1
|
Yadav K, Verma AK, Gupta S, Pathak AK, Sharma S, Awasthi A. Insight into molecular interaction between shrimp and white spot syndrome virus through MjsvCL-VP28 complex: an in-silico approach. J Biomol Struct Dyn 2023; 41:7757-7767. [PMID: 36120991 DOI: 10.1080/07391102.2022.2124457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
Abstract
White Spot disease is a devastating disease of shrimps caused by White Spot Syndrome Virus in multifarious shrimp species. At present there is no absolute medication to suppress the disease hence, there is an urgent need for development of drug against the virus. Molecular interaction between viral envelope protein VP28 and shrimp receptor protein especially chitins play a pivotal role in ingression of WSSV. In the present study, we have tried to shed light on structural aspects of lectin protein in Marsupenaeus japonicus (MjsvCL). A structural insight to the CTLD-domain of MjsvCL has facilitated the understanding of the binding mechanism between the two proteins that is responsible for entry of WSSV into shrimps. Further, incorporation of molecular dynamics simulation and MMPBSA studies revealed the affinity of binding and certain hotspot residues, which are critical for association of both the proteins. For the first time we have proposed that these amino acids are quintessential for formation of VP28-MjsvCL complex and play crucial role in entry of WSSV into shrimps. Targeting the interaction between VP28 and CTLD of MjsvCL may possibly serve as a potential drug target. The current study provides information for better understanding the interaction between VP28 and MjsvCL that could be a plausible site for future inhibitors against WSSV in shrimps.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kanika Yadav
- Department of Biotechnology, Maharaja Agrasen University, Baddi, Solan, Himachal Pradesh, India
| | - Arunima Kumar Verma
- Department of Zoology, Autonomous Government P.G. College, Satna, Madhya Pradesh, India
| | - Sunita Gupta
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Ajey Kumar Pathak
- Fish Conservation Division, National Bureau of Fish Genetic Resources, Lucknow, India
| | - Shikha Sharma
- Department of Botany, Post Graduate Government College for Girls, Sec-11,Chandigarh, India
| | - Abhishek Awasthi
- Department of Biotechnology, Maharaja Agrasen University, Baddi, Solan, Himachal Pradesh, India
| |
Collapse
|
2
|
Lei H, Li S, Lu X, Ren Y. Oral administration of Saccharomyces cerevisiae displaying VP28-VP24 confers protection against white spot syndrome virus in shrimp. Virus Res 2021; 302:198467. [PMID: 34062193 DOI: 10.1016/j.virusres.2021.198467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 01/05/2023]
Abstract
White spot syndrome virus (WSSV) is the major pathogen that leads to severe mortalities in cultured shrimp worldwide. The envelope proteins VP28 and VP24 of WSSV are considered potential vaccine candidate antigens. In this study, we utilized a Saccharomyces cerevisiae (S. cerevisiae) surface display system to demonstrate the feasibility of this platform for developing a vaccine candidate against WSSV. EBY100/pYD1-VP28-VP24 was generated, and the fusion protein VP28-VP24 was present on the surface of S. cerevisiae. Penaeus vannamei (P. vannamei) was used as an animal model. Oral administration of EBY100/pYD1-VP28-VP24 could induce significant activities of immune-related enzymes such as superoxide dismutase (SOD) and phenoloxidase (PO). Importantly, WSSV challenge indicated that oral administration of EBY100/pYD1-VP28-VP24 could confer 100% protection with a corresponding decrease in the viral load. The collective results strongly highlight the potential of a S. cerevisiae-based oral vaccine as an efficient control strategy for combating WSSV infection in shrimp aquaculture.
Collapse
Affiliation(s)
- Han Lei
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Shuangqin Li
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Xin Lu
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Yi Ren
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| |
Collapse
|
3
|
Xiao B, Fu Q, Niu S, Zhu P, He J, Li C. Penaeidins restrict white spot syndrome virus infection by antagonizing the envelope proteins to block viral entry. Emerg Microbes Infect 2020; 9:390-412. [PMID: 32397950 PMCID: PMC7048182 DOI: 10.1080/22221751.2020.1729068] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Emerging studies have indicated that some penaeidins restrict virus infection; however, the mechanism(s) involved are poorly understood. In the present study, we uncovered that penaeidins are a novel family of antiviral effectors against white spot syndrome virus (WSSV), which antagonize the envelope proteins to block viral entry. We found that the expression levels of four identified penaeidins from Litopenaeus vannamei, including BigPEN, PEN2, PEN3, and PEN4, were significantly induced in hemocytes during the early stage of WSSV infection. Knockdown of each penaeidin in vivo via RNA interference resulted in elevated viral loads and rendered shrimp more susceptible to WSSV, while the survival rate was rescued via the injection of recombinant penaeidins. All penaeidins, except PEN4, were shown to interact with several envelope proteins of WSSV, and all four penaeidins were observed to be located on the outer surface of the WSSV virion. Co-incubation of each recombinant penaeidin with WSSV inhibited virion internalization into hemocytes. More importantly, we found that PEN2 competitively bound to the envelope protein VP24 to release it from polymeric immunoglobulin receptor (pIgR), the cellular receptor required for WSSV infection. Moreover, we also demonstrated that BigPEN was able to bind to VP28 of WSSV, which disrupted the interaction between VP28 and Rab7 – the Rab GTPase that contributes to viral entry by binding with VP28. Taken together, our results demonstrated that penaeidins interact with the envelope proteins of WSSV to block multiple viral infection processes, thereby protecting the host against WSSV.
