1
|
Gonçalves ZS, de Jesus ON, Cerqueira-Silva CBM, Correa RX. Systemic infection of cowpea aphid-borne mosaic virus in Passiflora spp. occurs at the initial stage regardless of the species' resistance. Arch Virol 2025; 170:43. [PMID: 39881014 DOI: 10.1007/s00705-025-06230-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/02/2024] [Indexed: 01/31/2025]
Abstract
Passion fruit woodiness disease (PWD), caused by cowpea aphid-borne mosaic virus (CABMV), severely damages leaves and fruits, compromising passion fruit production. The dynamics of this infection in Passiflora spp. are still poorly understood. The objective of this study was to determine the systemic infection time of CABMV in Passiflora spp. and to quantify the viral titer throughout the infection. Plants of Passiflora edulis Sims. (BGP418, susceptible), P. cincinnata Mast. (BGP243, moderately resistant), P. setacea DC. (BRS Pérola do Cerrado, resistant), and P. suberosa L. (BGP152, resistant) were used. The study was conducted in a climate chamber, and mechanical inoculations were carried out on the first pair of basal leaves of the seedlings. Symptoms were assessed using a scale whose scores were converted into a disease index (DI%), and the viral titer was determined at different time points by real-time quantitative RT-PCR (RT-qPCR). The first symptoms of the virus were observed at seven days after inoculation (Dai) in P. edulis (DI = 5.15%) and at 10 Dai in P. cincinnata (DI = 8.86%). On the other hand, P. setacea and P. suberosa did not show typical symptoms of the disease (DI = 0.00%). Systemic CABMV infection was detected at 30 minutes after inoculation regardless of the level of resistance of the Passiflora species. There was an increase in viral titer with infection time with P. edulis and P. cincinnata, although in the case of P. edulis, the increase in CABMV titer occurred earlier, at 2 Dai, and in P. cincinnata at 8 Dai. In the asymptomatic species (P. setacea and P. suberosa), there was no variation in the viral titer over the time periods evaluated. This pioneering study provides information for the selection of time intervals for future molecular research into the interaction between Passiflora spp. and CABMV.
Collapse
Affiliation(s)
| | - Onildo Nunes de Jesus
- Embrapa Mandioca e Fruticultura, Cruz das Almas, Box 007, Ilhéus, BA, CEP 44380-000, Brazil.
- , Embrapa Mandioca e Fruticultura, Rua Embrapa, s/n, Caixa Postal 007, Cruz das Almas, Chapadinha, BA, 44380-000, Brazil.
| | | | - Ronan Xavier Correa
- Universidade Estadual de Santa Cruz, UESC, Ilhéus, BA, CEP 45662-900, Brazil
| |
Collapse
|
2
|
Atabekova AK, Solovieva AD, Chergintsev DA, Solovyev AG, Morozov SY. Role of Plant Virus Movement Proteins in Suppression of Host RNAi Defense. Int J Mol Sci 2023; 24:ijms24109049. [PMID: 37240394 DOI: 10.3390/ijms24109049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
One of the systems of plant defense against viral infection is RNA silencing, or RNA interference (RNAi), in which small RNAs derived from viral genomic RNAs and/or mRNAs serve as guides to target an Argonaute nuclease (AGO) to virus-specific RNAs. Complementary base pairing between the small interfering RNA incorporated into the AGO-based protein complex and viral RNA results in the target cleavage or translational repression. As a counter-defensive strategy, viruses have evolved to acquire viral silencing suppressors (VSRs) to inhibit the host plant RNAi pathway. Plant virus VSR proteins use multiple mechanisms to inhibit silencing. VSRs are often multifunctional proteins that perform additional functions in the virus infection cycle, particularly, cell-to-cell movement, genome encapsidation, or replication. This paper summarizes the available data on the proteins with dual VSR/movement protein activity used by plant viruses of nine orders to override the protective silencing response and reviews the different molecular mechanisms employed by these proteins to suppress RNAi.
