1
|
Zisi Z, Ghijselings L, Vogel E, Vos C, Matthijnssens J. Single amino acid change in tomato brown rugose fruit virus breaks virus-specific resistance in new resistant tomato cultivar. FRONTIERS IN PLANT SCIENCE 2024; 15:1382862. [PMID: 38774217 PMCID: PMC11106371 DOI: 10.3389/fpls.2024.1382862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/10/2024] [Indexed: 05/24/2024]
Abstract
Introduction Tomato cultivation across the world is severely affected by emerging plant viruses. An effective method for protection of commercial crops against viral threats is the use of cultivars harboring resistance genes. Tomato brown rugose fruit virus (ToBRFV), a recently emerged tobamovirus, is able to overcome the dominant Tm-22 resistance that is present in the majority of commercial tomato cultivars. In an effort to alleviate the severe consequences of ToBRFV on tomato production, tomato breeding companies are developing new cultivars with varying levels of resistance against ToBRFV. Methods In the present study, cultivars with a new resistant phenotype against ToBRFV were screened against a wild-type isolate of ToBRFV, and subsequently, their performance under commercial greenhouse conditions was monitored. Following the identification of ToBRFV symptoms in a commercial greenhouse-where both new resistant and susceptible cultivars were interplanted-these cultivars were more closely examined. Results The presence of ToBRFV was molecularly confirmed on both cultivar types suggesting that the new resistance had been broken. High-throughput sequencing (HTS) was used to study the complete genomes of viral isolates present in the two cultivar types. The analysis revealed a single amino acid change at position 82 of the movement protein of ToBRFV in the isolate present in the new resistant cultivar compared with the isolate identified in the susceptible cultivar. Discussion A screening bioassay, that was performed to compare the infectivity of the two ToBRFV isolates, confirmed that only the isolate with this specific amino acid change could successfully infect the resistant cultivar, overcoming the new resistance against ToBRFV.
Collapse
Affiliation(s)
- Zafeiro Zisi
- KU Leuven, Department of Microbiology, Immunology and Transplantation, REGA Institute, Division of Clinical and Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
- Scientia Terrae Research Institute VZW, St.-Katelijne-Waver, Belgium
| | - Lucas Ghijselings
- Scientia Terrae Research Institute VZW, St.-Katelijne-Waver, Belgium
| | - Elise Vogel
- Scientia Terrae Research Institute VZW, St.-Katelijne-Waver, Belgium
- DCM NV, Grobbendonk, Belgium
| | - Christine Vos
- Scientia Terrae Research Institute VZW, St.-Katelijne-Waver, Belgium
| | - Jelle Matthijnssens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, REGA Institute, Division of Clinical and Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
| |
Collapse
|
2
|
Wieczorek P, Burgyán J, Obrępalska-Stęplowska A. Dicer-Like Protein 4 and RNA-Dependent RNA Polymerase 6 Are Involved in Tomato Torrado Virus Pathogenesis in Nicotiana benthamiana. PLANT & CELL PHYSIOLOGY 2024; 65:447-459. [PMID: 38174432 DOI: 10.1093/pcp/pcad169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Tomato torrado virus (ToTV) is a type member of the Torradovirus genus in the Secoviridae family known to cause severe necrosis in susceptible tomato varieties. ToTV also infects other Solanaceae plants, including Nicotiana benthamiana, where it induces distinctive disease symptoms: plant growth drop with the emergence of spoon-like malformed systemic leaves. Virus-induced post-transcriptional gene silencing (PTGS) is significant among plant defense mechanisms activated upon virus invasion. The PTGS, however, can be counteracted by suppressors of RNA silencing commonly found in viruses, which efficiently disrupt the antiviral defense of their host. Here, we addressed the question of PTGS antiviral activity and its suppression in N. benthamiana during ToTV infection-a phenomenon not described for any representative from the Torradovirus genus so far. First, we showed that neither the Vp26-a necrosis-inducing pathogenicity determinant of ToTV-nor other structural viral proteins limited the locally induced PTGS similar to p19, a well-characterized potent suppressor of RNA silencing of tombusviruses. Moreover, by employing wild-type and transgenic lines of N. benthamiana with suppressed Dicer-like 2 (DCL2), Dicer-like 4 (DCL4), Argonaute 2 and RNA-dependent RNA polymerase 6 (RDR6) proteins, we proved their involvement in anti-ToTV defense. Additionally, we identified DCL4 as the major processor of ToTV-derived siRNA. More importantly, our results indicate the essential role of the Suppressor of Gene Silencing 3 (SGS3)/RDR6 pathway in anti-ToTV defense. Finally, we conclude that ToTV might not require a potent RNA silencing suppressor during infection of the model plant N. benthamiana.
