1
|
Horsburgh BA, Walker GJ, Kelleher A, Lloyd AR, Bull RA, Giallonardo FD. Next-Generation Sequencing Methods for Near-Real-Time Molecular Epidemiology of HIV and HCV. Rev Med Virol 2024; 34:e70001. [PMID: 39428551 DOI: 10.1002/rmv.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/22/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
The World Health Organisation has set targets of reducing the transmission of new hepatitis C (HCV) infections by 90%, and ending human immunodeficiency virus-1 (HIV) as a public health threat, by 2030. To achieve this, efficient and timely viral surveillance, and effective public health interventions, are required. Traditional epidemiological methods are largely dependent on the recognition of incident cases with symptomatic illness; acute HIV and HCV infections are commonly asymptomatic, which may lead to delays in the recognition of such new infections. Instead, for these viruses, molecular epidemiology may improve the detection of, and response to, clusters of viral transmission. Molecular epidemiology using historical datasets has highlighted key populations that may have benefitted from a timely intervention. Similar analyses performed on contemporary samples are needed to underpin the 2030 targets, but this requires the generation of a cohesive dataset of viral genome sequences in near-real-time. To generate such data, methodologies harnessing next-generation sequencing (NGS) should be utilised. Here we discuss the opportunity presented by NGS for public health surveillance of HIV and HCV, and discuss three methods that can generate sequences for such analysis. These include full-length genome amplification, utilised for analysis of HCV in the research space; tiling PCR, which was the method of choice for many diagnostic laboratories in the SARS-CoV-2 pandemic; and bait-capture hybridisation, which has been utilised in local HIV outbreaks. These techniques could be applied for near-real-time HIV and HCV surveillance, informing public health strategies that will be key to achieving 2030 targets.
Collapse
Affiliation(s)
- Bethany A Horsburgh
- Faculty of Medicine, The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Gregory J Walker
- Virology Research Laboratory, Serology and Virology Division (SAViD), Prince of Wales Hospital, Randwick, Australia
- Faculty of Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Anthony Kelleher
- Faculty of Medicine, The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Andrew R Lloyd
- Faculty of Medicine, The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Rowena A Bull
- Faculty of Medicine, The Kirby Institute, University of New South Wales, Sydney, Australia
- Faculty of Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | | |
Collapse
|
2
|
Armenia D, Carioti L, Micheli V, Bon I, Allice T, Bonura C, Bruzzone B, Bracchitta F, Cerutti F, Giammanco GM, Stefanelli F, Bonifacio MA, Bertoli A, Vatteroni M, Ibba G, Novazzi F, Lipsi MR, Cuomo N, Vicenti I, Ceccherini-Silberstein F, Rossetti B, Bezenchek A, Saladini F, Zazzi M, Santoro MM. Comparison of Different HIV-1 Resistance Interpretation Tools for Next-Generation Sequencing in Italy. Viruses 2024; 16:1422. [PMID: 39339898 PMCID: PMC11437420 DOI: 10.3390/v16091422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) is gradually replacing Sanger sequencing for HIV genotypic drug resistance testing (GRT). This work evaluated the concordance among different NGS-GRT interpretation tools in a real-life setting. METHODS Routine NGS-GRT data were generated from viral RNA at 11 Italian laboratories with the AD4SEQ HIV-1 Solution v2 commercial kit. NGS results were interpreted by the SmartVir system provided by the kit and by two online tools (HyDRA Web and Stanford HIVdb). NGS-GRT was considered valid when the coverage was >100 reads (100×) at each PR/RT/IN resistance-associated position listed in the HIVdb 9.5.1 algorithm. RESULTS Among 629 NGS-GRT, 75.2%, 74.2%, and 70.9% were valid according to SmartVir, HyDRA Web, and HIVdb. Considering at least two interpretation tools, 463 (73.6%) NGS-GRT had a valid coverage for resistance analyses. The proportion of valid samples was affected by viremia <10,000-1000 copies/mL and non-B subtypes. Mutations at an NGS frequency >10% showed fair concordance among different interpretation tools. CONCLUSION This Italian survey on NGS resistance testing suggests that viremia levels and HIV subtype affect NGS-GRT coverage. Within the current routine method for NGS-GRT, only mutations with frequency >10% seem reliably detected across different interpretation tools.
Collapse
Affiliation(s)
- Daniele Armenia
- Departmental Faculty, UniCamillus, Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Luca Carioti
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Valeria Micheli
- Laboratory of Clinical Microbiology, Virology and Bioemergencies, ASST Fatebenefratelli Sacco-University of Milan, 20157 Milan, Italy
| | - Isabella Bon
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Tiziano Allice
- Laboratory of Microbiology and Virology, Amedeo di Savoia Hospital, 10149 Turin, Italy
| | - Celestino Bonura
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROSAMI), Azienda Ospedaliera Universitaria Policlinico “P. Giaccone”-University of Palermo, 90127 Palermo, Italy
| | - Bianca Bruzzone
- Hygiene Unit, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Fiorenza Bracchitta
- Laboratory of Clinical Microbiology, Virology and Bioemergencies, ASST Fatebenefratelli Sacco-University of Milan, 20157 Milan, Italy
| | - Francesco Cerutti
- Laboratory of Microbiology and Virology, Amedeo di Savoia Hospital, 10149 Turin, Italy
| | - Giovanni Maurizio Giammanco
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROSAMI), Azienda Ospedaliera Universitaria Policlinico “P. Giaccone”-University of Palermo, 90127 Palermo, Italy
| | | | - Maria Addolorata Bonifacio
- Section of Experimental and Clinical Pathology, Department of Precision and Regenerative Medicine and Jonic Area, University of Bari, 70121 Bari, Italy
| | - Ada Bertoli
- Virology Unit, Polyclinic of “Tor Vergata”, 00133 Rome, Italy
| | | | - Gabriele Ibba
- Microbiology and Virology Unit, Diagnostic Department, AOU Sassari, 07100 Sassari, Italy
| | - Federica Novazzi
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Maria Rosaria Lipsi
- Microbiology and Virology Unit, Policlinico Riuniti Foggia Hospital, 71121 Foggia, Italy
| | - Nunzia Cuomo
- U.O.C. Microbiologia e Virologia, P.O. “D.Cotugno”-AO dei Colli, 80100 Napoli, Italy
| | - Ilaria Vicenti
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | | | - Barbara Rossetti
- Infectious Disease Department, USL SUDEST, Toscana, Misericordia Hospital, 58100 Grosseto, Italy
| | - Antonia Bezenchek
- IPRO-InformaPRO S.r.l., 00152 Rome, Italy
- EuResist Network GEIE, 00152 Rome, Italy
| | - Francesco Saladini
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Maria Mercedes Santoro
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
3
|
Foury A, Saunier A, Taverniers A, Pinet N, Josse T, Jeanmaire E, Emilie C, Schvoerer E, Hartard C. The relevance of ultradeep sequencing for low HIV-1 viral loads and proviruses in the clinical setting. J Med Virol 2024; 96:e29870. [PMID: 39185639 DOI: 10.1002/jmv.29870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/12/2024] [Accepted: 08/10/2024] [Indexed: 08/27/2024]
Abstract
Improving the therapeutic management of HIV-positive persons is a major public health issue and includes better detection of drug resistance mutations (DRMs). The aim of this study was (i) to explore DRMs in HIV-1-positive persons presenting a blood viral load (VL) < 1000 genomes copies (gc)/mL, including the analyze of cerebrospinal fluid (CSF) and HIV-DNA from peripheral blood mononuclear cells using ultradeep sequencing (UDS) and (ii), to evaluate how these DRMs could influence the clinical practices. For each patient (n = 12), including five low-VL patients (i.e., <1000 gc/mL), HIV-1 UDS targeting the protease, reverse transcriptase and integrase genes was performed on plasma, proviral DNA, and CSF when available. Sequencing discordances or failures were mostly found in samples from low-VL patients. A 5% UDS cut-off allowed to increase the sensitivity to detect DRMs in different compartments, excepted in CSF. Patients with the highest viral quasispecies heterogeneity were naïve of treatment or presented a medical history suggesting low selection pressure or virological failures. When analyzing compartmentalization and following-up patients: low-frequency variants (LFVs) were responsible for 47% (n = 8) and 76% (n = 13) of changes in drug resistance interpretation, respectively. In such cases, we conclude that UDS is a robust technique, which still could be improved by increase the RNA and/or DNA extraction in low-VL samples to detect LFVs. Further studies are needed to define the impact of LFVs on antiretroviral treatments. At last, when considering a DRM, the use of mutational load would probably be more suitable than frequencies.
Collapse
Affiliation(s)
- Alizée Foury
- Faculté de Médecine de Nancy, Université de Lorraine, Vandoeuvre-lès-Nancy, France
- Laboratoire de Virologie, CHRU Nancy, Vandoeuvre-lès-Nancy, France
| | - Aline Saunier
- Laboratoire de Virologie, CHRU Nancy, Vandoeuvre-lès-Nancy, France
| | | | - Nathalie Pinet
- Laboratoire de Virologie, CHRU Nancy, Vandoeuvre-lès-Nancy, France
| | - Thomas Josse
- Laboratoire de Virologie, CHRU Nancy, Vandoeuvre-lès-Nancy, France
| | - Eliette Jeanmaire
- Service Universitaire des Maladies Infectieuses et Tropicales, CHRU Nancy, Vandoeuvre-lès-Nancy, France
| | - Caroline Emilie
- Service Universitaire des Maladies Infectieuses et Tropicales, CHRU Nancy, Vandoeuvre-lès-Nancy, France
| | - Evelyne Schvoerer
- Laboratoire de Virologie, CHRU Nancy, Vandoeuvre-lès-Nancy, France
- CNRS, LCPME, CHRU, Université de Lorraine, Villers-lès-Nancy, France
| | - Cédric Hartard
- Laboratoire de Virologie, CHRU Nancy, Vandoeuvre-lès-Nancy, France
- CNRS, LCPME, CHRU, Université de Lorraine, Villers-lès-Nancy, France
| |
Collapse
|
4
|
Zhang J, Sun B, Sheng Z, Ding X, Fan Q, Huang G, Guo Z, Zhong P, Liao L, Xing H, Xia Y, Chai C, Jiang J. Full-Spectrum Surveillance of Pre-Treatment HIV Drug Resistance in Southeastern China. Pharmaceuticals (Basel) 2024; 17:900. [PMID: 39065750 PMCID: PMC11279794 DOI: 10.3390/ph17070900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
HIV drug resistance compromises the ability of anti-retroviral therapy (ART) to suppress viral replication, resulting in treatment failure. This study investigates the prevalence of pre-treatment drug resistance (PDR) in newly diagnosed individuals in a prosperous city (Wenzhou) in Southeastern China. A cross-sectional investigation was carried out among 473 newly diagnosed ART-naive HIV-1-infected individuals between January and December 2022. The protease-reverse transcriptase (PR-RT) region and integrase (IN) region of HIV-1 were amplified by two separately nested PCRs, followed by sequencing. Drug resistance mutations (DRMs) and drug resistance to nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), protease inhibitors (PIs) and integrase strand transfer inhibitors (INSTIs) were analyzed. The PDR prevalence was 6.5% [95% CI: 4.4-9.1] for any anti-retroviral drug, 0.9% [95% CI: 0.3-2.3] for NRTIs, 4.1% [95% CI: 2.5-6.5] for NNRTIs, 1.8% [95% CI: 0.8-3.6] for PIs and 0.5% [95% CI: 0.1-1.8] for INSTIs. According to the subtyping results of the PR-RT region, 11 different subtypes and 31 unique recombinant forms (URFs) were found. CRF07_BC was the dominant subtype (53.7%, 233/434), followed by CRF01_AE (25.3%, 110/434). V179D (1.6%) and K103N (1.4%) were the most predominant types of NNRTI DRMs. Q58E (1.2%) and M184V (0.7%) were the most frequent PI DRMs and NRTI DRMs, respectively. The INSTI-related DRMs Y143S (causes high-level resistance to RAL) and G163K (causes low-level resistance to EVG and RAL) were found in one patient each. Given the relatively high PDR prevalence of NNRTI (4.1%), non-NNRTI-based ART may be preferred in the future. It is recommended to include genotypic resistance testing before starting ART in regions where feasible.