Collapse
Affiliation(s)
- Anastasia K Atabekova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Anna D Solovieva
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Denis A Chergintsev
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Andrey G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Sergey Y Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
3
|
Orchid fleck dichorhavirus movement protein shows RNA silencing suppressor activity. J Gen Virol 2022; 103. [DOI: 10.1099/jgv.0.001805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To counteract RNA interference-mediated antiviral defence, virus genomes evolved to express proteins that inhibit this plant defence mechanism. Using six independent biological approaches, we show that orchid fleck dichorhavirus citrus strain (OFV-citrus) movement protein (MP) may act as a viral suppressor of RNA silencing (VSR). By using the alfalfa mosaic virus (AMV) RNA 3 expression vector, it was observed that the MP triggered necrosis response in transgenic tobacco leaves and increased the viral RNA (vRNA) accumulation. The use of the potato virus X (PVX) expression system revealed that the cis expression of MP increased both the severity of the PVX infection and the accumulation of PVX RNAs, further supporting that MP could act as an RNA silencing suppressor (RSS). From the analysis of the RSS-defective turnip crinkle virus (TCV), we do not find local RSS activity for MP, suggesting a link between MP suppressor activity and the prevention of systemic silencing. In the analysis of local suppressive activity using the GFP-based agroinfiltration assay in Nicotiana benthamiana (16 c line), we do not identify local RSS activity for the five OFV RNA1-encoded proteins. However, when evaluating the small interfering RNA (siRNA) accumulation, we find that the expression of MP significantly reduces the accumulation of GFP-derived siRNA. Finally, we examine whether the MP can prevent systemic silencing in 16c plants. Our findings show that MP inhibits the long-distance spread of RNA silencing, but does not affect the short-distance spread. Together, our findings indicate that MP is part of OFV’s counter-defence mechanism, acting mainly in the prevention of systemic long-distance silencing. This work presents the first report of a VSR for a member of the genus Dichorhavirus.
Collapse
|
4
|
Ramos-González PL, Pons T, Chabi-Jesus C, Arena GD, Freitas-Astua J. Poorly Conserved P15 Proteins of Cileviruses Retain Elements of Common Ancestry and Putative Functionality: A Theoretical Assessment on the Evolution of Cilevirus Genomes. FRONTIERS IN PLANT SCIENCE 2021; 12:771983. [PMID: 34804105 PMCID: PMC8602818 DOI: 10.3389/fpls.2021.771983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
The genus Cilevirus groups enveloped single-stranded (+) RNA virus members of the family Kitaviridae, order Martellivirales. Proteins P15, scarcely conserved polypeptides encoded by cileviruses, have no apparent homologs in public databases. Accordingly, the open reading frames (ORFs) p15, located at the 5'-end of the viral RNA2 molecules, are considered orphan genes (ORFans). In this study, we have delved into ORFs p15 and the relatively poorly understood biochemical properties of the proteins P15 to posit their importance for viruses across the genus and theorize on their origin. We detected that the ORFs p15 are under purifying selection and that, in some viral strains, the use of synonymous codons is biased, which might be a sign of adaptation to their plant hosts. Despite the high amino acid sequence divergence, proteins P15 show the conserved motif [FY]-L-x(3)-[FL]-H-x-x-[LIV]-S-C-x-C-x(2)-C-x-G-x-C, which occurs exclusively in members of this protein family. Proteins P15 also show a common predicted 3D structure that resembles the helical scaffold of the protein ORF49 encoded by radinoviruses and the phosphoprotein C-terminal domain of mononegavirids. Based on the 3D structural similarities of P15, we suggest elements of common ancestry, conserved functionality, and relevant amino acid residues. We conclude by postulating a plausible evolutionary trajectory of ORFans p15 and the 5'-end of the RNA2 of cileviruses considering both protein fold superpositions and comparative genomic analyses with the closest kitaviruses, negeviruses, nege/kita-like viruses, and unrelated viruses that share the ecological niches of cileviruses.