Collapse
Affiliation(s)
- Przemysław Wieczorek
- Department of Molecular Biology and Biotechnology, Institute of Plant Protection-National Research Institute, Węgorka 20, Poznań 60-318, Poland
| | - József Burgyán
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Gödöllő 2100, Hungary
| | - Aleksandra Obrępalska-Stęplowska
- Department of Molecular Biology and Biotechnology, Institute of Plant Protection-National Research Institute, Węgorka 20, Poznań 60-318, Poland
| |
Collapse
|
3
|
Rodríguez‐Negrete EA, Guevara‐Rivera EA, Arce‐Leal ÁP, Leyva‐López NE, Méndez‐Lozano J. A novel tomato spotted wilt virus isolate encoding a noncanonical NSm C118F substitution associated with Sw-5 tomato gene resistance breaking. MOLECULAR PLANT PATHOLOGY 2023; 24:1300-1311. [PMID: 37403515 PMCID: PMC10502823 DOI: 10.1111/mpp.13371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 07/06/2023]
Abstract
The nonstructural protein NSm of tomato spotted wilt virus (TSWV) has been identified as the avirulence determinant of the tomato single dominant Sw-5 resistance gene. Although Sw-5 effectiveness has been shown for most TSWV isolates, the emergence of resistance-breaking (RB) isolates has been observed. It is strongly associated with two point mutations (C118Y or T120N) in the NSm viral protein. TSWV-like symptoms were observed in tomato crop cultivars (+Sw-5) in the Baja California peninsula, Mexico, and molecular methods confirmed the presence of TSWV. Sequence analysis of the NSm 118-120 motif and three-dimensional protein modelling exhibited a noncanonical C118F substitution in seven isolates, suggesting that this substitution could emulate the C118Y-related RB phenotype. Furthermore, phylogenetic and molecular analysis of the full-length genome (TSWV-MX) revealed its reassortment-related evolution and confirmed that putative RB-related features are restricted to the NSm protein. Biological and mutational NSm 118 residue assays in tomato (+Sw-5) confirmed the RB nature of TSWV-MX isolate, and the F118 residue plays a critical role in the RB phenotype. The discovery of a novel TSWV-RB Mexican isolate with the presence of C118F substitution highlights a not previously described viral adaptation in the genus Orthotospovirus, and hence, the necessity of further crop monitoring to alert the establishment of novel RB isolates in cultivated tomatoes.
Collapse
|
4
|
Liao Q, Guo G, Lu R, Wang X, Du Z. Movement Protein Mediates Systemic Necrosis in Tomato Plants with Infection of Tomato Mosaic Virus. Viruses 2023; 15:157. [PMID: 36680197 PMCID: PMC9861833 DOI: 10.3390/v15010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
The necrogenic strain N5 of tomato mosaic virus (ToMV-N5) causes systemic necrosis in tomato cultivar Hezuo903. In this work, we mapped the viral determinant responsible for the induction of systemic necrosis. By exchanging viral genes between N5 and a non-necrogenic strain S1, we found that movement protein (MP) was the determinant for the differential symptoms caused by both strains. Compared with S1 MP, N5 MP had an additional ability to increase virus accumulation, which was not due to its functions in viral cell-to-cell movement. Actually, N5 MP, but not S1 MP, was a weak RNA silencing suppressor, which assisted viral accumulation. Sequence alignment showed that both MPs differed by only three amino acid residues. Experiments with viruses having mutated MPs indicated that the residue isoleucine at position 170 in MP was the key site for MP to increase virus accumulation, but also was required for MP to induce systemic necrosis in virus-infected tomato plants. Collectively, the lethal necrosis caused by N5 is dependent on its MP protein that enhances virus accumulation via its RNA silencing suppressor activity, probably leading to systemic necrosis responses in tomato plants.
