloem. Commun Biol 2022; 5:204. [PMID: 35246603 PMCID: PMC8897447 DOI: 10.1038/s42003-022-03160-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/08/2022] [Indexed: 11/25/2022] Open
Abstract
Numerous insects transmit viruses together with saliva to plant phloem, but the roles of saliva components remain elusive. Here, we report that calcium-binding protein (CBP), a universal insect saliva protein, is modified to benefit horizontal transmission of a devastating rice reovirus into plant phloem. CBP effectively competes with virus-induced filaments to target and traverse actin-based apical plasmalemma into saliva-stored cavities in salivary glands of leafhopper vector. Thus, the inhibition of CBP expression by viral infection facilitates filament-mediated viral secretion into salivary cavities and then into plant phloem. Furthermore, virus-mediated reduction of CBP secretion causes an increase of cytosolic Ca2+ levels in rice, triggering substantial callose deposition and H2O2 production. Thus, viruliferous vectors encounter stronger feeding barriers, probe more frequently, and secrete more saliva into plants, ultimately enhancing viral transmission. We thus conclude that the inhibition of CBP secretion facilitates viral secretion and increases host defense response to benefit viral transmission. CBP, a calcium binding protein found in insect saliva, allows for the transmission of the devastating rice gall dwarf virus into plant phloem. This interaction with CBP is compounded by stronger feeding barriers, more frequent probing behavior, and increased saliva secretion into plants by insect vectors, all increasing the likelihood of viral transmission.
Collapse
|
7
|
Jia D, Luo G, Shi W, Liu Y, Liu H, Zhang X, Wei T. Rice Gall Dwarf Virus Promotes the Propagation and Transmission of Rice Stripe Mosaic Virus by Co-infected Insect Vectors. Front Microbiol 2022; 13:834712. [PMID: 35222343 PMCID: PMC8874222 DOI: 10.3389/fmicb.2022.834712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Rice stripe mosaic virus (RSMV), a newly discovered plant cytorhabdovirus, and rice gall dwarf virus (RGDV), a plant reovirus, are transmitted by leafhopper Recilia dorsalis in a persistent-propagative manner. In this study, field surveys in Luoding city, Guangdong province of southern China, showed that RSMV and RGDV frequently co-infected rice plants. Furthermore, this co-infection had a synergistic effect on viral replication potential and pathogenicity in rice plants. Meanwhile, RSMV and RGDV also co-infected R. dorsalis vectors, and RGDV significantly promoted the propagation of RSMV in co-infected vectors. Accordingly, co-infection significantly promoted the acquisition and transmission efficiencies of RSMV by R. dorsalis. However, such co-infection did not significantly affect the propagation of RGDV in vectors. More importantly, we also observed that non-viruliferous R. dorsalis preferred to feed on co-infected rice plants, and this process further affected the feeding behavior of R. dorsalis to enhance viral release into rice phloem. These results provided the clues as to why RSMV had been a gradually expanding problem, creating an increasing risk of damage to rice production. Our findings revealed that synergism between RSMV and RGDV in their host and vector enhanced the propagation and transmission of RSMV, which will help guide the formulation of viral control strategies.
Collapse
|
8
|
Llauger G, Monti D, Adúriz M, Romão E, Dumón AD, Mattio MF, Wigdorovitz A, Muyldermans S, Vincke C, Parreño V, Del Vas M. Development of Nanobodies against Mal de Río Cuarto virus major viroplasm protein P9-1 for diagnostic sandwich ELISA and immunodetection. Sci Rep 2021; 11:20013. [PMID: 34625580 PMCID: PMC8501053 DOI: 10.1038/s41598-021-99275-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023] Open
Abstract
Mal de Río Cuarto virus (MRCV) is a member of the genus Fijivirus of the family Reoviridae that causes a devastating disease in maize and is persistently and propagatively transmitted by planthopper vectors. Virus replication and assembly occur within viroplasms formed by viral and host proteins. This work describes the isolation and characterization of llama-derived Nanobodies (Nbs) recognizing the major viral viroplasm component, P9-1. Specific Nbs were selected against recombinant P9-1, with affinities in the nanomolar range as measured by surface plasmon resonance. Three selected Nbs were fused to alkaline phosphatase and eGFP to develop a sandwich ELISA test which showed a high diagnostic sensitivity (99.12%, 95% CI 95.21-99.98) and specificity (100%, 95% CI 96.31-100) and a detection limit of 0.236 ng/ml. Interestingly, these Nanobodies recognized different P9-1 conformations and were successfully employed to detect P9-1 in pull-down assays of infected maize extracts. Finally, we demonstrated that fusions of the Nbs to eGFP and RFP allowed the immunodetection of virus present in phloem cells of leaf thin sections. The Nbs developed in this work will aid the study of MRCV epidemiology, assist maize breeding programs, and be valuable tools to boost fundamental research on viroplasm structure and maturation.