Collapse
Affiliation(s)
- Jiafeng Zhang
- Department of HIV/AIDS Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (J.Z.); (X.D.); (Q.F.); (G.H.); (Z.G.); (Y.X.)
| | - Baochang Sun
- Department of Microbiological Test, Wenzhou Municipal Center for Disease Control and Prevention, Wenzhou 325001, China;
| | - Zihang Sheng
- School of Laboratory Medicine and School of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China;
| | - Xiaobei Ding
- Department of HIV/AIDS Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (J.Z.); (X.D.); (Q.F.); (G.H.); (Z.G.); (Y.X.)
| | - Qin Fan
- Department of HIV/AIDS Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (J.Z.); (X.D.); (Q.F.); (G.H.); (Z.G.); (Y.X.)
| | - Gang Huang
- Department of HIV/AIDS Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (J.Z.); (X.D.); (Q.F.); (G.H.); (Z.G.); (Y.X.)
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Zhihong Guo
- Department of HIV/AIDS Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (J.Z.); (X.D.); (Q.F.); (G.H.); (Z.G.); (Y.X.)
| | - Ping Zhong
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai 200336, China;
| | - Lingjie Liao
- Division of Virology and Immunology, National Center for AIDS/STD Control and Prevention (NCAIDS), Beijing 102206, China; (L.L.); (H.X.)
| | - Hui Xing
- Division of Virology and Immunology, National Center for AIDS/STD Control and Prevention (NCAIDS), Beijing 102206, China; (L.L.); (H.X.)
| | - Yan Xia
- Department of HIV/AIDS Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (J.Z.); (X.D.); (Q.F.); (G.H.); (Z.G.); (Y.X.)
| | - Chengliang Chai
- Department of HIV/AIDS Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (J.Z.); (X.D.); (Q.F.); (G.H.); (Z.G.); (Y.X.)
| | - Jianmin Jiang
- Department of HIV/AIDS Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (J.Z.); (X.D.); (Q.F.); (G.H.); (Z.G.); (Y.X.)
| |
Collapse
|
5
|
Jenkins F, Le T, Farhat R, Pinto A, Anzari A, Bonsall D, Golubchik T, Bowden R, Lee FJ, van Hal SJ. Validation of an HIV whole genome sequencing method for HIV drug resistance testing in an Australian clinical microbiology laboratory. J Med Virol 2023; 95:e29273. [PMID: 38050831 DOI: 10.1002/jmv.29273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023]
Abstract
Detection of HIV drug resistance (HIVDR) is vital to successful anti-retroviral therapy (ART). HIVDR testing to determine drug-resistance mutations is routinely performed in Australia to guide ART choice in newly diagnosed people living with HIV or in cases of treatment failure. In 2022, our clinical microbiology laboratory sought to validate a next-generation sequencing (NGS)-based HIVDR assay to replace the previous Sanger-sequencing (SS)-based ViroSeq. NGS solutions for HIVDR offer higher throughput, lower costs and higher sensitivity for variant detection. We sought to validate the previously described low-cost probe-based NGS method (veSEQ-HIV) for whole-genome recovery and HIVDR-testing in a diagnostic setting. veSEQ-HIV displayed 100% and 98% accuracy in major and minor mutation detection, respectively, and 100% accuracy of subtyping (provided > 1000 mapped reads were obtained). Pairwise comparison exhibited low inter-and intrarun variability across the whole-genome (Jaccard index [J] = 0.993; J = 0.972) and the Pol gene (J = 0.999; J = 0.999), respectively. veSEQ-HIV met all our pre-set criteria based on WHO recommendations and successfully replaced ViroSeq in our laboratory. Scaling-down veSEQ-HIV to a limited batch size and sequencing on Illumina iSeq. 100, allowed easy implementation of the assay into the workflow of a small sequencing laboratory with minimal staff and equipment and the ability to meet clinically relevant test turn-around times. As HIVDR-testing moves from SS- to NGS-based methods and new ART drugs come to market (particularly those with targets outside the Pol region), whole-genome recovery using veSEQ-HIV provides a robust, cost-effective and "future-proof" NGS method for HIVDR-testing.
Collapse
Affiliation(s)
- Frances Jenkins
- Department of Infectious Diseases and Microbiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Thomas Le
- Department of Infectious Diseases and Microbiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Rima Farhat
- Department of Infectious Diseases and Microbiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Angie Pinto
- Department of Infectious Diseases and Microbiology, Royal Prince Alfred Hospital, Sydney, Australia
- The Kirby Institute, UNSW Australia, Sydney, Australia
| | - Azim Anzari
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - David Bonsall
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Tanya Golubchik
- Department of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Rory Bowden
- The Walter and Eliza Hall Institute of Medical Research, Advanced Genomics Facility, Melbourne, Australia
| | - Frederick J Lee
- Department of Clinical Immunology and Allergy, Royal Prince Alfred Hospital, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Sebastiaan J van Hal
- Department of Infectious Diseases and Microbiology, Royal Prince Alfred Hospital, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
6
|
Li M, Song C, Hu J, Dong A, Kang R, Feng Y, Xing H, Ruan Y, Shao Y, Hong K, Liao L. Impact of pretreatment low-abundance HIV-1 drug resistance on virological failure after 1 year of antiretroviral therapy in China. J Antimicrob Chemother 2023; 78:2743-2751. [PMID: 37769159 DOI: 10.1093/jac/dkad297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023] Open
Abstract
OBJECTIVES To assess the impact of pretreatment low-abundance HIV drug-resistant variants (LA-DRVs) on virological outcomes among ART-naive HIV-1-infected Chinese people who initiated ART. METHODS A nested case-control study was conducted among HIV-1-infected individuals who had pretreatment drug resistance (PDR) genotypic results. Cases were defined as individuals with virological failure (HIV-1 RNA viral load ≥1000 copies/mL) after 1 year of ART, and controls were individuals from the same cohort whose viral load was less than 1000 copies/mL. Next-generation sequencing was used to identify low-abundance PDR mutations at detection thresholds of 10%, 2% and 1%. The mutant load was calculated by multiplying the abundance of HIV-1 drug-resistant variants by the pretreatment viral load. The impact of pretreatment low-abundance mutations on virological failure was estimated in logistic regression models. RESULTS Participants (43 cases and 100 controls) were included in this study for the analysis. The proportion of participants with PDR was higher in cases than in controls at different detection thresholds (44.2% versus 22.0%, P = 0.007 at 10% threshold; 58.1% versus 31.0%, P = 0.002 at 2% threshold; 90.7% versus 69.0%, P = 0.006 at 1% threshold). Compared with participants without PDR, participants with ≥10% detectable PDR mutations were associated with an increased risk of virological failure (adjusted OR 8.0, 95% CI 2.4-26.3, P = 0.001). Besides this, individuals with pretreatment LA-DRVs (2%-9% abundance range) had 5-fold higher odds of virological failure (adjusted OR 5.0, 95% CI 1.3-19.6, P = 0.021). Furthermore, LA-DRVs at 2%-9% abundance resistant to NRTIs and mutants with abundance of ≥10% resistant to NNRTIs had a 4-fold and 8-fold risk of experiencing virological failure, respectively. It was also found that a mutant load of more than 1000 copies/mL was predictive of virological failure (adjusted OR 7.2, 95% CI 2.5-21.1, P = 0.0003). CONCLUSIONS Low-abundance PDR mutations ranging from 2% to 9% of abundance can increase the risk of virological failure. Further studies are warranted to define a clinically relevant threshold of LA-DRVs and the role of NRTI LA-DRVs.
Collapse
Affiliation(s)
- Miaomiao Li
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Chang Song
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Jing Hu
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Aobo Dong
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Ruihua Kang
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Yi Feng
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Hui Xing
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Yuhua Ruan
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Yiming Shao
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Kunxue Hong
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Lingjie Liao
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| |
Collapse
|
7
|
Botha JC, Byott M, Spyer MJ, Grant PR, Gärtner K, Chen WX, Burton J, Bamford A, Waters LJ, Giaquinto C, Turkova A, Vavro CL, Nastouli E. Sensitive HIV-1 DNA Pol Next-Generation Sequencing for the Characterisation of Archived Antiretroviral Drug Resistance. Viruses 2023; 15:1811. [PMID: 37766218 PMCID: PMC10536450 DOI: 10.3390/v15091811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Modern HIV-1 treatment effectively suppresses viral amplification in people living with HIV. However, the persistence of HIV-1 DNA as proviruses integrated into the human genome remains the main barrier to achieving a cure. Next-generation sequencing (NGS) offers increased sensitivity for characterising archived drug resistance mutations (DRMs) in HIV-1 DNA for improved treatment options. In this study, we present an ultra-sensitive targeted PCR assay coupled with NGS and a robust pipeline to characterise HIV-1 DNA DRMs from buffy coat samples. Our evaluation supports the use of this assay for Pan-HIV-1 analyses with reliable detection of DRMs across the HIV-1 Pol region. We propose this assay as a new valuable tool for monitoring archived HIV-1 drug resistance in virologically suppressed individuals, especially in clinical trials investigating novel therapeutic approaches.
Collapse
Affiliation(s)
- Johannes C. Botha
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK (E.N.)
- Advanced Pathogen Diagnostics Unit, University College London Hospitals NHS Trust, London NW1 2PG, UK
| | - Matthew Byott
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK (E.N.)
- Advanced Pathogen Diagnostics Unit, University College London Hospitals NHS Trust, London NW1 2PG, UK
| | - Moira J. Spyer
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK (E.N.)