Collapse
Affiliation(s)
- Qiansheng Liao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | | | | | | | - Zhiyou Du
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
5
|
Determinants of Virus Variation, Evolution, and Host Adaptation. Pathogens 2022; 11:pathogens11091039. [PMID: 36145471 PMCID: PMC9501407 DOI: 10.3390/pathogens11091039] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Virus evolution is the change in the genetic structure of a viral population over time and results in the emergence of new viral variants, strains, and species with novel biological properties, including adaptation to new hosts. There are host, vector, environmental, and viral factors that contribute to virus evolution. To achieve or fine tune compatibility and successfully establish infection, viruses adapt to a particular host species or to a group of species. However, some viruses are better able to adapt to diverse hosts, vectors, and environments. Viruses generate genetic diversity through mutation, reassortment, and recombination. Plant viruses are exposed to genetic drift and selection pressures by host and vector factors, and random variants or those with a competitive advantage are fixed in the population and mediate the emergence of new viral strains or species with novel biological properties. This process creates a footprint in the virus genome evident as the preferential accumulation of substitutions, insertions, or deletions in areas of the genome that function as determinants of host adaptation. Here, with respect to plant viruses, we review the current understanding of the sources of variation, the effect of selection, and its role in virus evolution and host adaptation.
Collapse
|
6
|
Leastro MO, Villar-Álvarez D, Freitas-Astúa J, Kitajima EW, Pallás V, Sánchez-Navarro JÁ. Spontaneous Mutation in the Movement Protein of Citrus Leprosis Virus C2, in a Heterologous Virus Infection Context, Increases Cell-to-Cell Transport and Generates Fitness Advantage. Viruses 2021; 13:v13122498. [PMID: 34960766 PMCID: PMC8708801 DOI: 10.3390/v13122498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Previous results using a movement defective alfalfa mosaic virus (AMV) vector revealed that citrus leprosis virus C (CiLV-C) movement protein (MP) generates a more efficient local movement, but not more systemic transport, than citrus leprosis virus C2 (CiLV-C2) MP, MPs belonging to two important viruses for the citrus industry. Here, competition experiment assays in transgenic tobacco plants (P12) between transcripts of AMV constructs expressing the cilevirus MPs, followed by several biological passages, showed the prevalence of the AMV construct carrying the CiLV-C2 MP. The analysis of AMV RNA 3 progeny recovered from P12 plant at the second viral passage revealed the presence of a mix of progeny encompassing the CiLV-C2 MP wild type (MPWT) and two variants carrying serines instead phenylalanines at positions 72 (MPS72F) or 259 (MPS259F), respectively. We evaluated the effects of each modified residue in virus replication, and cell-to-cell and long-distance movements. Results indicated that phenylalanine at position 259 favors viral cell-to-cell transport with an improvement in viral fitness, but has no effect on viral replication, whereas mutation at position 72 (MPS72F) has a penalty in the viral fitness. Our findings indicate that the prevalence of a viral population may be correlated with its greater efficiency in cell-to-cell and systemic movements.
Collapse
Affiliation(s)
- Mikhail Oliveira Leastro
- Unidade Laboratorial de Referência em Biologia Molecular Aplicada, Instituto Biológico, São Paulo 04014-900, Brazil;
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), 46022 Valencia, Spain; (D.V.-Á.); (V.P.)