Collapse
Affiliation(s)
- Gabriela Llauger
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA INTA, UEDD INTA/CONICET, Buenos Aires, Argentina
| | - Demián Monti
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA INTA, UEDD INTA/CONICET, Buenos Aires, Argentina
| | - Matías Adúriz
- INCUINTA, Instituto de Virología e Innovaciones Tecnológicas (IVIT), CICVyA INTA, UEDD INTA/CONICET, Buenos Aires, Argentina
| | - Ema Romão
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Analía Delina Dumón
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Unidad de Fitopatología y Modelización Agrícola (UFYMA), Córdoba, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA), Centro de Investigaciones Agropecuarias (CIAP), Instituto de Patología Vegetal (IPAVE), Córdoba, Argentina
| | - María Fernanda Mattio
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Unidad de Fitopatología y Modelización Agrícola (UFYMA), Córdoba, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA), Centro de Investigaciones Agropecuarias (CIAP), Instituto de Patología Vegetal (IPAVE), Córdoba, Argentina
| | - Andrés Wigdorovitz
- INCUINTA, Instituto de Virología e Innovaciones Tecnológicas (IVIT), CICVyA INTA, UEDD INTA/CONICET, Buenos Aires, Argentina
| | - Serge Muyldermans
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, People's Republic of China
| | - Cécile Vincke
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Viviana Parreño
- INCUINTA, Instituto de Virología e Innovaciones Tecnológicas (IVIT), CICVyA INTA, UEDD INTA/CONICET, Buenos Aires, Argentina
| | - Mariana Del Vas
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA INTA, UEDD INTA/CONICET, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Chen Q, Wei T. Cell Biology During Infection of Plant Viruses in Insect Vectors and Plant Hosts. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:18-25. [PMID: 31729283 DOI: 10.1094/mpmi-07-19-0184-cr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plant viruses typically cause severe pathogenicity in plants, even resulting in the death of plants. Many pathogenic plant viruses are transmitted in a persistent manner via insect vectors. Interestingly, unlike in the plant hosts, persistent viruses are either nonpathogenic or show limited pathogenicity in their insect vectors, while taking advantage of the cellular machinery of insect vectors for completing their life cycles. This review discusses why persistent plant viruses are nonpathogenic or have limited pathogenicity to their insect vectors while being pathogenic to plants hosts. Current advances in cell biology of virus-insect vector interactions are summarized, including virus-induced inclusion bodies, changes of insect cellular ultrastructure, and immune response of insects to the viruses, especially autophagy and apoptosis. The corresponding findings of virus-plant interactions are compared. An integrated view of the balance strategy achieved by the interaction between viral attack and the immune response of insect is presented. Finally, we outline progress gaps between virus-insect and virus-plant interactions, thus highlighting the contributions of cultured cells to the cell biology of virus-insect interactions. Furthermore, future prospects of studying the cell biology of virus-vector interactions are presented.