Collapse
Affiliation(s)
- Bang Xiao
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China.,State Key Laboratory of Biocontrol/ School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China
| | - Qihui Fu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China.,State Key Laboratory of Biocontrol/ School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China
| | - Shengwen Niu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China.,State Key Laboratory of Biocontrol/ School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China
| | - Peng Zhu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gluf University, Qinzhou, P. R. People's Republic of China
| | - Jianguo He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China.,State Key Laboratory of Biocontrol/ School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China
| | - Chaozheng Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China.,State Key Laboratory of Biocontrol/ School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China
| |
Collapse
|
4
|
Li L, Hong Y, Qiu H, Yang F, Li F. VP19 is important for the envelope coating of white spot syndrome virus. Virus Res 2019; 270:197666. [PMID: 31306682 DOI: 10.1016/j.virusres.2019.197666] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022]
Abstract
VP19 is a major envelope protein of white spot syndrome virus (WSSV), an important pathogen of farmed shrimp. However, the exact function of VP19 in WSSV assembly and infection is unknown. To understand the function of VP19, the gene was knocked down by RNA interference. We found that the dsRNA specific for vp19 gene dramatically reduced the replication of WSSV genomic DNA in infected animals. Further investigation by transmission electron microscopy showed that inhibition of VP19 prevented envelope coating of progeny virions, resulting in a high amount of immature virus particles without outer layer (envelope) in the host cells. This finding was further confirmed by SDS-PAGE analysis, which showed the loss of VP19 and other envelope proteins from the improperly assembled virions. These results suggest that VP19 is essential for WSSV envelope coating.
Collapse
Affiliation(s)
- Li Li
- College of Tea and Food Science, Wuyi University, Wuyishan, Fujian, China
| | - Yongcong Hong
- College of Tea and Food Science, Wuyi University, Wuyishan, Fujian, China
| | - Huaina Qiu
- Key Laboratory of Marine Genetic Resources of State Oceanic Administration, State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Feng Yang
- Key Laboratory of Marine Genetic Resources of State Oceanic Administration, State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fang Li
- Key Laboratory of Marine Genetic Resources of State Oceanic Administration, State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
| |
Collapse
|
5
|
Recent progress in the development of white spot syndrome virus vaccines for protecting shrimp against viral infection. Arch Virol 2017. [DOI: 10.1007/s00705-017-3450-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Sun L, Su Y, Zhao Y, Fu ZQ, Wu Y. Crystal Structure of Major Envelope Protein VP24 from White Spot Syndrome Virus. Sci Rep 2016; 6:32309. [PMID: 27572278 PMCID: PMC5004148 DOI: 10.1038/srep32309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/01/2016] [Indexed: 12/03/2022] Open
Abstract
White spot syndrome virus (WSSV) is one of the major and most serious pathogen in the shrimp industry. As one of the most abundant envelope protein, VP24 acts as a core protein interacting with other structure proteins and plays an important role in virus assembly and infection. Here, we have presented the crystal structure of VP24 from WSSV. In the structure, VP24 consists of a nine-stranded β–barrel fold with mostly antiparallel β-strands, and the loops extending out the β–barrel at both N-terminus and C-terminus, which is distinct to those of the other two major envelope proteins VP28 and VP26. Structural comparison of VP24 with VP26 and VP28 reveals opposite electrostatic surface potential properties of them. These structural differences could provide insight into their differential functional mechanisms and roles for virus assembly and infection. Moreover, the structure reveals a trimeric assembly, suggesting a likely natural conformation of VP24 in viral envelope. Therefore, in addition to confirming the evolutionary relationship among the three abundant envelope proteins of WSSV, our structural studies also facilitate a better understanding of the molecular mechanism underlying special roles of VP24 in WSSV assembly and infection.
Collapse
Affiliation(s)
- Lifang Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yintao Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yanhe Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Zheng-Qing Fu
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Yunkun Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
7
|
Sun L, Wu Y. Envelope protein VP24 from White spot syndrome virus: expression, purification and crystallization. Acta Crystallogr F Struct Biol Commun 2016; 72:586-90. [PMID: 27487921 PMCID: PMC4973298 DOI: 10.1107/s2053230x16009055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/04/2016] [Indexed: 11/10/2022] Open
Abstract
White spot syndrome virus (WSSV) is a major shrimp pathogen known to infect penaeid shrimp and other crustaceans. VP24 is one of the major envelope proteins of WSSV. In order to facilitate purification, crystallization and structure determination, the predicted N-terminal transmembrane region of approximately 26 amino acids was truncated from VP24 and several mutants were prepared to increase the proportion of selenomethionine (SeMet) residues for subsequent structural determination using the SAD method. Truncated VP24, its mutants and the corresponding SeMet-labelled proteins were purified, and the native and SeMet proteins were crystallized by the hanging-drop vapour-diffusion method. Crystals of VP24 were obtained using a reservoir consisting of 0.1 M Tris-HCl pH 8.5, 2.75 M ammonium acetate with a drop volume ratio of two parts protein solution to one part reservoir solution. Notably, ATP was added as a critical additive to the drop with a final concentration of 10 mM. Crystals of SeMet-labelled VP24 mutant diffracted to 3.0 Å resolution and those of the native diffracted to 2.4 Å resolution; the crystals belonged to space group I213, with unit-cell parameters a = b = c = 140 Å.
Collapse
Affiliation(s)
- Lifang Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
| | - Yunkun Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
| |
Collapse
|
8
|
Yan M, Liu L, Liang Q, He J, Weng S, He J, Xu X. A mitochondrial outer membrane-localized protein encoded by White spot syndrome virus. Virus Genes 2016; 52:290-3. [DOI: 10.1007/s11262-016-1291-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/09/2016] [Indexed: 12/27/2022]
|