- Correspondence: (M.O.L.); (J.Á.S.-N.)
| | - David Villar-Álvarez
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), 46022 Valencia, Spain; (D.V.-Á.); (V.P.)
| | - Juliana Freitas-Astúa
- Unidade Laboratorial de Referência em Biologia Molecular Aplicada, Instituto Biológico, São Paulo 04014-900, Brazil;
- Embrapa Mandioca e Fruticultura, Cruz das Almas 70770-901, Brazil
| | - Elliot Watanabe Kitajima
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba 13418-900, Brazil;
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), 46022 Valencia, Spain; (D.V.-Á.); (V.P.)
| | - Jesús Ángel Sánchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), 46022 Valencia, Spain; (D.V.-Á.); (V.P.)
- Correspondence: (M.O.L.); (J.Á.S.-N.)
| |
Collapse
|
7
|
Tarquini G, Ermacora P, Firrao G. Polymorphisms at the 3'end of the movement protein (MP) gene of grapevine Pinot gris virus (GPGV) affect virus titre and small interfering RNA accumulation in GLMD disease. Virus Res 2021; 302:198482. [PMID: 34119570 DOI: 10.1016/j.virusres.2021.198482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 01/15/2023]
Abstract
Grapevine Leaf Mottling and Deformation (GLMD) is a grapevine disease that has been associated with a trichovirus, the grapevine Pinot gris virus (GPGV). A wide diversity in the severity of GLMD disease symptoms has been recorded worldwide, but the relationship of this diversity to the sequence variation in the GPGV genome is still a matter of debate. Results from comparative analysis of GPGV genomic sequences have suggested an association of polymorphisms at the 3'-end of the movement protein (MP) with GLMD severity. Here, the 3'-terminus of the MP gene of a GPGV infectious clone derived from an isolate from grapevine showing severe symptoms (fvg-12), was substituted with a 356 bp synthetic DNA fragment having a sequence resembling that of another GPGV isolate (fvg-15), recovered from an asymptomatic grapevine. The clone containing this chimeric construct was root-inoculated in virus-free Kober rootstocks along with the clones containing the fvg-12 and fvg-15 full length sequence. Remarkable differences in virus titre, accumulation of GPGV-derived small interfering RNAs (siRNAs), alterations in the gene expression of boron transporters and, to a lesser extent, in symptom expression were recorded among plants infected with either one of the three GPGV derived clones. In particular, the chimeric clone behaviour was indistinguishable from that of the donor of the small 356 bp fragment and significantly different from the other. Thus, this work experimentally confirmed the critical role of the GPGV-MP C-terminus in determining the fate of the infection, as it had been previously hypothesized on the basis of comparative sequence analysis.
Collapse
Affiliation(s)
- Giulia Tarquini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine 33100, Italy
| | - Paolo Ermacora
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine 33100, Italy
| | - Giuseppe Firrao
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine 33100, Italy; Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy.