Collapse
Affiliation(s)
- Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| |
Collapse
|
10
|
Zhao P, Sun X, Li P, Sun J, Yue Y, Wei J, Wei T, Jia D. Infection Characteristics of Rice Stripe Mosaic Virus in the Body of the Vector Leafhoppers. Front Microbiol 2019; 9:3258. [PMID: 30671049 PMCID: PMC6331539 DOI: 10.3389/fmicb.2018.03258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/14/2018] [Indexed: 11/13/2022] Open
Abstract
Rice stripe mosaic virus (RSMV), a novel species of Cytorhabdovirus, is transmitted by the leafhopper Recilia dorsalis in a persistent-propagative manner. In this study, we firstly confirmed that N protein of RSMV is a component of viroplasm and virion in vector culture cells of R. dorsalis. Confocal microscopy revealed that RSMV initially accumulated in epithelial cells of the filter chamber of R. dorsalis, from where it proceeded to the visceral muscles surrounding the filter chamber. Subsequently, RSMV spread quickly throughout the suspensory ligament to the salivary glands. Meanwhile, RSMV spread from the filter chamber to midgut, hindgut, esophagus, hemolymph, and central nervous system. We further observed that RSMV particles displayed as non-enveloped form when propagating in cytoplasm of different tissues, and became enveloped when spread within insect body by electron microscopy. Additionally, we found that the leafhopper Nephotettix virescens was also able to acquire and transmit RSMV. These results clarified the infection characteristics of RSMV in its leafhopper vectors, which will help guide the formulation of RSMV prevention and control strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dongsheng Jia
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
11
|
Chen Q, Zheng L, Mao Q, Liu J, Wang H, Jia D, Chen H, Wu W, Wei T. Fibrillar structures induced by a plant reovirus target mitochondria to activate typical apoptotic response and promote viral infection in insect vectors. PLoS Pathog 2019; 15:e1007510. [PMID: 30653614 PMCID: PMC6353215 DOI: 10.1371/journal.ppat.1007510] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 01/30/2019] [Accepted: 12/07/2018] [Indexed: 11/19/2022] Open
Abstract
Numerous plant viruses that cause significant agricultural problems are persistently transmitted by insect vectors. We wanted to see if apoptosis was involved in viral infection process in the vector. We found that a plant reovirus (rice gall dwarf virus, RGDV) induced typical apoptotic response during viral replication in the leafhopper vector and cultured vector cells, as demonstrated by mitochondrial degeneration and membrane potential decrease. Fibrillar structures formed by nonstructural protein Pns11 of RGDV targeted the outer membrane of mitochondria, likely by interaction with an apoptosis-related mitochondrial protein in virus-infected leafhopper cells or nonvector insect cells. Such association of virus-induced fibrillar structures with mitochondria clearly led to mitochondrial degeneration and membrane potential decrease, suggesting that RGDV Pns11 was the inducer of apoptotic response in insect vectors. A caspase inhibitor treatment and knockdown of caspase gene expression using RNA interference each reduced apoptosis and viral accumulation, while the knockdown of gene expression for the inhibitor of apoptosis protein improved apoptosis and viral accumulation. Thus, RGDV exploited caspase-dependent apoptotic response to promote viral infection in insect vectors. For the first time, we directly confirmed that a nonstructural protein encoded by a persistent plant virus can induce the typical apoptotic response to benefit viral transmission by insect vectors.
Collapse
Affiliation(s)
- Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Limin Zheng
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, PR China
| | - Qianzhuo Mao
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Jiejie Liu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Haitao Wang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Dongsheng Jia
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Hongyan Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Wei Wu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| |
Collapse
|
12
|
Zhang XF, Xie Y, Wang H, Wang J, Chen H, Zeng T, Zhao Y, Wei T. Exploration of an Actin Promoter-Based Transient Expression Vector to Trace the Cellular Localization of Nucleorhabdovirus Proteins in Leafhopper Cultured Cells. Front Microbiol 2018; 9:3034. [PMID: 30619126 PMCID: PMC6306041 DOI: 10.3389/fmicb.2018.03034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/23/2018] [Indexed: 01/02/2023] Open
Abstract
Continuously cultured cell lines derived from planthopper and leafhopper have greatly facilitated the investigation of rice viruses transmitted by these insects. However, the lack of a suitable transient expression vector has limited their utility. Here, by cloning and analyzing the promoter sequence of the gene encoding cytoplasmic actin from the leafhopper Nephotettix cincticeps, we successfully developed the first efficient transient expression vector for cultured leafhopper cells, which can also be used to express exogenous proteins in other insect culture cell lines, including those derived from Recilia dorsalis leafhopper and Spodoptera frugiperda (Sf9). Furthermore, insertion of the Hr5 viral enhancer element and knockdown of the endogenous Dicer2 gene notably improved the vector's expression efficiency in leafhopper cells. Using the optimized vector, we have for the first time traced the cellular localization of the proteins encoded by rice yellow stunt virus (RYSV) in cells of its insect vector and demonstrated that P6 protein is a component of the viroplasm.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou,China