- Advanced Pathogen Diagnostics Unit, University College London Hospitals NHS Trust, London NW1 2PG, UK
| | | | - Kathleen Gärtner
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK (E.N.)
| | | | - James Burton
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Alasdair Bamford
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK (E.N.)
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- Medical Research Council Clinical Trials Unit, University College London, London WC1E 6BT, UK
| | - Laura J. Waters
- Central and North West London NHS Foundation Trust, Mortimer Market, London WC1E 6JB, UK
| | - Carlo Giaquinto
- Department of Women and Child Health, University of Padova, 35122 Padova, Italy
- Fondazione Penta ETS, 35127 Padova, Italy
| | - Anna Turkova
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- Medical Research Council Clinical Trials Unit, University College London, London WC1E 6BT, UK
| | | | - Eleni Nastouli
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK (E.N.)
- Advanced Pathogen Diagnostics Unit, University College London Hospitals NHS Trust, London NW1 2PG, UK
| |
Collapse
|
8
|
Chen H, Hu J, Song C, Li M, Zhou Y, Dong A, Kang R, Hao J, Zhang J, Liu X, Li D, Feng Y, Liao L, Ruan Y, Xing H, Shao Y. Molecular transmission network of pretreatment drug resistance among human immunodeficiency virus-positive individuals and the impact of virological failure on those who received antiretroviral therapy in China. Front Med (Lausanne) 2022; 9:965836. [PMID: 36106325 PMCID: PMC9464856 DOI: 10.3389/fmed.2022.965836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/10/2022] [Indexed: 11/14/2022] Open
Abstract
Objectives We investigated the prevalence of pretreatment drug resistance (PDR), the molecular transmission network among HIV-positive individuals, and the impact of virological failure on those who received antiretroviral therapy (ART) in China. Methods Based on the World Health Organization (WHO) surveillance guidelines for PDR, a baseline survey and follow-up were conducted in 2018 and 2021, respectively. Demographic information and plasma samples were obtained from all participants. HIV pol gene region sequences were used to analyze the PDR and molecular transmission networks using the Stanford HIV database algorithm and HIV-TRACE, respectively. This study assessed the odds ratios (OR) of PDR to virological failure (viral load ≥ 50 copies/mL) after 3 years of ART using multivariable logistic regression. Results Of the 4,084 individuals, 370 (9.1%) had PDR. The prevalence of PDR to non-nucleoside reverse transcriptase inhibitors (5.2%) was notably higher than that to nucleoside reverse transcriptase inhibitors (0.7%, p < 0.001), protease inhibitors (3.0%, p < 0.001), and multidrug resistance (0.3%, p < 0.001). A total of 1,339 (32.8%) individuals from 361 clusters were enrolled in the molecular transmission network. Of the 361 clusters, 22 included two or more individuals with PDR. The prevalence of virological failure among HIV-positive individuals after 3 years of ART without PDR, those with PDR to Chinese listed drugs, and those with PDR to other drugs was 7.9, 14.3, and 12.6%, respectively. Compared with that in HIV-positive individuals without PDR, virological failure after 3 years of ART was significantly higher (OR: 2.02, 95% confidence interval (CI): 1.25–3.27) and not significantly different (OR: 1.72, 95% CI: 0.87–3.43) in individuals with PDR to Chinese listed drugs and those with PDR to other drugs, respectively. Missed doses in the past month were significantly associated with virological failure (OR, 2.82; 95% CI: 4.08–5.89). Conclusion The overall prevalence of PDR was close to a high level and had an impact on virological failure after 3 years of ART. Moreover, HIV drug-resistant strains were transmitted in the molecular transmission network. These results illustrate the importance of monitoring PDR and ensuring virological suppression through drug adherence.
Collapse
|
9
|
Maruapula D, Seatla KK, Morerinyane O, Molebatsi K, Giandhari J, de Oliveira T, Musonda RM, Leteane M, Mpoloka SW, Rowley CF, Moyo S, Gaseitsiwe S. Low-frequency HIV-1 drug resistance mutations in antiretroviral naïve individuals in Botswana. Medicine (Baltimore) 2022; 101:e29577. [PMID: 35838991 PMCID: PMC11132386 DOI: 10.1097/md.0000000000029577] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/27/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Individuals living with human immunodeficiency virus (HIV) who experience virological failure (VF) after combination antiretroviral therapy (cART) initiation may have had low-frequency drug resistance mutations (DRMs) at cART initiation. There are no data on low-frequency DRMs among cART-naïve HIV-positive individuals in Botswana. METHODS We evaluated the prevalence of low-frequency DRMs among cART-naïve individuals previously sequenced using Sanger sequencing. The generated pol amplicons were sequenced by next-generation sequencing. RESULTS We observed low-frequency DRMs (detected at <20% in 33/103 (32%) of the successfully sequenced individuals, of whom four also had mutations detected at >20%. K65R was the most common low-frequency DRM detected in 8 individuals. Eighty-two of the 103 individuals had follow-up viral load data while on cART. Twenty-seven of the 82 individuals harbored low-frequency DRMs. Only 12 of 82 individuals experienced VF. The following low-frequency DRMs were observed in four individuals experiencing VF: K65R, K103N, V108I, and Y188C. No statistically significant difference was observed in the prevalence of low-frequency DRMs between individuals experiencing VF (4/12) and those not experiencing VF (23/70) (P = .97). However, individuals with non-nucleoside reverse transcriptase inhibitors-associated low-frequency DRMs were 2.68 times more likely to experience VF (odds ratio, 2.68; 95% confidential interval, 0.4-13.9) compared with those without (P = .22). CONCLUSION Next-generation sequencing was able to detect low-frequency DRMs in this cohort in Botswana, but these DRMs did not contribute significantly to VF.
Collapse
Affiliation(s)
- Dorcas Maruapula
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Kaelo K. Seatla
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- School of Allied Health Professions, University of Botswana, Gaborone, Botswana
| | | | - Kesaobaka Molebatsi
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Statistics, University of Botswana, Gaborone, Botswana
| | - Jennifer Giandhari
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Rosemary M. Musonda
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Melvin Leteane
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Sununguko W Mpoloka
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Christopher F. Rowley
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
10
|
HIV-1 Drug Resistance Assay Using Ion Torrent Next Generation Sequencing and On-Instrument End-to-End Analysis Software. J Clin Microbiol 2022; 60:e0025322. [PMID: 35699434 DOI: 10.1128/jcm.00253-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-1 antiretroviral therapy management requires sequencing the protease, reverse transcriptase, and integrase portions of the HIV-1 pol gene. Most resistance testing is performed with Sanger sequencing, which has limited ability to detect minor variants. Next generation sequencing (NGS) platforms enable variant detection at frequencies as low as 1% allowing for earlier detection of resistance and modification of therapy. Implementation of NGS assays in the clinical laboratory is hindered by complicated assay design, cumbersome wet bench procedures, and the complexity of data analysis and bioinformatics. We developed a complete NGS protocol and companion analysis and reporting pipeline using AmpliSeq multiplex PCR, Ion Torrent S5 XL sequencing, and Stanford's HIVdb resistance algorithm. Implemented as a Torrent Suite software plugin, the pipeline runs automatically after sequencing. An optimum variant frequency threshold of 10% was determined by comparing Sanger sequences of archived samples from ViroSeq testing, resulting in a sensitivity of 98.2% and specificity of 99.0%. The majority (91%) of drug resistance mutations were detected by both Sanger and NGS, with 1.7% only by Sanger and 7.3% only by NGS. Variant calls were highly reproducible and there was no cross-reactivity to VZV, HBV, CMV, EBV, and HCV. The limit of detection was 500 copies/mL. The NGS assay performance was comparable to ViroSeq Sanger sequencing and has several advantages, including a publicly available end-to-end analysis and reporting plugin. The assay provides a straightforward path for implementation of NGS for HIV drug resistance testing in the laboratory setting without additional investment in bioinformatics infrastructure and resources.
Collapse
|
11
|
Fu H, Zhang C, Wang Y, Chen G. Advances in multiplex molecular detection technologies for harmful algae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43745-43757. [PMID: 35449333 DOI: 10.1007/s11356-022-20269-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
As the eutrophication of natural water bodies becomes more and more serious, the frequency of outbreaks of harmful algal blooms (HABs) mainly formed by harmful algae also increases. HABs have become a global ecological problem that poses a serious threat to human health and food safety. Therefore, it is extremely important to establish methods that can rapidly detect harmful algal species for early warning of HABs. The traditional morphology-based identification method is inefficient and inaccurate. In recent years, the rapid development of molecular biology techniques has provided new ideas for the detection of harmful algae and has become a research hotspot. The current molecular detection methods for harmful algal species mainly include fluorescence in situ hybridization, sandwich hybridization, and quantitative PCR (qPCR), but all of these methods can only detect single harmful algal species at a time. The establishment of methods for the simultaneous detection of multiple harmful algal species has become a new trend in the development of molecular detection technology because various harmful algal species may coexist in the natural water environment. The established molecular techniques for multiple detections of harmful algae mainly include gene chip, multiplex PCR, multiplex qPCR, massively parallel sequencing, antibody chip, and multiple isothermal amplification. This review mainly focuses on the principles, advantages and disadvantages, application progress, and application prospects of these multiple detection technologies, aiming at providing effective references not only for the fisheries but also for economic activities, environment, and human health.
Collapse
Affiliation(s)
- Hanyu Fu
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai, 264209, People's Republic of China
| | - Chunyun Zhang
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai, 264209, People's Republic of China
| | - Yuanyuan Wang
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai, 264209, People's Republic of China
| | - Guofu Chen
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai, 264209, People's Republic of China.
- School of Environment, Harbin Institute of Technology, Harbin, 150009, People's Republic of China.
| |
Collapse
|
12
|
Montejano R, Dominguez-Dominguez L, de Miguel R, Rial-Crestelo D, Esteban-Cantos A, Aranguren-Rivas P, García-Álvarez M, Alejos B, Bisbal O, Santacreu-Guerrero M, Hernando A, Bermejo-Plaza L, Cadiñanos J, Mayoral M, Castro JM, Moreno V, Martin-Carbonero L, Rodés B, Delgado R, Rubio R, Pulido F, Arribas JR. Detection of archived lamivudine-associated resistance mutations in virologically suppressed, lamivudine-experienced HIV-infected adults by different genotyping techniques (GEN-PRO study). J Antimicrob Chemother 2021; 76:3263-3271. [PMID: 34459889 DOI: 10.1093/jac/dkab323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/04/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Previously selected lamivudine resistance-associated mutations (RAMs) may remain archived within the proviral HIV-DNA. OBJECTIVES To evaluate the ability of proviral DNA genotyping to detect lamivudine RAMs in HIV-1 virologically suppressed participants; the correlation between Sanger and next generation sequencing (NGS); and predictive factors for detection of lamivudine RAMs in proviral DNA. METHODS Cross-sectional study of participants on stable antiretroviral therapy and suppressed for ≥1 year. Analysis of proviral DNA was performed by Sanger sequencing in whole blood and by NGS in PBMCs. RESULTS We analysed samples from 102 subjects (52 with and 50 without lamivudine RAMs in historical plasma RNA-genotypes). Among participants with previous lamivudine resistance, Sanger sequencing detected RAMs in 26.9%. Detection rates significantly increased using NGS: 47.9%, 64.6%, 75% and 87.5% with the 20%, 10%, 5% and 1% thresholds, respectively. As for participants without historical lamivudine resistance, Sanger detected the RAMs in 1/49 (2%), and NGS (5% threshold) in 8/45 (17.8%). Multivariate models fitted to the whole population revealed that having a history of lamivudine resistance was a risk factor for detection of lamivudine RAMs by NGS. Among participants with historical lamivudine resistance, multivariate analysis showed that a longer time since HIV diagnosis was associated with persistence of archived mutations by NGS at thresholds of >10% [OR 1.10 (95% CI: 1.00-1.24)] and >5% [OR 1.16 (95% CI: 1.02-1.32)]. CONCLUSIONS Proviral DNA Sanger sequencing does not detect the majority of historical lamivudine RAMs. NGS increases the sensitivity of detection at lower thresholds, although the relevance of these minority populations with lamivudine RAMs needs further evaluation.