| |
Collapse
|
8
|
Carpino C, Ferriol Safont I, Elvira‐González L, Medina V, Rubio L, Peri E, Davino S, Galipienso Torregrosa L. RNA2-encoded VP37 protein of Broad bean wilt virus 1 is a determinant of pathogenicity, host susceptibility, and a suppressor of post-transcriptional gene silencing. MOLECULAR PLANT PATHOLOGY 2020; 21:1421-1435. [PMID: 32936537 PMCID: PMC7549002 DOI: 10.1111/mpp.12979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 06/01/2023]
Abstract
Broad bean wilt virus 1 (BBWV-1, genus Fabavirus, family Secoviridae) is a bipartite, single-stranded positive-sense RNA virus infecting many horticultural and ornamental crops worldwide. RNA1 encodes proteins involved in viral replication whereas RNA2 encodes two coat proteins (the large and small coat proteins) and two putative movement proteins (MPs) of different sizes with overlapping C-terminal regions. In this work, we determined the role played by the small putative BBWV-1 MP (VP37) on virus pathogenicity, host specificity, and suppression of post-transcriptional gene silencing (PTGS). We engineered a BBWV-1 35S-driven full-length cDNA infectious clone corresponding to BBWV-1 RNA1 and RNA2 (pBBWV1-Wt) and generated a mutant knocking out VP37 (pBBWV1-G492C). Agroinfiltration assays showed that pBBWV1-Wt, as the original BBWV-1 isolate, infected broad bean, tomato, pepper, and Nicotiana benthamiana, whereas pBBWV1-G492C did not infect pepper and tomato systemically. Also, pBBWV1-G492C induced milder symptoms in broad bean and N. benthamiana than pBBWV1-Wt. Differential retrotranscription and amplification of the (+) and (-) strands showed that pBBWV1-G492C replicated in the agroinfiltrated leaves of pepper but not in tomato. All this suggests that VP37 is a determinant of pathogenicity and host specificity. Transient expression of VP37 through a potato virus X (PVX) vector enhanced PVX symptoms and induced systemic necrosis associated with programmed cell death in N. benthamiana plants. Finally, VP37 was identified as a viral suppressor of RNA silencing by transient expression in N. benthamiana 16c plants and movement complementation of a viral construct based on turnip crinkle virus (pTCV-GFP).
Collapse
Affiliation(s)
- Caterina Carpino
- Instituto Valenciano de Investigaciones AgrariasValenciaSpain
- Department of Agricultural, Food and Forestry ScienceUniversity of PalermoPalermoItaly
| | | | - Laura Elvira‐González
- Instituto Valenciano de Investigaciones AgrariasValenciaSpain
- Departamento de BiotecnologíaEscuela Técnica Superior de Ingeniería NaturalUniversitat Politècnica de ValènciaValenciaSpain
| | - Vicente Medina
- Departamento de Producción Vegetal y Ciencia ForestalUniversitat de LleidaLleidaSpain
| | - Luis Rubio
- Instituto Valenciano de Investigaciones AgrariasValenciaSpain
| | - Ezio Peri
- Department of Agricultural, Food and Forestry ScienceUniversity of PalermoPalermoItaly
| | - Salvatore Davino
- Department of Agricultural, Food and Forestry ScienceUniversity of PalermoPalermoItaly
| | | |
Collapse
|
9
|
Wieczorek P, Budziszewska M, Frąckowiak P, Obrępalska-Stęplowska A. Development of a New Tomato Torrado Virus-Based Vector Tagged with GFP for Monitoring Virus Movement in Plants. Viruses 2020; 12:v12101195. [PMID: 33092281 PMCID: PMC7588970 DOI: 10.3390/v12101195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
Green fluorescent protein (GFP)-tagged viruses are basic research tools widely applied in studies concerning molecular determinants of disease during virus infection. Here, we described a new generation of genetically stable infectious clones of tomato torrado virus isolate Kra (ToTVpJL-Kra) that could infect Nicotiana benthamiana and Solanum lycopersicum. Importantly, a modified variant of the viral RNA2—with inserted sGFP (forming, together with virus RNA1, into ToTVpJL-KraGFP)—was engineered as well. RNA2 of ToTVpJL-KraGFP was modified by introducing an additional open reading frame (ORF) of sGFP flanked with an amino acid-coding sequence corresponding to the putative virus protease recognition site. Our further analysis revealed that sGFP-tagged ToTV-Kra was successfully passaged by mechanical inoculation and spread systemically in plants. Therefore, the clone might be applied in studying the in vivo cellular, tissue, and organ-level localization of ToTV during infection. By performing whole-plant imaging, followed by fluorescence and confocal microscopy, the presence of the ToTVpJL-KraGFP-derived fluorescence signal was confirmed in infected plants. All this information was verified by sGFP-specific immunoprecipitation and western blot analysis. The molecular biology of the torradovirus-plant interaction is still poorly characterized; therefore, the results obtained here opened up new possibilities for further research. The application of sGFP-tagged virus infectious clones and their development method can be used for analyzing plant-virus interactions in a wide context of plant pathology.