| |
Collapse
|
13
|
Cao Q, Xu WY, Gao Q, Jiang ZH, Liu SY, Fang XD, Gao DM, Wang Y, Wang XB. Transmission Characteristics of Barley Yellow Striate Mosaic Virus in Its Planthopper Vector Laodelphax striatellus. Front Microbiol 2018; 9:1419. [PMID: 30008708 PMCID: PMC6034074 DOI: 10.3389/fmicb.2018.01419] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/08/2018] [Indexed: 01/25/2023] Open
Abstract
The most economically important plant viruses are specifically transmitted by phytophagous insects that significantly affect viral epidemiology. Barley yellow striate mosaic virus (BYSMV), a member of the genus Cytorhabdovirus, is transmitted by the small brown planthopper (SBPH, Laodelphax striatellus) in a persistent-propagative manner. However, the infection route of BYSMV in SBPHs is poorly understood. In this study, immunofluorescence confocal laser scanning microscopy (iCLSM) was performed to investigate the route of BYSMV in SBPHs. We unexpectedly found that BYSMV initially infected the hindgut epithelium of SBPHs, instead of the midgut epithelium initially infected by other persistent-propagative viruses. Subsequently, BYSMV disseminated to the hindgut visceral muscles and spread to other parts of alimentary canals, hemolymph, and salivary glands. Comparative analysis of gene expression on viral mRNAs and the BYSMV nucleoprotein by using different molecular detection and immunohistochemistry further demonstrated that BYSMV initially infected and replicated in the hindgut epithelial cells of SBPHs. Collectively, our study provides the first insight into that hindgut is initial infection site of BYSMV that represents a new dissemination route of persistent-propagative viruses.
Collapse
Affiliation(s)
- Qing Cao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wen-Ya Xu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qiang Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhi-Hao Jiang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Song-Yu Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiao-Dong Fang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dong-Min Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Wang
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Xian-Bing Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Wang H, Wang J, Xie Y, Fu Z, Wei T, Zhang XF. Development of leafhopper cell culture to trace the early infection process of a nucleorhabdovirus, rice yellow stunt virus, in insect vector cells. Virol J 2018; 15:72. [PMID: 29678167 PMCID: PMC5910589 DOI: 10.1186/s12985-018-0987-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/16/2018] [Indexed: 12/19/2022] Open
Abstract
Background In China, the rice pathogen Rice yellow stunt virus (RYSV), a member of the genus Nucleorhabdovirus in the family Rhabdoviridae, was a severe threat to rice production during the1960s and1970s. Fundamental aspects of the biology of this virus such as protein localization and formation of the RYSV viroplasm during infection of insect vector cells are largely unexplored. The specific role(s) of the structural proteins nucleoprotein (N) and phosphoprotein (P) in the assembly of the viroplasm during RYSV infection in insect vector is also unclear. Methods In present study, we used continuous leafhopper cell culture, immunocytochemical techniques, and transmission electron microscopy to investigate the subcellular distributions of N and P during RYSV infection. Both GST pull-down assay and yeast two-hybrid assay were used to assess the in vitro interaction of N and P. The dsRNA interference assay was performed to study the functional roles of N and P in the assembly of RYSV viroplasm. Results Here we demonstrated that N and P colocalized in the nucleus of RYSV-infected Nephotettix cincticeps cell and formed viroplasm-like structures (VpLSs). The transiently expressed N and P are sufficient to form VpLSs in the Sf9 cells. In addition, the interactions of N/P, N/N and P/P were confirmed in vitro. More interestingly, the accumulation of RYSV was significantly reduced when the transcription of N gene or P gene was knocked down by dsRNA treatment. Conclusions In summary, our results suggest that N and P are the main viral factors responsible for the formation of viroplasm in RYSV-infected insect cells. Early during RYSV infection in the insect vector, N and P interacted with each other in the nucleus to form viroplasm-like structures, which are essential for the infection of RYSV. Electronic supplementary material The online version of this article (10.1186/s12985-018-0987-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haitao Wang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Juan Wang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Yunjie Xie
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Zhijun Fu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China.
| | - Xiao-Feng Zhang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China.