Collapse
Affiliation(s)
- Rocio Montejano
- Infectious Diseases Unit, Internal Medicine Department, Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Lourdes Dominguez-Dominguez
- HIV Unit, Internal Medicine Department, Hospital Universitario 12 de Octubre-Imas12, Av. de Córdoba, s/n, 28041 Madrid, Spain
| | - Rosa de Miguel
- Infectious Diseases Unit, Internal Medicine Department, Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - David Rial-Crestelo
- HIV Unit, Internal Medicine Department, Hospital Universitario 12 de Octubre-Imas12, Av. de Córdoba, s/n, 28041 Madrid, Spain
| | - Andrés Esteban-Cantos
- Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Paula Aranguren-Rivas
- Microbiology Department, Hospital Universitario 12 de Octubre-Imas12, Av. de Córdoba, s/n, 28041 Madrid, Spain
| | - Mónica García-Álvarez
- Microbiology Department, Hospital Universitario 12 de Octubre-Imas12, Av. de Córdoba, s/n, 28041 Madrid, Spain
| | - Belén Alejos
- Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
| | - Otilia Bisbal
- HIV Unit, Internal Medicine Department, Hospital Universitario 12 de Octubre-Imas12, Av. de Córdoba, s/n, 28041 Madrid, Spain
| | - Mireia Santacreu-Guerrero
- HIV Unit, Internal Medicine Department, Hospital Universitario 12 de Octubre-Imas12, Av. de Córdoba, s/n, 28041 Madrid, Spain
| | - Asunción Hernando
- HIV Unit, Internal Medicine Department, Hospital Universitario 12 de Octubre-Imas12, Av. de Córdoba, s/n, 28041 Madrid, Spain
| | - Laura Bermejo-Plaza
- HIV Unit, Internal Medicine Department, Hospital Universitario 12 de Octubre-Imas12, Av. de Córdoba, s/n, 28041 Madrid, Spain
| | - Julen Cadiñanos
- Infectious Diseases Unit, Internal Medicine Department, Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Mario Mayoral
- HIV Unit, Internal Medicine Department, Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261 28046, Madrid, Spain
| | - Juan Miguel Castro
- HIV Unit, Internal Medicine Department, Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261 28046, Madrid, Spain
| | - Victoria Moreno
- HIV Unit, Internal Medicine Department, Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261 28046, Madrid, Spain
| | - Luz Martin-Carbonero
- HIV Unit, Internal Medicine Department, Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261 28046, Madrid, Spain
| | - Berta Rodés
- Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Rafael Delgado
- Microbiology Department, Hospital Universitario 12 de Octubre-Imas12, Av. de Córdoba, s/n, 28041 Madrid, Spain
| | - Rafael Rubio
- HIV Unit, Internal Medicine Department, Hospital Universitario 12 de Octubre-Imas12, Av. de Córdoba, s/n, 28041 Madrid, Spain
| | - Federico Pulido
- HIV Unit, Internal Medicine Department, Hospital Universitario 12 de Octubre-Imas12, Av. de Córdoba, s/n, 28041 Madrid, Spain
| | - José Ramón Arribas
- Infectious Diseases Unit, Internal Medicine Department, Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| |
Collapse
|
13
|
Ayitewala A, Ssewanyana I, Kiyaga C. Next generation sequencing based in-house HIV genotyping method: validation report. AIDS Res Ther 2021; 18:64. [PMID: 34600538 PMCID: PMC8487565 DOI: 10.1186/s12981-021-00390-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Abstract
Background HIV genotyping has had a significant impact on the care and treatment of HIV/AIDS. At a clinical level, the test guides physicians on the choice of treatment regimens. At the surveillance level, it informs policy on consolidated treatment guidelines and microbial resistance control strategies. Until recently, the conventional test has utilized the Sanger sequencing (SS) method. Unlike Next Generation Sequencing (NGS), SS is limited by low data throughput and the inability of detecting low abundant drug-resistant variants. NGS can improve sensitivity and quantitatively identify low-abundance variants; in addition, it has the potential to improve efficiency as well as lowering costs when samples are batched. Despite the NGS benefits, its utilization in clinical drug resistance profiling is faced with mixed reactions. These are largely based on a lack of a consensus regarding the quality control strategy. Nonetheless, transitional views suggest validating the method against the gold-standard SS. Therefore, we present a validation report of an NGS-based in-house HIV genotyping method against the SS method in Uganda. Results Since there were no established proficiency test panels for NGS-based HIV genotyping, 15 clinical plasma samples for routine care were utilized. The use of clinical samples allowed for accuracy and precision studies. The workflow involved four main steps; viral RNA extraction, targeted amplicon generation, amplicon sequencing and data analysis. Accuracy of 98% with an average percentage error of 3% was reported for the NGS based assay against the SS platform demonstrating similar performance. The coefficient of variation (CV) findings for both the inter-run and inter-personnel precision showed no variability (CV ≤ 0%) at the relative abundance of ≥ 20%. For both inter-run and inter-personnel, a variation that affected the precision was observed at 1% frequency. Overall, for all the frequencies, CV registered a small range of (0–2%). Conclusion The NGS-based in-house HIV genotyping method fulfilled the minimum requirements that support its utilization for drug resistance profiling in a clinical setting of a low-income country. For more inclusive quality control studies, well-characterized wet panels need to be established. Supplementary Information The online version contains supplementary material available at 10.1186/s12981-021-00390-8.
Collapse
|
14
|
Casadellà M, Santos JR, Noguera-Julian M, Micán-Rivera R, Domingo P, Antela A, Portilla J, Sanz J, Montero-Alonso M, Navarro J, Masiá M, Valcarce-Pardeiro N, Ocampo A, Pérez-Martínez L, Pasquau J, Vivancos MJ, Imaz A, Carmona-Oyaga P, Muñoz-Medina L, Villar-García J, Barrufet P, Paredes R. Primary resistance to integrase strand transfer inhibitors in Spain using ultrasensitive HIV-1 genotyping. J Antimicrob Chemother 2021; 75:3517-3524. [PMID: 32929472 DOI: 10.1093/jac/dkaa349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/03/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Transmission of resistance mutations to integrase strand transfer inhibitors (INSTIs) in HIV-infected patients may compromise the efficacy of first-line antiretroviral regimens currently recommended worldwide. Continued surveillance of transmitted drug resistance (TDR) is thus warranted. OBJECTIVES We evaluated the rates and effects on virological outcomes of TDR in a 96 week prospective multicentre cohort study of ART-naive HIV-1-infected subjects initiating INSTI-based ART in Spain between April 2015 and December 2016. METHODS Pre-ART plasma samples were genotyped for integrase, protease and reverse transcriptase resistance using Sanger population sequencing or MiSeq™ using a ≥ 20% mutant sensitivity cut-off. Those present at 1%-19% of the virus population were considered to be low-frequency variants. RESULTS From a total of 214 available samples, 173 (80.8%), 210 (98.1%) and 214 (100.0%) were successfully amplified for integrase, reverse transcriptase and protease genes, respectively. Using a Sanger-like cut-off, the overall prevalence of any TDR, INSTI-, NRTI-, NNRTI- and protease inhibitor (PI)-associated mutations was 13.1%, 1.7%, 3.8%, 7.1% and 0.9%, respectively. Only three (1.7%) subjects had INSTI TDR (R263K, E138K and G163R), while minority variants with integrase TDR were detected in 9.6% of subjects. There were no virological failures during 96 weeks of follow-up in subjects harbouring TDR as majority variants. CONCLUSIONS Transmitted INSTI resistance remains rare in Spain and, to date, is not associated with virological failure to first-line INSTI-based regimens.
Collapse
Affiliation(s)
- M Casadellà
- IrsiCaixa AIDS Research Institute, Badalona, Catalonia, Spain
| | - J R Santos
- Lluita contra la SIDA Foundation, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | | | | - P Domingo
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - A Antela
- Infectious Diseases Unit, Santiago de Compostela Clinical University Hospital, Santiago de Compostela, Spain
| | - J Portilla
- Hospital General Universitario de Alicante, Alicante, Spain
| | - J Sanz
- University Hospital de La Princesa, Madrid, Spain
| | - M Montero-Alonso
- Infectious Diseases Unit, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - J Navarro
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - M Masiá
- Infectious Diseases Unit, Elche University General Hospital, Elche, Spain
| | | | - A Ocampo
- HIV Unit, Hospital Álvaro Cunqueiro, Vigo, Spain
| | - L Pérez-Martínez
- Infectious Diseases Area, Hospital San Pedro-CIBIR, Logroño, Spain
| | - J Pasquau
- University Hospital Virgen de las Nieves, Granada, Spain
| | - M J Vivancos
- Infectious Diseases Unit, Ramón y Cajal Hospital, Madrid, Spain
| | - A Imaz
- HIV and STI Unit, Infectious Diseases Department, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - P Carmona-Oyaga
- Infectious Diseases Unit, Donostia University Hospital, San Sebastián, Spain
| | | | - J Villar-García
- Infectious Diseases Department, Hospital del Mar - IMIM, Barcelona, Spain
| | - P Barrufet
- Infectious Diseases Unit, Mataró Hospital, Mataró, Spain
| | - R Paredes
- IrsiCaixa AIDS Research Institute, Badalona, Catalonia, Spain.,Lluita contra la SIDA Foundation, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | |
Collapse
|
15
|
Li M, Liang S, Zhou C, Chen M, Liang S, Liu C, Zuo Z, Liu L, Feng Y, Song C, Xing H, Ruan Y, Shao Y, Liao L. HIV Drug Resistance Mutations Detection by Next-Generation Sequencing during Antiretroviral Therapy Interruption in China. Pathogens 2021; 10:pathogens10030264. [PMID: 33668946 PMCID: PMC7996606 DOI: 10.3390/pathogens10030264] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 11/24/2022] Open
Abstract
Patients with antiretroviral therapy interruption have a high risk of virological failure when re-initiating antiretroviral therapy (ART), especially those with HIV drug resistance. Next-generation sequencing may provide close scrutiny on their minority drug resistance variant. A cross-sectional study was conducted in patients with ART interruption in five regions in China in 2016. Through Sanger and next-generation sequencing in parallel, HIV drug resistance was genotyped on their plasma samples. Rates of HIV drug resistance were compared by the McNemar tests. In total, 174 patients were included in this study, with a median 12 (interquartile range (IQR), 6–24) months of ART interruption. Most (86.2%) of them had received efavirenz (EFV)/nevirapine (NVP)-based first-line therapy for a median 16 (IQR, 7–26) months before ART interruption. Sixty-one (35.1%) patients had CRF07_BC HIV-1 strains, 58 (33.3%) CRF08_BC and 35 (20.1%) CRF01_AE. Thirty-four (19.5%) of the 174 patients were detected to harbor HIV drug-resistant variants on Sanger sequencing. Thirty-six (20.7%), 37 (21.3%), 42 (24.1%), 79 (45.4%) and 139 (79.9) patients were identified to have HIV drug resistance by next-generation sequencing at 20% (v.s. Sanger, p = 0.317), 10% (v.s. Sanger, p = 0.180), 5% (v.s. Sanger, p = 0.011), 2% (v.s. Sanger, p < 0.001) and 1% (v.s. Sanger, p < 0.001) of detection thresholds, respectively. K65R was the most common minority mutation, of 95.1% (58/61) and 93.1% (54/58) in CRF07_BC and CRF08_BC, respectively, when compared with 5.7% (2/35) in CRF01_AE (p < 0.001). In 49 patients that followed-up a median 10 months later, HIV drug resistance mutations at >20% frequency such as K103N, M184VI and P225H still existed, but with decreased frequencies. The prevalence of HIV drug resistance in ART interruption was higher than 15% in the survey. Next-generation sequencing was able to detect more minority drug resistance variants than Sanger. There was a sharp increase in minority drug resistance variants when the detection threshold was below 5%.