Collapse
|
10
|
Wieczorek P, Wrzesińska B, Frąckowiak P, Przybylska A, Obrępalska-Stęplowska A. Contribution of Tomato torrado virus Vp26 coat protein subunit to systemic necrosis induction and virus infectivity in Solanum lycopersicum. Virol J 2019; 16:9. [PMID: 30642343 PMCID: PMC6332883 DOI: 10.1186/s12985-019-1117-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 01/06/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Tomato torrado virus (ToTV) infection manifests with burn-like symptoms on leaves, leaflets and upper stem parts of susceptible infected plants. The symptoms caused by ToTV may be considered as one of the most severe virus-induced forms of systemic necrosis, which spreads within the whole plant and leads to a lethal phenotype. However, to date there are no data revealing which viral genes encode for a specific pathogenicity determinant that triggers the plant necrotic response for any torradovirus. In this study we evaluated the influence of three coat protein subunits of ToTV: Vp23, Vp26 and Vp35, transiently expressed from a PVX-based vector, and checked their association with the induction of systemic necrosis in infected Solanum lycopersicum L. (cv. Beta Lux), a natural host of ToTV. METHODS To estimate how ToTV coat protein subunits might contribute in plant response to virus infection we over-expressed the proteins from PVX-based vector in tomato and analyzed enzymatic activities related with plant defense response. By doing protein qualitative analysis performed by mass spectrometry we indicated the PR10 in protein fraction with induced ribonuclease activity. RESULTS We observed that only the Vp26 enhanced PVX pathogenicity causing severe necrosis of the infected plant. Moreover, we indicated increased RNase and oxidative activities in plants infected with PVX-Vp26 chimeras only. Importantly, we suspected that this increased RNase activity is associated with increased accumulation of PR10 mRNA and products of its translation. CONCLUSIONS On the basis of the obtained results, we indicated that Vp26 acts as the elicitor of hypersensitive response-like reactions of PVX-Vp26 manifesting with enhanced pathogenicity of the recombined PVX. This might be the first described suspected necrosis determinant of torradoviruses infecting tomatoes.
Collapse
Affiliation(s)
- Przemysław Wieczorek
- Department of Entomology, Animal Pests & Biotechnology, Institute of Plant Protection-National Research Institute, Władysława Węgorka 20 St, 60-318, Poznań, Poland
| | - Barbara Wrzesińska
- Department of Entomology, Animal Pests & Biotechnology, Institute of Plant Protection-National Research Institute, Władysława Węgorka 20 St, 60-318, Poznań, Poland
| | - Patryk Frąckowiak
- Department of Entomology, Animal Pests & Biotechnology, Institute of Plant Protection-National Research Institute, Władysława Węgorka 20 St, 60-318, Poznań, Poland
| | - Arnika Przybylska
- Department of Entomology, Animal Pests & Biotechnology, Institute of Plant Protection-National Research Institute, Władysława Węgorka 20 St, 60-318, Poznań, Poland
| | - Aleksandra Obrępalska-Stęplowska
- Department of Entomology, Animal Pests & Biotechnology, Institute of Plant Protection-National Research Institute, Władysława Węgorka 20 St, 60-318, Poznań, Poland.