Collapse
Affiliation(s)
- Pedro L. Ramos-González
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico de São Paulo, São Paulo, Brazil
| | - Tirso Pons
- National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Camila Chabi-Jesus
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico de São Paulo, São Paulo, Brazil
- Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo, Piracicaba, Brazil
| | - Gabriella Dias Arena
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico de São Paulo, São Paulo, Brazil
| | - Juliana Freitas-Astua
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico de São Paulo, São Paulo, Brazil
- Embrapa Mandioca e Fruticultura, Cruz das Almas, Brazil
| |
Collapse
|
5
|
Wang Y, Wang G, Bai J, Zhang Y, Wang Y, Wen S, Li L, Yang Z, Hong N. A novel Actinidia cytorhabdovirus characterized using genomic and viral protein interaction features. MOLECULAR PLANT PATHOLOGY 2021; 22:1271-1287. [PMID: 34288324 PMCID: PMC8435229 DOI: 10.1111/mpp.13110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
A novel cytorhabdovirus, tentatively named Actinidia virus D (AcVD), was identified from kiwifruit (Actinidia chinensis) in China using high-throughput sequencing technology. The genome of AcVD consists of 13,589 nucleotides and is organized into seven open reading frames (ORFs) in its antisense strand, coding for proteins in the order N-P-P3-M-G-P6-L. The ORFs were flanked by a 3' leader sequence and a 5' trailer sequence and are separated by conserved intergenic junctions. The genome sequence of AcVD was 44.6%-51.5% identical to those of reported cytorhabdoviruses. The proteins encoded by AcVD shared the highest sequence identities, ranging from 27.3% (P6) to 44.5% (L), with the respective proteins encoded by reported cytorhabdoviruses. Phylogenetic analysis revealed that AcVD clustered together with the cytorhabdovirus Wuhan insect virus 4. The subcellular locations of the viral proteins N, P, P3, M, G, and P6 in epidermal cells of Nicotiana benthamiana leaves were determined. The M protein of AcVD uniquely formed filament structures and was associated with microtubules. Bimolecular fluorescence complementation assays showed that three proteins, N, P, and M, self-interact, protein N plays a role in the formation of cytoplasm viroplasm, and protein M recruits N, P, P3, and G to microtubules. In addition, numerous paired proteins interact in the nucleus. This study presents the first evidence of a cytorhabdovirus infecting kiwifruit plants and full location and interaction maps to gain insight into viral protein functions.
Collapse
Affiliation(s)
- Yanxiang Wang
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| | - Guoping Wang
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| | - Jianyu Bai
- Laboratory of Fruit Trees DiseaseInstitute of Economic ForestryXinjiang Academy of Forestry SciencesUrumqiChina
| | - Yongle Zhang
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ying Wang
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Shaohua Wen
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Liu Li
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zuokun Yang
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ni Hong
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
6
|
Wang Z, Chen B, Zhang T, Zhou G, Yang X. Rice Stripe Mosaic Disease: Characteristics and Control Strategies. Front Microbiol 2021; 12:715223. [PMID: 34394065 PMCID: PMC8358444 DOI: 10.3389/fmicb.2021.715223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/13/2021] [Indexed: 02/04/2023] Open
Abstract
Rice stripe mosaic disease (RSMD) is caused by the rice stripe mosaic virus (RSMV; genus Cytorhabdovirus, family Rhabdoviridae). In recent years, significant progress has been made in understanding several aspects of the disease, especially its geographical distribution, symptoms, vectors, gene functions, and control measures. Since RSMD was first detected in southern China in 2015, it has been found in more and more rice growing areas and has become one of the most important rice diseases in southern China. RSMV is transmitted by the leafhopper Recilia dorsalis in a persistent-propagative manner, inducing yellow stripes, a slight distortion of leaves, increased tillers, and empty grains in rice plants. The virus has a negative-sense single-strand RNA genome of about 12.7 kb that encodes seven proteins: N, P, P3, M, G, P6, and L. Several molecular and serological tests have been developed to detect RSMV in plants and insects. The disease cycle can be described as follows: RSMV and its vector overwinter in infected plants; viruliferous R. dorsalis adults transmit the virus to spring rice and lay eggs on the infected seedlings; the next generation of R. dorsalis propagate on infected seedlings, become viruliferous, disperse, and cause new disease outbreaks. Control measures include monitoring and accurate forecasting, selecting disease-resistant varieties, improving cultivation systems, covering rice seedling nurseries with insect-proof nets, and using pesticides rationally. Inappropriate cultivation systems, pesticide overuse, and climatic conditions contribute to epidemics by affecting the development of vector insects and their population dynamics.
Collapse
Affiliation(s)
- Zhiyi Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Biao Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xin Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Silva-Martins G, Bolaji A, Moffett P. What does it take to be antiviral? An Argonaute-centered perspective on plant antiviral defense. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6197-6210. [PMID: 32835379 DOI: 10.1093/jxb/eraa377] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
RNA silencing is a major mechanism of constitutive antiviral defense in plants, mediated by a number of proteins, including the Dicer-like (DCL) and Argonaute (AGO) endoribonucleases. Both DCL and AGO protein families comprise multiple members. In particular, the AGO protein family has expanded considerably in different plant lineages, with different family members having specialized functions. Although the general mode of action of AGO proteins is well established, the properties that make different AGO proteins more or less efficient at targeting viruses are less well understood. In this report, we review methodologies used to study AGO antiviral activity and current knowledge about which AGO family members are involved in antiviral defense. In addition, we discuss what is known about the different properties of AGO proteins thought to be associated with this function.
