Lazić S, Lupulović D, Gaudaire D, Petrovic T, Lazić G, Hans A. Serological evidence of equine arteritis virus infection and phylogenetic analysis of viral isolates in semen of stallions from Serbia.
BMC Vet Res 2017;
13:316. [PMID:
29115996 PMCID:
PMC5678800 DOI:
10.1186/s12917-017-1226-x]
[Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 10/25/2017] [Indexed: 11/26/2022] Open
Abstract
Background
Equine arteritis virus (EAV) is responsible for infections in equids. It can spread easily within the horse population and has a major impact on the horse breeding industry. No EAV outbreak has ever been reported in Serbia. To determine whether EAV is nonetheless circulating there, especially in the Vojvodina region, 340 horse serum samples were subjected to serology testing to detect EAV antibodies. In parallel, semen samples from three seropositive stallions were collected to evaluate their EAV status, using RT-qPCR and virus isolation on cell culture.
Results
Horse sera with EAV antibodies represented 15.88% (54/340) of the tested samples, 83.23% (283/340) being negative, and just three samples (0.89%) being uninterpretable due to cytotoxicity. Only 7.2% (10/138) of horses kept by private owners on their own property were seropositive for EAV, whereas 21.8% (44/202) of horses kept on stud farms had EAV antibodies. Phylogenetic analysis showed that the Serbian EAV isolate was most closely related to isolates from the neighbouring Hungary.
Conclusions
EAV is circulating in the Serbian horse population, especially among the breeding population certainly due to the use of EAV shedder stallions since there is no surveillance programme in Serbia and only limited checks on racehorses. Moreover, phylogenetic analysis indicates that the EAV isolated from a Lipizzaner stallion in Serbia is closely related to isolates from Hungary, and together form a new cluster.
Collapse