| |
Collapse
|
11
|
Ferriol INMACULADA, Vallino MARTA, Ciuffo MARINA, Nigg JAREDC, Zamora‐Macorra ERIKAJ, Falk BRYCEW, Turina M. The Torradovirus-specific RNA2-ORF1 protein is necessary for plant systemic infection. MOLECULAR PLANT PATHOLOGY 2018; 19:1319-1331. [PMID: 28940803 PMCID: PMC6638011 DOI: 10.1111/mpp.12615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
Tomato apex necrosis virus (ToANV, species Tomato marchitez virus, genus Torradovirus, family Secoviridae) causes a severe tomato disease in Mexico. One distinctive feature of torradoviruses compared with other members of the family Secoviridae is the presence of an additional open reading frame (ORF) in genomic RNA2 (denominated RNA2-ORF1), located upstream of ORF2. RNA2-ORF2 encodes a polyprotein that is processed into a putative movement protein and three capsid proteins (CPs). The RNA2-ORF1 protein has homologues only amongst other torradoviruses and, so far, no function has been associated with it. We used recombinant and mutant ToANV clones to investigate the role of the RNA2-ORF1 protein in various aspects of the virus infection cycle. The lack of a functional RNA2-ORF1 resulted in an inability to systemically infect Nicotiana benthamiana and tomato plants, but both positive- and negative-strand RNA1 and RNA2 accumulated locally in agroinfiltrated areas in N. benthamiana plants, indicating that the RNA2-ORF1 mutants were replication competent. Furthermore, a mutant with a deletion in RNA2-ORF1 was competent for virion formation and cell-to-cell movement in the cells immediately surrounding the initial infection site. However, immunological detection of the ToANV CPs in the agroinfiltrated areas showed that this mutant was not detected in the sieve elements even if the surrounding parenchymatic cells were ToANV positive, suggesting a role for the RNA2-ORF1 protein in processes occurring prior to phloem uploading, including efficient spread in inoculated leaves.
Collapse
Affiliation(s)
| | - MARTA Vallino
- Institute for Sustainable Plant Protection, CNRTurin10135Italy
| | - MARINA Ciuffo
- Institute for Sustainable Plant Protection, CNRTurin10135Italy
| | - JARED C. Nigg
- Department of Plant PathologyUC‐DavisDavisCA 95616USA
| | | | - BRYCE W. Falk
- Department of Plant PathologyUC‐DavisDavisCA 95616USA
| | - Massimo Turina
- Institute for Sustainable Plant Protection, CNRTurin10135Italy
| |
Collapse
|
12
|
Seo JK, Kwak HR, Choi B, Han SJ, Kim MK, Choi HS. Movement protein of broad bean wilt virus 2 serves as a determinant of symptom severity in pepper. Virus Res 2017; 242:141-145. [PMID: 28970056 DOI: 10.1016/j.virusres.2017.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/27/2017] [Accepted: 09/29/2017] [Indexed: 10/18/2022]
Abstract
Broad bean wilt virus 2 (BBWV2, genus Fabavirus, family Secoviridae) has a wide host range and infects many economically important crops. Various isolates of BBWV2 have been identified from diverse host plants, and their molecular and biological characteristics have been investigated. In our previous study, we demonstrated that BBWV2 RNA2 contains a symptom determinant(s) capable of enhancing symptom severity by utilizing infectious full-length cDNA clones of two distinct strains of BBWV2, pBBWV2-PAP1 (a severe strain) and pBBWV2-RP1 (a mild strain). In the present study, to identify the symptom determinant(s) of BBWV2, we exploited disease responses of pBBWV2-PAP1- and pBBWV2-RP1-derived chimeric viruses and amino acid substitution mutant viruses in Nicotiana benthamiana and pepper (Capsicum annuum Quarri) and demonstrated that the movement protein (MP) encoded in BBWV RNA2 is the determinant of disease symptom severity in both plants. A single amino acid substitution in the MP was sufficient for changing symptom severity of BBWV2. Our finding provides a role for the MP as a symptom determinant in BBWV2 and increases the understanding of the basis of molecular interactions between host plants and BBWV2.