Collapse
Affiliation(s)
| | - Ayooluwa Bolaji
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
8
|
Dietzgen RG, Bejerman NE, Goodin MM, Higgins CM, Huot OB, Kondo H, Martin KM, Whitfield AE. Diversity and epidemiology of plant rhabdoviruses. Virus Res 2020; 281:197942. [PMID: 32201209 DOI: 10.1016/j.virusres.2020.197942] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/03/2020] [Accepted: 03/18/2020] [Indexed: 01/07/2023]
Abstract
Plant rhabdoviruses are recognized by their large bacilliform particles and for being able to replicate in both their plant hosts and arthropod vectors. This review highlights selected, better studied examples of plant rhabdoviruses, their genetic diversity, epidemiology and interactions with plant hosts and arthropod vectors: Alfalfa dwarf virus is classified as a cytorhabdovirus, but its multifunctional phosphoprotein is localized to the plant cell nucleus. Lettuce necrotic yellows virus subtypes may differentially interact with their aphid vectors leading to changes in virus population diversity. Interactions of rhabdoviruses that infect rice, maize and other grains are tightly associated with their specific leafhopper and planthopper vectors. Future outbreaks of vector-borne nucleorhabdoviruses may be predicted based on a world distribution map of the insect vectors. The epidemiology of coffee ringspot virus and its Brevipalpus mite vector is illustrated highlighting the symptomatology and biology of a dichorhavirus and potential impacts of climate change on its epidemiology.
Collapse
Affiliation(s)
- Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland, 4072, Australia.
| | - Nicolas E Bejerman
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), X5020ICA, Córdoba, Argentina
| | - Michael M Goodin
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Colleen M Higgins
- School of Science, Auckland University of Technology, Auckland, 1142, New Zealand
| | - Ordom B Huot
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27606, USA
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Kathleen M Martin
- Department of Entomology and Plant Pathology, Auburn University, AL, 36849, USA
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27606, USA
| |
Collapse
|
9
|
Whitfield AE, Huot OB, Martin KM, Kondo H, Dietzgen RG. Plant rhabdoviruses-their origins and vector interactions. Curr Opin Virol 2018; 33:198-207. [PMID: 30500682 DOI: 10.1016/j.coviro.2018.11.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023]
Abstract
Classical plant rhabdoviruses infect monocot and dicot plants, have unsegmented negative-sense RNA genomes and have been taxonomically classified in the genera Cytorhabdovirus and Nucleorhabdovirus. These viruses replicate in their hemipteran vectors and are transmitted in a circulative-propagative mode and virus infection persists for the life of the insect. Based on the discovery of numerous novel rhabdoviruses in arthropods during metagenomic studies and extensive phylogenetic analyses of the family Rhabdoviridae, it is hypothesized that plant-infecting rhabdoviruses are derived from insect viruses. Analyses of viral gene function in plants and insects is beginning to reveal conserved and unique biology for these plant viruses in the two diverse hosts. New tools for insect molecular biology and infectious clones for plant rhabdoviruses are increasing our understanding of the lifestyles of these viruses.
Collapse
Affiliation(s)
- Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States.
| | - Ordom Brian Huot
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Kathleen M Martin
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Hideki Kondo
- Institute of Plant Science and Resource, Okayama University, Kurashiki, 710-0046, Japan
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
10
|
Distribution and genetic variability of alfalfa dwarf virus, a cytorhabdovirus associated with alfalfa dwarf disease in Argentina. Virus Genes 2018; 54:612-615. [PMID: 29730762 DOI: 10.1007/s11262-018-1563-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/27/2018] [Indexed: 10/17/2022]
Abstract
In 2010, a novel cytorhabdovirus named alfalfa dwarf virus (ADV) was detected for the first time in lucerne crops in Argentina showing dwarfism, in mixed infections with several other viruses. ADV appears to be endemic to Argentina and has not been reported elsewhere. In this study, we have investigated the genetic variability of ADV based on the complete nucleoprotein (N) gene of 13 isolates from different lucerne-growing regions in Argentina. Phylogenetic and sequence identity analyses showed that all ADV isolates are closely related and have not diverged more than 1% in the N gene despite geographical separation. These data provide further evidence that ADV is new to science and emerged and spread very recently. A total of 43 single-nucleotide polymorphisms were identified between the ADV isolates studied. Analysis of N gene ORF sequence revealed a mutational bias, with more transitions than transversions. In all cases, the ratio of non-synonymous/synonymous nucleotide changes was < 1, indicating that ADV N gene is under predominantly purifying selection.