| |
Collapse
|
15
|
Yang X, Zhang T, Chen B, Zhou G. Transmission Biology of Rice Stripe Mosaic Virus by an Efficient Insect Vector Recilia dorsalis (Hemiptera: Cicadellidae). Front Microbiol 2017; 8:2457. [PMID: 29312171 PMCID: PMC5732235 DOI: 10.3389/fmicb.2017.02457] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/27/2017] [Indexed: 11/13/2022] Open
Abstract
Rice stripe mosaic virus (RSMV) is a newly discovered species of cytorhabdovirus infecting rice plants that is transmitted by the leafhopper Recilia dorsalis. In this study, the transmission characteristics of RSMV by R. dorsalis were investigated. Under suitable growth conditions for R. dorsalis, the RSMV acquisition rate reached 71.9% in the second-generation population raised on RSMV-infected rice plants. The minimum acquisition and inoculation access periods of R. dorsalis were 3 and 30 min, respectively. The minimum and maximum latent transmission periods of RSMV in R. dorsalis were 6 and 18 d, respectively, and some R. dorsalis intermittently transmitted RSMV at 2-6 d intervals. Our findings revealed that the virus can replicate in the leafhopper body, but is likely not transovarially transmitted to offspring. These transmission characteristics will help guide the formulation of RSMV prevention and control strategies.
Collapse
Affiliation(s)
| | | | | | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
16
|
Chen Y, Chen Q, Li M, Mao Q, Chen H, Wu W, Jia D, Wei T. Autophagy pathway induced by a plant virus facilitates viral spread and transmission by its insect vector. PLoS Pathog 2017; 13:e1006727. [PMID: 29125860 PMCID: PMC5708841 DOI: 10.1371/journal.ppat.1006727] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/30/2017] [Accepted: 11/02/2017] [Indexed: 02/02/2023] Open
Abstract
Many viral pathogens are persistently transmitted by insect vectors and cause agricultural or health problems. Generally, an insect vector can use autophagy as an intrinsic antiviral defense mechanism against viral infection. Whether viruses can evolve to exploit autophagy to promote their transmission by insect vectors is still unknown. Here, we show that the autophagic process is triggered by the persistent replication of a plant reovirus, rice gall dwarf virus (RGDV) in cultured leafhopper vector cells and in intact insects, as demonstrated by the appearance of obvious virus-containing double-membrane autophagosomes, conversion of ATG8-I to ATG8-II and increased level of autophagic flux. Such virus-containing autophagosomes seem able to mediate nonlytic viral release from cultured cells or facilitate viral spread in the leafhopper intestine. Applying the autophagy inhibitor 3-methyladenine or silencing the expression of Atg5 significantly decrease viral spread in vitro and in vivo, whereas applying the autophagy inducer rapamycin or silencing the expression of Torc1 facilitate such viral spread. Furthermore, we find that activation of autophagy facilitates efficient viral transmission, whereas inhibiting autophagy blocks viral transmission by its insect vector. Together, these results indicate a plant virus can induce the formation of autophagosomes for carrying virions, thus facilitating viral spread and transmission by its insect vector. We believe that such a role for virus-induced autophagy is common for vector-borne persistent viruses during their transmission by insect vectors.
Collapse
Affiliation(s)
- Yong Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, PR China
| | - Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Manman Li
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Qianzhuo Mao
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Hongyan Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Wei Wu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Dongsheng Jia
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| |
Collapse
|
17
|
Filamentous Structures Induced by a Phytoreovirus Mediate Viral Release from Salivary Glands in Its Insect Vector. J Virol 2017; 91:JVI.00265-17. [PMID: 28381575 DOI: 10.1128/jvi.00265-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/30/2017] [Indexed: 11/20/2022] Open
Abstract
Numerous viral pathogens are persistently transmitted by insect vectors and cause agricultural or health problems. These viruses circulate in the vector body, enter the salivary gland, and then are released into the apical plasmalemma-lined cavities, where saliva is stored. The cavity plasmalemma of vector salivary glands thus represents the last membrane barrier for viral transmission. Here, we report a novel mechanism used by a persistent virus to overcome this essential barrier. We observed that the infection by rice gall dwarf virus (RGDV), a species of the genus Phytoreovirus in the family Reoviridae, induced the formation of virus-associated filaments constructed by viral nonstructural protein Pns11 within the salivary glands of its leafhopper vector, Recilia dorsalis Such filaments attached to actin-based apical plasmalemma and induced an exocytosis-like process for viral release into vector salivary gland cavities, through a direct interaction of Pns11 of RGDV and actin of R. dorsalis Failure of virus-induced filaments assembly by RNA interference with synthesized double-stranded RNA targeting the Pns11 gene inhibited the dissemination of RGDV into salivary cavities, preventing viral transmission by R. dorsalis For the first time, we show that a virus can exploit virus-induced inclusion as a vehicle to pass through the apical plasmalemma into vector salivary gland cavities, thus overcoming the last membrane barrier for viral transmission by insect vectors.IMPORTANCE Understanding how persistent viruses overcome multiple tissue and membrane barriers within the insect vectors until final transmission is the key for viral disease control. The apical plasmalemma of the cavities where saliva is stored in the salivary glands is the last barrier for viral transmission by insect vectors; however, the mechanism is still poorly understood. Here we show that a virus has evolved to exploit virus-induced filaments to perform an exocytosis-like process that enables viral passage through the apical plasmalemma into salivary cavities. This mechanism could be extensively exploited by other persistent viruses to overcome salivary gland release barriers in insect vectors, opening new perspectives for viral control.