Collapse
Affiliation(s)
- Jang-Kyun Seo
- Department of International Agricultural Technology and Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea.
| | - Hae-Ryun Kwak
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Boram Choi
- Department of International Agricultural Technology and Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Soo-Jung Han
- Department of International Agricultural Technology and Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Mi-Kyeong Kim
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Hong-Soo Choi
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| |
Collapse
|
13
|
Wrzesińska B, Wieczorek P, Obrępalska-Stęplowska A. Recombination-based generation of the agroinfectious clones of Peanut stunt virus. J Virol Methods 2016; 237:179-186. [PMID: 27659243 DOI: 10.1016/j.jviromet.2016.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/05/2016] [Accepted: 09/15/2016] [Indexed: 12/13/2022]
Abstract
Full-length cDNA clones of Peanut stunt virus strain P (PSV-P) were constructed and introduced into Nicotiana benthamiana plants via Agrobacterium tumefaciens. The cDNA fragments corresponding to three PSV genomic RNAs and satellite RNA were cloned into pGreen binary vector between Cauliflower mosaic virus (CaMV) 35S promoter and nopaline synthase (NOS) terminator employing seamless recombinational cloning system. The plasmids were delivered into A. tumefaciens, followed by infiltration of hosts plants. The typical symptoms on systemic leaves of infected plants similar to those of wild-type PSV-P were observed. The presence of the virus was confirmed by means of RT-PCR and Western blotting. Re-inoculation to N. benthamiana, Phaseolus vulgaris, and Pisum sativum resulted in analogous results. Generation of infectious clones of PSV-P enables studies on virus-host interaction as well as revealing viral genes functions.
Collapse
Affiliation(s)
- Barbara Wrzesińska
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection - National Research Institute, Władysława Węgorka 20 St, 60-318, Poznań, Poland
| | - Przemysław Wieczorek
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection - National Research Institute, Władysława Węgorka 20 St, 60-318, Poznań, Poland
| | - Aleksandra Obrępalska-Stęplowska
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection - National Research Institute, Władysława Węgorka 20 St, 60-318, Poznań, Poland.
| |
Collapse
|
14
|
Wieczorek P, Obrępalska-Stęplowska A. The N-terminal fragment of the tomato torrado virus RNA1-encoded polyprotein induces a hypersensitive response (HR)-like reaction in Nicotiana benthamiana. Arch Virol 2016; 161:1849-58. [PMID: 27072852 PMCID: PMC4908173 DOI: 10.1007/s00705-016-2841-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/19/2016] [Indexed: 11/30/2022]
Abstract
The hypersensitive response (HR) is a defence reaction observed during incompatible plant-pathogen interactions in plants infected with a wide range of fungi, bacteria and viruses. Here, we show that an N-terminal polyprotein fragment encoded by tomato torrado virus RNA1, located between the first ATG codon and the protease cofactor (ProCo) motif, induces an HR-like reaction in Nicotiana benthamiana. Agrobacterium tumefaciens-mediated transient expression of the first 105 amino acids (the calculated molecular weight of the fragment was ca. 11.33 kDa, hereafter refered to as the 11K domain) from ToTV RNA1 induced an HR-like phenotype in infiltrated leaves. To investigate whether the 11K domain could influence the virulence and pathogenicity of a recombinant virus, we created a potato virus X (PVX) with the 11K coding sequence inserted under a duplicated coat protein promoter. We found that 11K substantially increased the virulence of the recombinant virus. Disease phenotype induced in N. benthamiana by PVX-11K was characterized by strong local and systemic necrosis. This was not observed when the 11K domain was expressed from PVX in an antisense orientation. Further analyses revealed that the 11K domain could not suppress posttranscriptional gene silencing (PTGS) of green fluorescent protein (GFP) in the N. benthamiana 16c line. In silico analysis of the predicted secondary structure of the 11K domain indicated the presence of two putative helices that are highly conserved in tomato-infecting representatives of the genus Torradovirus.
Collapse
Affiliation(s)
- Przemysław Wieczorek
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection-National Research Institute, 20 Władysława Węgorka St, 60-318, Poznan, Poland
| | - Aleksandra Obrępalska-Stęplowska
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection-National Research Institute, 20 Władysława Węgorka St, 60-318, Poznan, Poland.
| |
Collapse
|