Collapse
|
11
|
Anderson G, Jang C, Wang R, Goodin M. Mapping the nuclear localization signal in the matrix protein of potato yellow dwarf virus. J Gen Virol 2018; 99:743-752. [PMID: 29616892 DOI: 10.1099/jgv.0.001051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The ability of the matrix (M) protein of potato yellow dwarf virus (PYDV) to remodel nuclear membranes is controlled by a di-leucine motif located at residues 223 and 224 of its primary structure. This function can be uncoupled from that of its nuclear localization signal (NLS), which is controlled primarily by lysine and arginine residues immediately downstream of the LL motif. In planta localization of green fluorescent protein fusions, bimolecular fluorescence complementation assays with nuclear import receptor importin-α1 and yeast-based nuclear import assays provided three independent experimental approaches to validate the authenticity of the M-NLS. The carboxy terminus of M is predicted to contain a nuclear export signal, which is belived to be functional, given the ability of M to bind the Arabidopsis nuclear export receptor 1 (XPO1). The nuclear shuttle activity of M has implications for the cell-to-cell movement of PYDV nucleocapsids, based upon its interaction with the N and Y proteins.
Collapse
Affiliation(s)
- Gavin Anderson
- Anderson Craft Ales, 1030 Elias St, London, ON N5W 3P6, Canada
| | - Chanyong Jang
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Renyuan Wang
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Michael Goodin
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
12
|
Yang X, Huang J, Liu C, Chen B, Zhang T, Zhou G. Rice Stripe Mosaic Virus, a Novel Cytorhabdovirus Infecting Rice via Leafhopper Transmission. Front Microbiol 2017; 7:2140. [PMID: 28101087 PMCID: PMC5210121 DOI: 10.3389/fmicb.2016.02140] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 12/19/2016] [Indexed: 01/08/2023] Open
Abstract
A new rice viral disease exhibiting distinct symptoms-yellow stripes, mosaic and twisted tips on leaves-was found in China. Electron microscopy of infected leaf cells revealed the presence of bacilliform virions and electron-translucent granular-fibrillar viroplasm in the cytoplasm. The enveloped viral particles were 300 to 375 nm long and 45 to 55 nm wide. The leafhopper Recilia dorsalis was able to transmit the virus to rice seedlings, which subsequently exhibited symptoms similar to those observed in fields. The complete genome of the virus was obtained by small-RNA deep sequencing and reverse transcription-PCR product sequencing. The anti-genome contains seven open reading frames (ORFs). The deduced amino acids of ORF1, ORF5, and ORF7 are, respectively, homologous to the nucleocapsid protein (N), glycoprotein (G), and large polymerase protein (L) of known rhabdoviruses. The predicted product of ORF2 is identified as a phosphoprotein (P) based on its multiple potential phosphorylation sites and 12.6 to 21.0% amino acid (aa) identities with the P proteins of plant rhabdoviruses. The product of ORF4 is presumed to be the viral matrix (M) protein for it shares 10.3 to 14.3% aa identities with those of other rhabdoviruses. The above five products were confirmed as the viral structural proteins by SDS-PAGE and aa sequencing analyses of purified virus preparation. ORF3 and ORF6 are considered to encode two nonstructural proteins with unknown functions. Phylogenetic analysis based on protein N, G, and L amino acid sequences indicated that the isolated virus, which we have tentatively named Rice stripe mosaic virus (RSMV), is a new species in the genus Cytorhabdovirus. To our knowledge, RSMV is the only cytorhabdovirus naturally infecting rice and the first reported leafhopper-transmitted cytorhabdovirus. Our surveys of rice fields indicate that RSMV occurs frequently in Guangdong Province, China. Although the disease incidence is low at present, it might become serious with the vector insect population increasing.
Collapse
Affiliation(s)
- Xin Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural UniversityGuangdong, China
| | - Jilei Huang
- Instrumental Analysis and Research Center, South China Agricultural UniversityGuangdong, China
| | - Chuanhe Liu
- Instrumental Analysis and Research Center, South China Agricultural UniversityGuangdong, China
| | - Biao Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural UniversityGuangdong, China
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural UniversityGuangdong, China
| | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural UniversityGuangdong, China
| |
Collapse
|