Collapse
Affiliation(s)
- Miaomiao Li
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (M.L.); (Z.Z.); (L.L.); (Y.F.); (C.S.); (H.X.); (Y.R.); (Y.S.)
| | - Shujia Liang
- Guangxi Center for Disease Control and Prevention, Nanning 530028, China;
| | - Chao Zhou
- Chongqing Center for Disease Control and Prevention, Chongqing 400042, China;
| | - Min Chen
- Yunnan Center for Disease Control and Prevention, Kunming 650022, China;
| | - Shu Liang
- Sichuan Center for Disease Control and Prevention, Chengdu 610041, China;
| | - Chunhua Liu
- Henan Center for Disease Control and Prevention, Zhengzhou 450016, China;
| | - Zhongbao Zuo
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (M.L.); (Z.Z.); (L.L.); (Y.F.); (C.S.); (H.X.); (Y.R.); (Y.S.)
| | - Lei Liu
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (M.L.); (Z.Z.); (L.L.); (Y.F.); (C.S.); (H.X.); (Y.R.); (Y.S.)
| | - Yi Feng
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (M.L.); (Z.Z.); (L.L.); (Y.F.); (C.S.); (H.X.); (Y.R.); (Y.S.)
| | - Chang Song
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (M.L.); (Z.Z.); (L.L.); (Y.F.); (C.S.); (H.X.); (Y.R.); (Y.S.)
| | - Hui Xing
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (M.L.); (Z.Z.); (L.L.); (Y.F.); (C.S.); (H.X.); (Y.R.); (Y.S.)
| | - Yuhua Ruan
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (M.L.); (Z.Z.); (L.L.); (Y.F.); (C.S.); (H.X.); (Y.R.); (Y.S.)
| | - Yiming Shao
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (M.L.); (Z.Z.); (L.L.); (Y.F.); (C.S.); (H.X.); (Y.R.); (Y.S.)
| | - Lingjie Liao
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (M.L.); (Z.Z.); (L.L.); (Y.F.); (C.S.); (H.X.); (Y.R.); (Y.S.)
- Correspondence:
| |
Collapse
|
16
|
Andersson E, Ambikan A, Brännström J, Aralaguppe SG, Yilmaz A, Albert J, Neogi U, Sönnerborg A. High-throughput sequencing reveals a high prevalence of pretreatment HIV-1 drug resistance in Sweden. AIDS 2021; 35:227-234. [PMID: 33394670 DOI: 10.1097/qad.0000000000002740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES HIV-1 pretreatment drug resistance (PDR) is a global concern. Our aim was to evaluate high-throughput sequencing (HTS) for HIV-1 resistance testing and describe PDR in Sweden, where 75% of diagnosed individuals are foreign-born. DESIGN Cross-sectional study. METHODS Individuals entering HIV-1 care in Sweden 2017 to March 2019 (n = 400) were included if a viremic sample was available (n = 220). HTS was performed using an in-house assay. Drug resistance mutations (DRMs) (based on Stanford HIV DB vs. 8.7) at levels 1-5%, 5-19% and at least 20% of the viral population were described. Results from HTS and routine Sanger sequencing were compared. RESULTS HTS was successful in 88% of patients, 92% when viral load was at least 1000 copies/ml. DRMs at any level in protease and/or reverse transcriptase were detected in 95 individuals (49%), whereas DRMs at least 20% in 35 (18%) individuals. DRMs at least 20% correlated well to findings in routine Sanger sequencing. Protease/reverse transcriptase (PR/RT) DRMs at least 20% were predicted by treatment exposure; adjusted OR 9.28 (95% CI 2.24-38.43; P = 0.002) and origin in Asia; adjusted OR 20.65 (95% CI 1.66-256.24; P = 0.02). Nonnucleoside reverse transcriptase inhibitor (NNRTI) DRMs at least 20% were common (16%) and over-represented in individuals originating from sub-Saharan Africa or Asia. Low-level integrase strand transfer inhibitor (INSTI) DRMs less than 20% were detected in 15 individuals (8%) with no association with INSTI exposure. CONCLUSION Our HTS can efficiently detect PDR and findings of DRMs at least 20% compare well to routine Sanger sequencing. The high prevalence of PDR was because of NNRTI DRMs and associated with migration from areas with emerging PDR.
Collapse
Affiliation(s)
- Emmi Andersson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute
- Department of Clinical Microbiology, Karolinska University Hospital
| | - Anoop Ambikan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute
| | - Johanna Brännström
- Division of Infection and Dermatology, Department of Medicine Huddinge, Karolinska Institute
- Department of Infectious Diseases/Venhälsan, South Hospital, Stockholm
| | - Shambhu G Aralaguppe
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute
| | - Aylin Yilmaz
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg
| | - Jan Albert
- Department of Clinical Microbiology, Karolinska University Hospital
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute
- Department of Clinical Microbiology, Karolinska University Hospital
- Division of Infection and Dermatology, Department of Medicine Huddinge, Karolinska Institute
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
Maggiolo F, Bandera A, Bonora S, Borderi M, Calcagno A, Cattelan A, Cingolani A, Gianotti N, Lichtner M, Lo Caputo S, Madeddu G, Maggi P, Marchetti GC, Maserati R, Nozza S, Rusconi S, Zazzi M, Di Biagio A. Enhancing care for people living with HIV: current and future monitoring approaches. Expert Rev Anti Infect Ther 2020; 19:443-456. [PMID: 33054479 DOI: 10.1080/14787210.2021.1823217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Antiretroviral therapy (ART) is the most significant advance in the medical management of HIV-1 infection. Given the fact that HIV cannot be eradicated from the body, ART has to be indefinitely maintained. New approaches need to be defined for monitoring HIV-infected individuals (PLWHIV), including clinical, virologic, immunological parameters and also ways to collect individual points of view and quality of life. AREAS COVERED We discuss which tests may be used to improve the management of PLWHIV and respond to a comprehensive health demand. EXPERT OPINION Viral load and CD4 counts are well-validated outcome measures and we still need them, but they do not completely depict the health status of PLWHIV. We need to better understand and to apply to clinical practice what happens in sanctuaries, what is the role of HIV DNA, what is the meaning of low-level viremia. Most of these questions do not yet have a definitive response. Further, we need to understand how to modify these variables in order to improve outcomes.Similar points may be raised for immunological measures and for tests exploring the tolerability of drugs. The goal must be the evolution from a viro/immunologic-based to a comprehensive quality-of-health-based evaluation of PLWHIV.
Collapse
Affiliation(s)
- Franco Maggiolo
- Unit of Infectious Diseases, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Alessandra Bandera
- A Infectious Disease Unit, Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico - B Department of Pathophysiology and Transplantation, University of Milan, Milano, Italy
| | - Stefano Bonora
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Marco Borderi
- Unit of Infectious Diseases, Department of Medical and Surgical Sciences, S. Orsola Hospital, "Alma Mater Studiorum" University of Bologna, Italy
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Annamaria Cattelan
- Unit of Infectious Diseases, Department of Internal Medicine, Azienda Ospedaliera and University of Padua, Italy
| | - Antonella Cingolani
- Department of Infectious Diseases, Università Cattolica, Fondazione Policlinico A. Gemelli, Roma, Italy
| | - Nicola Gianotti
- Department of Infectious Diseases, Ospedale San Raffaele, Milano, Italy
| | - Miriam Lichtner
- Dept of Public Health and Infectious Diseases - Sapienza, University of Rome, SM Goretti Hospital, Latina, Italy
| | - Sergio Lo Caputo
- Infection Disease Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia Italy
| | - Giordano Madeddu
- Unit of Infectious Diseases, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Paolo Maggi
- Department of Infectious Diseases, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Giulia Carla Marchetti
- Dept of Health Sciences, Clinic of Infectious Diseases, University of Milan, ASST Santi Paolo E Carlo, Milano, Italy
| | - Renato Maserati
- Department of Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Silvia Nozza
- Department of Infectious Diseases, Ospedale San Raffaele, Milano, Italy
| | - Stefano Rusconi
- Infectious Diseases Unit, DIBIC Luigi Sacco, University of Milan, Milano, Italy
| | - Maurizio Zazzi
- Dept of Medical Biotechnologies, University of Siena, A.O.U. Senese - Ospedale Santa Maria Alle Scotte, Siena, Italy
| | - Antonio Di Biagio
- Infectious Diseases Clinic, San Martino Hospital - IRCCS, Genoa, Italy - Department of Health Sciences, University of Genoa, Genova, Italy
| |
Collapse
|
18
|
Near point-of-care, point-mutation test to detect drug resistance in HIV-1: a validation study in a Mexican cohort. AIDS 2020; 34:1331-1338. [PMID: 32205723 DOI: 10.1097/qad.0000000000002524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Pretreatment HIV-drug resistance (PDR, HIVDR) to non-nucleoside reverse transcriptase inhibitors (NNRTIs) is increasing globally. NNRTIs continue to be used as first-line antiretroviral therapy (ART) in some communities due to the cost of dolutegravir-based ART or dolutegravir-associated adverse events. A simplified version of the oligonucleotide ligation assay (OLA) - 'OLA-Simple' - is a low-cost, near point-of-care assay that provides ready-to-use lyophilized reagents and reports HIVDR mutations as colored lines on lateral flow strips. Our objective was to design and validate OLA-Simple for a Mexican cohort. DESIGN OLA-Simple probes to detect K65R, K103N/S, Y181C, M184V, and G190A were optimized for HIV Mexican sequences. Sixty clinical plasma specimens were analyzed by OLA-Simple by technicians blinded to Illumina-MiSeq sequences, and HIVDR results were compared. METHODS Plasma RNA was tested using OLA-Simple kits. OLA-Simple lateral flow strips were read by in-house software, and were classified as mutant or wild-type at each codon. The comparison of results by OLA-Simple and Miseq was used to generate receiver-operating characteristic curves. RESULTS OLA-Simple PCR amplified 59 of 60 specimens and successfully genotyped 287 of 295 codons, with eight of 295 (2.7%) indeterminate results. Compared to MiSeq, OLA-Simple gave five of 295 (1.7%) false-positive and four of 295 (1.4%) false-negative results. Excluding indeterminate results, OLA-Simple classified mutant with an accuracy of 97.4 and 98.8% when using thresholds at 10 and 25% mutant within an individual's HIV quasispecies, respectively. CONCLUSIONS Compared to MiSeq, OLA-Simple detected HIVDR with high sensitivity and accuracy. OLA-Simple could expand access to affordable and rapid HIVDR testing to guide appropriate ART choices in populations using NNRTI-based ART.