Collapse
|
18
|
Liao Z, Mao Q, Li J, Lu C, Wu W, Chen H, Chen Q, Jia D, Wei T. Virus-Induced Tubules: A Vehicle for Spread of Virions into Ovary Oocyte Cells of an Insect Vector. Front Microbiol 2017; 8:475. [PMID: 28382031 PMCID: PMC5360704 DOI: 10.3389/fmicb.2017.00475] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/08/2017] [Indexed: 11/13/2022] Open
Abstract
Many arthropod-borne viruses are persistently propagated and transovarially transmitted by female insect vectors through eggs, but the mechanism remains poorly understood. Insect oocytes are surrounded by a layer of follicular cells, which are connected to the oocyte through actin-based microvilli. Here, we demonstrate that a plant reovirus, rice gall dwarf virus (RGDV), exploits virus-containing tubules composed of viral non-structural protein Pns11 to pass through actin-based junctions between follicular cells or through actin-based microvilli from follicular cells into oocyte of its leafhopper vector Recilia dorsalis, thus overcoming transovarial transmission barriers. We further determine that the association of Pns11 tubules with actin-based cellular junctions or microvilli of the ovary is mediated by a specific interaction between Pns11 and actin. Interestingly, RGDV can replicate and assemble progeny virions in the oocyte cytoplasm. The destruction of the tubule assembly by RNA interference with synthesized double-stranded RNA targeting the Pns11 gene strongly inhibits transovarial transmission of RGDV by its vectors. For the first time, we show that a virus can exploit virus-induced tubule as a vehicle to overcome the transovarial transmission barrier by insect vectors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry UniversityFuzhou, China
| |
Collapse
|
19
|
Abstract
Rice reoviruses, transmitted by leafhopper or planthopper vectors in a persistent propagative manner, seriously threaten the stability of rice production in Asia. Understanding the mechanisms that enable viral transmission by insect vectors is a key to controlling these viral diseases. This review describes current understanding of replication cycles of rice reoviruses in vector cell lines, transmission barriers, and molecular determinants of vector competence and persistent infection. Despite recent breakthroughs, such as the discoveries of actin-based tubule motility exploited by viruses to overcome transmission barriers and mutually beneficial relationships between viruses and bacterial symbionts, there are still many gaps in our knowledge of transmission mechanisms. Advances in genome sequencing, reverse genetics systems, and molecular technologies will help to address these problems. Investigating the multiple interaction systems among the virus, insect vector, insect symbiont, and plant during natural infection in the field is a central topic for future research on rice reoviruses.
Collapse
Affiliation(s)
- Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, People's Republic of China;
| | - Yi Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China;
| |
Collapse
|
20
|
Chen Y, Lu C, Li M, Wu W, Zhou G, Wei T. Adverse Effects of Rice gall dwarf virus upon its Insect Vector Recilia dorsalis (Hemiptera: Cicadellidae). PLANT DISEASE 2016; 100:784-790. [PMID: 30688603 DOI: 10.1094/pdis-06-15-0713-re] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Rice gall dwarf virus (RGDV), a plant reovirus that threatens rice production in Southeast Asia and Southern China, is transmitted by the leafhopper vector Recilia dorsalis in a persistent-propagative manner. To assess the direct effects of RGDV on R. dorsalis, we established an infected leafhopper population from eggs laid by viruliferous females using the water-soaked filter paper culture method. Life history parameters indicated that the virus was harmful to its vector in terms of all biotic indices, including reduced survival rate, emergence rate, fecundity, and longevity of adults, compared with a nonviruliferous control population. Those findings were supported by systematic monitoring of viruliferous rates of R. dorsalis in different overwintering generations. To better elucidate the adverse effects of RGDV on its vector, we measured fecundity at the molecular level using quantitative reverse-transcription polymerase chain reaction and Western blot assays, which revealed differential expression of vitellogenin (Vg) in viruliferous versus nonviruliferous adult females. We infer that RGDV reduced levels of Vg transcript and protein product, resulting in the lower fecundity of its vector. Overall, this study demonstrates how RGDV exerts an adverse effect on R. dorsalis, which hinders the expansion of viruliferous populations of the insect.
Collapse
Affiliation(s)
- Yong Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Chengcong Lu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Manman Li
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Wei Wu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Guohui Zhou
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University
| |
Collapse
|
21
|
Small interfering RNA pathway modulates persistent infection of a plant virus in its insect vector. Sci Rep 2016; 6:20699. [PMID: 26864546 PMCID: PMC4750021 DOI: 10.1038/srep20699] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/11/2016] [Indexed: 11/08/2022] Open
Abstract
Plant reoviruses, rhabdoviruses, tospoviruses, and tenuiviruses are transmitted by insect vectors in a persistent-propagative manner. How such persistent infection of plant viruses in insect vectors is established and maintained remains poorly understood. In this study, we used rice gall dwarf virus (RGDV), a plant reovirus, and its main vector leafhopper Recilia dorsalis as a virus-insect system to determine how the small interference (siRNA) pathway modulates persistent infection of a plant virus in its insect vector. We showed that a conserved siRNA antiviral response was triggered by the persistent replication of RGDV in cultured leafhopper cells and in intact insects, by appearance of virus-specific siRNAs, primarily 21-nt long, and the increased expression of siRNA pathway core components Dicer-2 and Argonaute-2. Silencing of Dicer-2 using RNA interference strongly suppressed production of virus-specific siRNAs, promoted viral accumulation, and caused cytopathological changes in vitro and in vivo. When the viral accumulation level rose above a certain threshold of viral genome copy (1.32 × 10(14) copies/μg insect RNA), the infection of the leafhopper by RGDV was lethal rather than persistent. Taken together, our results revealed a new finding that the siRNA pathway in insect vector can modulate persistent infection of plant viruses.
Collapse
|
22
|
Eliautout R, Dubrana MP, Vincent-Monégat C, Vallier A, Braquart-Varnier C, Poirié M, Saillard C, Heddi A, Arricau-Bouvery N. Immune response and survival of Circulifer haematoceps to Spiroplasma citri infection requires expression of the gene hexamerin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 54:7-19. [PMID: 26279217 DOI: 10.1016/j.dci.2015.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 06/04/2023]
Abstract
Spiroplasma citri is a cell wall-less bacterium that infects plants. It is transmitted by the leafhopper Circulifer haematoceps, which hosts this bacterium in the haemocel and insect tissues. Bacterial factors involved in spiroplasma colonization of the insect host have been identified, but the immune response of the leafhopper to S. citri infection remains unknown. In this study, we showed that C. haematoceps activates both humoral and cellular immune responses when challenged with bacteria. When infected by S. citri, C. haematoceps displayed a specific immune response, evidenced by activation of phagocytosis and upregulation of a gene encoding the protein hexamerin. S. citri infection also resulted in decreased phenoloxidase-like activity. Inhibition of hexamerin by RNA interference resulted in a significant reduction in phenoloxidase-like activity and increased mortality of infected leafhoppers. Therefore, the gene hexamerin is involved in S. citri control by interfering with insect phenoloxidase activity.
Collapse
Affiliation(s)
- Rémi Eliautout
- Institut National de la Recherche Agronomique (INRA), UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France; Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Marie-Pierre Dubrana
- Institut National de la Recherche Agronomique (INRA), UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France; Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Carole Vincent-Monégat
- Université de Lyon, INSA-Lyon, INRA, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, F-69621 Villeurbanne, France
| | - Agnès Vallier
- Université de Lyon, INSA-Lyon, INRA, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, F-69621 Villeurbanne, France
| | - Christine Braquart-Varnier
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie, Evolution, Symbiose
| | - Marylène Poirié
- INRA, Evolution and Specificity of Multitrophic Interactions (ESIM), UMR 1355 Institut Sophia Agrobiotech (ISA), Sophia Antipolis, France
| | - Colette Saillard
- Institut National de la Recherche Agronomique (INRA), UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France; Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Abdelaziz Heddi
- Université de Lyon, INSA-Lyon, INRA, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, F-69621 Villeurbanne, France
| | - Nathalie Arricau-Bouvery
- Institut National de la Recherche Agronomique (INRA), UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France; Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France.
| |
Collapse
|