Collapse
|
19
|
Multi-Laboratory Comparison of Next-Generation to Sanger-Based Sequencing for HIV-1 Drug Resistance Genotyping. Viruses 2020; 12:v12070694. [PMID: 32605062 PMCID: PMC7411816 DOI: 10.3390/v12070694] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 11/16/2022] Open
Abstract
Next-generation sequencing (NGS) is increasingly used for HIV-1 drug resistance genotyping. NGS methods have the potential for a more sensitive detection of low-abundance variants (LAV) compared to standard Sanger sequencing (SS) methods. A standardized threshold for reporting LAV that generates data comparable to those derived from SS is needed to allow for the comparability of data from laboratories using NGS and SS. Ten HIV-1 specimens were tested in ten laboratories using Illumina MiSeq-based methods. The consensus sequences for each specimen using LAV thresholds of 5%, 10%, 15%, and 20% were compared to each other and to the consensus of the SS sequences (protease 4-99; reverse transcriptase 38-247). The concordance among laboratories' sequences at different thresholds was evaluated by pairwise sequence comparisons. NGS sequences generated using the 20% threshold were the most similar to the SS consensus (average 99.6% identity, range 96.1-100%), compared to 15% (99.4%, 88.5-100%), 10% (99.2%, 87.4-100%), or 5% (98.5%, 86.4-100%). The average sequence identity between laboratories using thresholds of 20%, 15%, 10%, and 5% was 99.1%, 98.7%, 98.3%, and 97.3%, respectively. Using the 20% threshold, we observed an excellent agreement between NGS and SS, but significant differences at lower thresholds. Understanding how variation in NGS methods influences sequence quality is essential for NGS-based HIV-1 drug resistance genotyping.
Collapse
|
20
|
Noguera-Julian M, Lee ER, Shafer RW, Kantor R, Ji H. Dry Panels Supporting External Quality Assessment Programs for Next Generation Sequencing-Based HIV Drug Resistance Testing. Viruses 2020; 12:v12060666. [PMID: 32575676 PMCID: PMC7354622 DOI: 10.3390/v12060666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022] Open
Abstract
External quality assessment (EQA) is a keystone element in the validation and implementation of next generation sequencing (NGS)-based HIV drug resistance testing (DRT). Software validation and evaluation is a critical element in NGS EQA programs. While the development, sharing, and adoption of wet lab protocols is coupled with the increasing access to NGS technology worldwide, rendering it easy to produce NGS data for HIV-DRT, bioinformatic data analysis remains a bottleneck for most of the diagnostic laboratories. Several computational tools have been made available, via free or commercial sources, to automate the conversion of raw NGS data into an actionable clinical report. Although different software platforms yield equivalent results when identical raw NGS datasets are analyzed for variations at higher abundance, discrepancies arise when variations at lower frequencies are considered. This implies that validation and performance assessment of the bioinformatics tools applied in NGS HIV-DRT is critical, and the origins of the observed discrepancies should be determined. Well-characterized reference NGS datasets with ground truth on the genotype composition at all examined loci and the exact frequencies of HIV variations they may harbor, so-called dry panels, would be essential in such cases. The strategic design and construction of such panels are challenging but imperative tasks in support of EQA programs for NGS-based HIV-DRT and the validation of relevant bioinformatics tools. Here, we present criteria that can guide the design of such dry panels, which were discussed in the Second International Winnipeg Symposium themed for EQA strategies for NGS HIVDR assays.
Collapse
Affiliation(s)
- Marc Noguera-Julian
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, s/n, Catalonia, 08196 Badalona, Spain
- Chair in AIDS and Related Illnesses, Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic, Central University of Catalonia, Can Baumann. Ctra. de Roda, 70, 08500 Vic, Spain
- Correspondence:
| | - Emma R. Lee
- National HIV and Retrovirology Laboratories, National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (E.R.L.); (H.J.)
| | | | - Rami Kantor
- Division of Infectious Diseases, Brown University Alpert Medical School, Providence, RI 02903, USA;
| | - Hezhao Ji
- National HIV and Retrovirology Laboratories, National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (E.R.L.); (H.J.)
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
21
|
Howison M, Coetzer M, Kantor R. Measurement error and variant-calling in deep Illumina sequencing of HIV. Bioinformatics 2020; 35:2029-2035. [PMID: 30407489 DOI: 10.1093/bioinformatics/bty919] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/21/2018] [Accepted: 11/06/2018] [Indexed: 01/23/2023] Open
Abstract
MOTIVATION Next-generation deep sequencing of viral genomes, particularly on the Illumina platform, is increasingly applied in HIV research. Yet, there is no standard protocol or method used by the research community to account for measurement errors that arise during sample preparation and sequencing. Correctly calling high and low-frequency variants while controlling for erroneous variants is an important precursor to downstream interpretation, such as studying the emergence of HIV drug-resistance mutations, which in turn has clinical applications and can improve patient care. RESULTS We developed a new variant-calling pipeline, hivmmer, for Illumina sequences from HIV viral genomes. First, we validated hivmmer by comparing it to other variant-calling pipelines on real HIV plasmid datasets. We found that hivmmer achieves a lower rate of erroneous variants, and that all methods agree on the frequency of correctly called variants. Next, we compared the methods on an HIV plasmid dataset that was sequenced using Primer ID, an amplicon-tagging protocol, which is designed to reduce errors and amplification bias during library preparation. We show that the Primer ID consensus exhibits fewer erroneous variants compared to the variant-calling pipelines, and that hivmmer more closely approaches this low error rate compared to the other pipelines. The frequency estimates from the Primer ID consensus do not differ significantly from those of the variant-calling pipelines. AVAILABILITY AND IMPLEMENTATION hivmmer is freely available for non-commercial use from https://github.com/kantorlab/hivmmer. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mark Howison
- Watson Institute for International and Public Affairs
| | - Mia Coetzer
- Division of Infectious Diseases, The Alpert Medical School, Brown University, Providence, RI, USA
| | - Rami Kantor
- Division of Infectious Diseases, The Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
22
|
Next-Generation Sequencing for HIV Drug Resistance Testing: Laboratory, Clinical, and Implementation Considerations. Viruses 2020; 12:v12060617. [PMID: 32516949 PMCID: PMC7354449 DOI: 10.3390/v12060617] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 01/01/2023] Open
Abstract
Higher accessibility and decreasing costs of next generation sequencing (NGS), availability of commercial kits, and development of dedicated analysis pipelines, have allowed an increasing number of laboratories to adopt this technology for HIV drug resistance (HIVDR) genotyping. Conventional HIVDR genotyping is traditionally carried out using population-based Sanger sequencing, which has a limited capacity for reliable detection of variants present at intra-host frequencies below a threshold of approximately 20%. NGS has the potential to improve sensitivity and quantitatively identify low-abundance variants, improving efficiency and lowering costs. However, some challenges exist for the standardization and quality assurance of NGS-based HIVDR genotyping. In this paper, we highlight considerations of these challenges as related to laboratory, clinical, and implementation of NGS for HIV drug resistance testing. Several sources of variation and bias occur in each step of the general NGS workflow, i.e., starting material, sample type, PCR amplification, library preparation method, instrument and sequencing chemistry-inherent errors, and data analysis options and limitations. Additionally, adoption of NGS-based HIVDR genotyping, especially for clinical care, poses pressing challenges, especially for resource-poor settings, including infrastructure and equipment requirements and cost, logistic and supply chains, instrument service availability, personnel training, validated laboratory protocols, and standardized analysis outputs. The establishment of external quality assessment programs may help to address some of these challenges and is needed to proceed with NGS-based HIVDR genotyping adoption.
Collapse
|
23
|
Dimeglio C, Raymond S, Nicot F, Jeanne N, Carcenac R, Lefebvre C, Izopet J. Impact of the mutational load on the virological response to a first-line rilpivirine-based regimen. J Antimicrob Chemother 2020; 74:718-721. [PMID: 30535228 DOI: 10.1093/jac/dky495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/29/2018] [Accepted: 11/08/2018] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To determine how the load of rilpivirine-resistant variants (mutational load) influences the virological response (VR) of HIV-1-infected patients to a rilpivirine-based first-line regimen. PATIENTS AND METHODS Four hundred and eighty-nine patients infected with HIV-1 whose reverse transcriptase gene had been successfully resistance genotyped using next-generation sequencing were given a first-line regimen containing rilpivirine. Variables associated with the VR at 12 months were identified using a logistic model. The results were used to build a multivariate model for each mutational load threshold and the R2 variations were analysed to identify the mutational load threshold that best predicted the VR. RESULTS The mutational load at baseline was the only variable linked to the VR at 12 months (P < 0.01). The VR at 12 months decreased from 96.9% to 83.4% when the mutational load was >1700 copies/mL and to 50% when the mutational load was > 9000 copies/mL. The threshold of 9000 copies/mL was associated with the VR at 12 months with an OR of 36.7 (95% CI 4.7-285.1). The threshold of 1700 copies/mL was associated with the VR at 12 months with an OR of 7.2 (95% CI 1.4-36.8). CONCLUSIONS There is quantifiable evidence that determining a mutational load threshold can be used to identify those patients on a first-line regimen containing rilpivirine who are at risk of virological failure. The clinical management of HIV-infected patients can be improved by evaluating the frequency of mutant variants at a threshold of < 20% together with the plasma HIV-1 viral load at the time of resistance genotyping.
Collapse
Affiliation(s)
- Chloé Dimeglio
- INSERM U1043 - CNRS UMR5282 - Toulouse University Paul Sabatier, CPTP, Toulouse, France.,CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, France
| | - Stéphanie Raymond
- INSERM U1043 - CNRS UMR5282 - Toulouse University Paul Sabatier, CPTP, Toulouse, France.,CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, France
| | - Florence Nicot
- CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, France
| | - Nicolas Jeanne
- CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, France
| | - Romain Carcenac
- CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, France
| | - Caroline Lefebvre
- CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, France
| | - Jacques Izopet
- INSERM U1043 - CNRS UMR5282 - Toulouse University Paul Sabatier, CPTP, Toulouse, France.,CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, France
| | | |
Collapse
|
24
|
Ji H, Sandstrom P, Paredes R, Harrigan PR, Brumme CJ, Avila Rios S, Noguera-Julian M, Parkin N, Kantor R. Are We Ready for NGS HIV Drug Resistance Testing? The Second "Winnipeg Consensus" Symposium. Viruses 2020; 12:E586. [PMID: 32471096 PMCID: PMC7354487 DOI: 10.3390/v12060586] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/13/2020] [Accepted: 05/25/2020] [Indexed: 12/31/2022] Open
Abstract
HIV drug resistance is a major global challenge to successful and sustainable antiretroviral therapy. Next-generation sequencing (NGS)-based HIV drug resistance (HIVDR) assays enable more sensitive and quantitative detection of drug-resistance-associated mutations (DRMs) and outperform Sanger sequencing approaches in detecting lower abundance resistance mutations. While NGS is likely to become the new standard for routine HIVDR testing, many technical and knowledge gaps remain to be resolved before its generalized adoption in regular clinical care, public health, and research. Recognizing this, we conceived and launched an international symposium series on NGS HIVDR, to bring together leading experts in the field to address these issues through in-depth discussions and brainstorming. Following the first symposium in 2018 (Winnipeg, MB Canada, 21-22 February, 2018), a second "Winnipeg Consensus" symposium was held in September 2019 in Winnipeg, Canada, and was focused on external quality assurance strategies for NGS HIVDR assays. In this paper, we summarize this second symposium's goals and highlights.
Collapse
Affiliation(s)
- Hezhao Ji
- National HIV and Retrovirology Laboratories at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada;
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Paul Sandstrom
- National HIV and Retrovirology Laboratories at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada;
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Roger Paredes
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, s/n, 08916 Badalona, Catalonia, Spain; (R.P.); (M.N.-J.)
- Infectious Diseases Department, Hospital Germans Trias i Pujol, 08916 Badalona, Catalonia, Spain
| | - P. Richard Harrigan
- Division of AIDS, Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada;
| | - Chanson J. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada;
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Santiago Avila Rios
- Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases, Mexico City 14080, Mexico;
| | - Marc Noguera-Julian
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, s/n, 08916 Badalona, Catalonia, Spain; (R.P.); (M.N.-J.)
- Chair in AIDS and Related Illnesses, Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic–Central University of Catalonia (UVic–UCC), Can Baumann, Ctra. de Roda, 70, 08500 Vic, Spain
| | - Neil Parkin
- Data First Consulting Inc., Sebastopol, CA 95472, USA;
| | - Rami Kantor
- Division of Infectious Diseases, Brown University Alpert Medical School, Providence, RI 02906, USA;
| |
Collapse
|
25
|
External Quality Assessment for Next-Generation Sequencing-Based HIV Drug Resistance Testing: Unique Requirements and Challenges. Viruses 2020; 12:v12050550. [PMID: 32429382 PMCID: PMC7291216 DOI: 10.3390/v12050550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/09/2020] [Accepted: 05/14/2020] [Indexed: 12/25/2022] Open
Abstract
Over the past decade, there has been an increase in the adoption of next generation sequencing (NGS) technologies for HIV drug resistance (HIVDR) testing. NGS far outweighs conventional Sanger sequencing as it has much higher throughput, lower cost when samples are batched and, most importantly, significantly higher sensitivities for variants present at low frequencies, which may have significant clinical implications. Despite the advantages of NGS, Sanger sequencing remains the gold standard for HIVDR testing, largely due to the lack of standardization of NGS-based HIVDR testing. One important aspect of standardization includes external quality assessment (EQA) strategies and programs. Current EQA for Sanger-based HIVDR testing includes proficiency testing where samples are sent to labs and the performance of the lab conducting such assays is evaluated. The current methods for Sanger-based EQA may not apply to NGS-based tests because of the fundamental differences in their technologies and outputs. Sanger-based genotyping reports drug resistance mutations (DRMs) data as dichotomous, whereas NGS-based HIVDR genotyping also reports DRMs as numerical data (percent abundance). Here we present an overview of the need to develop EQA for NGS-based HIVDR testing and some unique challenges that may be encountered.
Collapse
|
26
|
May S, Adamska E, Tang J. Evaluation of Vela Diagnostics HIV-1 genotyping assay on an automated next generation sequencing platform. J Clin Virol 2020; 127:104376. [PMID: 32344322 DOI: 10.1016/j.jcv.2020.104376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND Antiretroviral drug resistance testing is an integral part of the management of patients infected with HIV. The traditional Sanger sequencing method is capable of detecting drug resistant mutations (DRMs) that make up at least 10-15% of the viral quasispecies population. Newer next generation sequencing technologies have a greater sensitivity for the detection of minority variant DRMs down to around 1% of the population. OBJECTIVES Here NGS sequencing on the Vela Diagnostics automated next generation sequencing platform was evaluated and compared to the currently used Sanger sequencing method. STUDY DESIGN Sequences from both methods were obtained from a total of 79 patients, with a range of subtypes (CRF01_AE, A1/G, A1/CRF01_AE, A1/CRF02_AG, A1, A, B, C, CRF01_AG, CRF 06_CPX, D, G, B/G, CRF 57_BC/C, G/CRF 02_AG and CRF 14_BG/G) and viral loads (2.43-7 log10 copies/ml). RESULTS A high concordance was seen between the two methods for subtyping (96%) and majority variant detection (97.9%). NGS sequencing detected more variants and DRMs than Sanger sequencing. Of the 76 patient samples 86% (n = 66) had identical drug resistance reports. From the ten discrepant reports, nine had extra DRMs detected by NGS sequencing and all discrepancies were seen for NRTI and NNRTI antiviral resistance. CONCLUSIONS This study demonstrated a good performance of the NGS method for HIV-1 genotyping compared to the Sanger sequencing method for detection of majority variants, however the reproducibility for the detection of minority variants was sub-optimal. Adoption of an NGS sequencing approach has the potential to improve the clinical management of HIV-infected patients.
Collapse
Affiliation(s)
- Shoshanna May
- Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester LE1 5WW, UK
| | - Ewelina Adamska
- Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester LE1 5WW, UK
| | - Julian Tang
- Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester LE1 5WW, UK; Respiratory Sciences, University of Leicester, Leicester, UK.
| |
Collapse
|
27
|
Performance comparison of next generation sequencing analysis pipelines for HIV-1 drug resistance testing. Sci Rep 2020; 10:1634. [PMID: 32005884 PMCID: PMC6994664 DOI: 10.1038/s41598-020-58544-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/09/2020] [Indexed: 01/13/2023] Open
Abstract
Next generation sequencing (NGS) is a trending new standard for genotypic HIV-1 drug resistance (HIVDR) testing. Many NGS HIVDR data analysis pipelines have been independently developed, each with variable outputs and data management protocols. Standardization of such analytical methods and comparison of available pipelines are lacking, yet may impact subsequent HIVDR interpretation and other downstream applications. Here we compared the performance of five NGS HIVDR pipelines using proficiency panel samples from NIAID Virology Quality Assurance (VQA) program. Ten VQA panel specimens were genotyped by each of six international laboratories using their own in-house NGS assays. Raw NGS data were then processed using each of the five different pipelines including HyDRA, MiCall, PASeq, Hivmmer and DEEPGEN. All pipelines detected amino acid variants (AAVs) at full range of frequencies (1~100%) and demonstrated good linearity as compared to the reference frequency values. While the sensitivity in detecting low abundance AAVs, with frequencies between 1~20%, is less a concern for all pipelines, their specificity dramatically decreased at AAV frequencies <2%, suggesting that 2% threshold may be a more reliable reporting threshold for ensured specificity in AAV calling and reporting. More variations were observed among the pipelines when low abundance AAVs are concerned, likely due to differences in their NGS read quality control strategies. Findings from this study highlight the need for standardized strategies for NGS HIVDR data analysis, especially for the detection of minority HIVDR variants.
Collapse
|
28
|
Panpradist N, Beck IA, Vrana J, Higa N, McIntyre D, Ruth PS, So I, Kline EC, Kanthula R, Wong-On-Wing A, Lim J, Ko D, Milne R, Rossouw T, Feucht UD, Chung M, Jourdain G, Ngo-Giang-Huong N, Laomanit L, Soria J, Lai J, Klavins ED, Frenkel LM, Lutz BR. OLA-Simple: A software-guided HIV-1 drug resistance test for low-resource laboratories. EBioMedicine 2019; 50:34-44. [PMID: 31767540 PMCID: PMC6921160 DOI: 10.1016/j.ebiom.2019.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 01/21/2023] Open
Abstract
Background HIV drug resistance (HIVDR) testing can assist clinicians in selecting treatments. However, high complexity and cost of genotyping assays limit routine testing in settings where HIVDR prevalence has reached high levels. Methods The oligonucleotide ligation assay (OLA)-Simple kit was developed for detection of HIVDR against first-line non-nucleoside/nucleoside reverse transcriptase inhibitors and validated on 672 codons (168 specimens) from subtypes A, B, C, D, and AE. The kit uses dry reagents to facilitate assay setup, lateral flow devices for visual HIVDR detections, and in-house software with an interface for guiding users and analyzing results. Findings HIVDR analysis of specimens by OLA-Simple compared to Sanger sequencing revealed 99.6 ± 0.3% specificity and 98.2 ± 0.9% sensitivity, and compared to high-sensitivity assays, 99.6 ± 0.6% specificity and 86.2 ± 2.5% sensitivity, with 2.6 ± 0.9% indeterminate results. OLA-Simple was performed more rapidly compared to Sanger sequencing (<4 h vs. 35–72 h). Forty-one untrained volunteers blindly tested two specimens each with 96.8 ± 0.8% accuracy. Interpretation OLA-Simple compares favorably with HIVDR genotyping by Sanger and sensitive comparators. Instructional software enabled inexperienced, first-time users to perform the assay with high accuracy. The reduced complexity, cost, and training requirements of OLA-Simple could improve access to HIVDR testing in low-resource settings and potentially allow same-day selection of appropriate antiretroviral therapy. Fund USA National Institutes of Health R01; the Clinical and Retrovirology Research Core and the Molecular Profiling and Computational Biology Core of the UW CFAR; Seattle Children's Research Institute; UW Holloman Innovation Challenge Award; Pilcher Faculty Fellowship.
Collapse
Affiliation(s)
- Nuttada Panpradist
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Global WACh Program, Department of Global Health, University of Washington, Seattle, WA 98104, USA
| | - Ingrid A Beck
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Justin Vrana
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Nikki Higa
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - David McIntyre
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Parker S Ruth
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Departments of Electrical Engineering and Paul G. Allen Center for Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - Isaac So
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Enos C Kline
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Ruth Kanthula
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA; Medstar Georgetown University Hospital, DC, 20007, USA
| | - Annie Wong-On-Wing
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Jonathan Lim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Daisy Ko
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Ross Milne
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Theresa Rossouw
- Department of Immunology, University of Pretoria, Pretoria 0002, South Africa
| | - Ute D Feucht
- Research Centre for Maternal, Fetal, Newborn and Child Health Care Strategies, Department of Paediatrics, University of Pretoria, Pretoria 0002, South Africa; Research Unit for Maternal and Infant Health Care Strategies, South African Medical Research Council, Kalafong Hospital, Atteridgeville 0008, South Africa
| | - Michael Chung
- Department of Global Health, University of Washington, Seattle, WA 98195, USA; Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA; Department of Epidemiology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA; Department of Medicine, Aga Khan University, Nairobi, Kenya
| | - Gonzague Jourdain
- Institut de Recherche pour le Développement IRD U174 PHPT, Chiang Mai 50000, Thailand; Faculty of Associated Medical Sciences, Division of Clinical Microbiology, Chiang Mai 50200, Thailand
| | - Nicole Ngo-Giang-Huong
- Institut de Recherche pour le Développement IRD U174 PHPT, Chiang Mai 50000, Thailand; Faculty of Associated Medical Sciences, Division of Clinical Microbiology, Chiang Mai 50200, Thailand
| | - Laddawan Laomanit
- Faculty of Associated Medical Sciences, Division of Clinical Microbiology, Chiang Mai 50200, Thailand
| | - Jaime Soria
- Department of Infectious Diseases, Hospital Nacional Dos de Mayo, Av. Miguel Grau 13, Cercado de Lima 15003, Peru
| | - James Lai
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Eric D Klavins
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Departments of Electrical Engineering and Paul G. Allen Center for Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | - Lisa M Frenkel
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA; Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA; Division of Infectious Diseases, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Division of Virology, Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA; Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Barry R Lutz
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
29
|
Weber J, Volkova I, Sahoo MK, Tzou PL, Shafer RW, Pinsky BA. Prospective Evaluation of the Vela Diagnostics Next-Generation Sequencing Platform for HIV-1 Genotypic Resistance Testing. J Mol Diagn 2019; 21:961-970. [PMID: 31382033 PMCID: PMC7152740 DOI: 10.1016/j.jmoldx.2019.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/16/2019] [Accepted: 06/05/2019] [Indexed: 11/30/2022] Open
Abstract
Genotypic antiretroviral drug resistance testing is a critical component of the global efforts to control the HIV-1 epidemic. This study investigates the semiautomated, next-generation sequencing (NGS)-based Vela Diagnostics Sentosa SQ HIV-1 Genotyping Assay in a prospective cohort of HIV-1-infected patients. Two-hundred sixty-nine samples were successfully sequenced by both NGS and Sanger sequencing. Among the 261 protease/reverse transcriptase (PR/RT) sequences, a mean of 0.37 drug resistance mutations were identified by both Sanger and NGS, 0.08 by NGS alone, and 0.03 by Sanger alone. Among the 50 integrase sequences, a mean of 0.3 drug resistance mutations were detected by both Sanger and NGS, and 0.08 by NGS alone. NGS estimated higher levels of drug resistance to one or more antiretroviral drugs for 6.5% of PR/RT sequences and 4.0% of integrase sequences, whereas Sanger estimated higher levels of drug resistance for 3.8% of PR/RT sequences. Although the samples successfully sequenced by the Sentosa SQ HIV Genotyping Assay demonstrated similar predicted resistance compared with Sanger, 44% of Sentosa runs failed quality control requiring 17 additional runs. This semi-automated NGS-based assay may aid in HIV-1 genotypic drug resistance testing, though numerous quality control issues were observed when this platform was used in a clinical laboratory setting. With additional refinement, the Sentosa SQ HIV-1 Genotyping Assay may contribute to the global efforts to control HIV-1.
Collapse
Affiliation(s)
- Jenna Weber
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Ilona Volkova
- Clinical Virology Laboratory, Stanford Health Care, Stanford, California
| | - Malaya K Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Philip L Tzou
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Robert W Shafer
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Benjamin A Pinsky
- Department of Pathology, Stanford University School of Medicine, Stanford, California; Clinical Virology Laboratory, Stanford Health Care, Stanford, California; Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
30
|
MiDRM pol: A High-Throughput Multiplexed Amplicon Sequencing Workflow to Quantify HIV-1 Drug Resistance Mutations against Protease, Reverse Transcriptase, and Integrase Inhibitors. Viruses 2019; 11:v11090806. [PMID: 31480341 PMCID: PMC6784143 DOI: 10.3390/v11090806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/24/2019] [Indexed: 01/01/2023] Open
Abstract
The detection of drug resistance mutations (DRMs) in minor viral populations is of potential clinical importance. However, sophisticated computational infrastructure and competence for analysis of high-throughput sequencing (HTS) data lack at most diagnostic laboratories. Thus, we have proposed a new pipeline, MiDRMpol, to quantify DRM from the HIV-1 pol region. The gag-vpu region of 87 plasma samples from HIV-infected individuals from three cohorts was amplified and sequenced by Illumina HiSeq2500. The sequence reads were adapter-trimmed, followed by analysis using in-house scripts. Samples from Swedish and Ethiopian cohorts were also sequenced by Sanger sequencing. The pipeline was validated against the online tool PASeq (Polymorphism Analysis by Sequencing). Based on an error rate of <1%, a value of >1% was set as reliable to consider a minor variant. Both pipelines detected the mutations in the dominant viral populations, while discrepancies were observed in minor viral populations. In five HIV-1 subtype C samples, minor mutations were detected at the <5% level by MiDRMpol but not by PASeq. MiDRMpol is a computationally as well as labor efficient bioinformatics pipeline for the detection of DRM from HTS data. It identifies minor viral populations (<20%) of DRMs. Our method can be incorporated into large-scale surveillance of HIV-1 DRM.
Collapse
|
31
|
Rodrigo C, Luciani F. Dynamic interactions between RNA viruses and human hosts unravelled by a decade of next generation sequencing. Biochim Biophys Acta Gen Subj 2018; 1863:511-519. [PMID: 30528489 DOI: 10.1016/j.bbagen.2018.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 11/27/2018] [Accepted: 12/04/2018] [Indexed: 01/15/2023]
Abstract
BACKGROUND Next generation sequencing (NGS) methods have significantly contributed to a paradigm shift in genomic research for nearly a decade now. These methods have been useful in studying the dynamic interactions between RNA viruses and human hosts. SCOPE OF THE REVIEW In this review, we summarise and discuss key applications of NGS in studying the host - pathogen interactions in RNA viral infections of humans with examples. MAJOR CONCLUSIONS Use of NGS to study globally relevant RNA viral infections have revolutionized our understanding of the within host and between host evolution of these viruses. These methods have also been useful in clinical decision-making and in guiding biomedical research on vaccine design. GENERAL SIGNIFICANCE NGS has been instrumental in viral genomic studies in resolving within-host viral genomic variants and the distribution of nucleotide polymorphisms along the full-length of viral genomes in a high throughput, cost effective manner. In the future, novel advances such as long read, single molecule sequencing of viral genomes and simultaneous sequencing of host and pathogens may become the standard of practice in research and clinical settings. This will also bring on new challenges in big data analysis.
Collapse
Affiliation(s)
- Chaturaka Rodrigo
- School of Medical Sciences and Kirby Institute for Infection and Immunity, UNSW Australia, 2052, NSW, Australia
| | - Fabio Luciani
- School of Medical Sciences and Kirby Institute for Infection and Immunity, UNSW Australia, 2052, NSW, Australia.
| |
Collapse
|
32
|
Limited Marginal Utility of Deep Sequencing for HIV Drug Resistance Testing in the Age of Integrase Inhibitors. J Clin Microbiol 2018; 56:JCM.01443-18. [PMID: 30305383 PMCID: PMC6258839 DOI: 10.1128/jcm.01443-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/02/2018] [Indexed: 02/02/2023] Open
Abstract
HIV drug resistance genotyping is a critical tool in the clinical management of HIV infections. Although resistance genotyping has traditionally been conducted using Sanger sequencing, next-generation sequencing (NGS) is emerging as a powerful tool due to its ability to detect low-frequency alleles. HIV drug resistance genotyping is a critical tool in the clinical management of HIV infections. Although resistance genotyping has traditionally been conducted using Sanger sequencing, next-generation sequencing (NGS) is emerging as a powerful tool due to its ability to detect low-frequency alleles. However, the clinical value added from NGS approaches to antiviral resistance testing remains to be demonstrated. We compared the variant detection capacity of NGS versus Sanger sequencing methods for resistance genotyping in 144 drug resistance tests (105 protease-reverse transcriptase tests and 39 integrase tests) submitted to our clinical virology laboratory over a four-month period in 2016 for Sanger-based HIV drug resistance testing. NGS detected all true high-frequency drug resistance mutations (>20% frequency) found by Sanger sequencing, with greater accuracy in one instance of a Sanger-detected false positive. Freely available online NGS variant callers HyDRA and PASeq were superior to Sanger methods for interpretations of allele linkage and automated variant calling. NGS additionally detected low-frequency mutations (1 to 20% frequency) associated with higher levels of drug resistance in 30/105 (29%) protease-reverse transcriptase tests and 4/39 (10%) integrase tests. In clinical follow-up of 69 individuals for a median of 674 days, we did not find a difference in rates of virological failure between individuals with and without low-frequency mutations, although rates of virological failure were higher for individuals with drug-relevant low-frequency mutations. However, all 27 individuals who experienced virological failure reported poor adherence to their drug regimen during the preceding follow-up time, and all 19 who subsequently improved their adherence achieved viral suppression at later time points, consistent with a lack of clinical resistance. In conclusion, in a population with low antiviral resistance emergence, NGS methods detected numerous instances of minor alleles that did not result in subsequent bona fide virological failure due to antiviral resistance.
Collapse
|
33
|
Lustig Y, Sofer D, Bucris ED, Mendelson E. Surveillance and Diagnosis of West Nile Virus in the Face of Flavivirus Cross-Reactivity. Front Microbiol 2018; 9:2421. [PMID: 30369916 PMCID: PMC6194321 DOI: 10.3389/fmicb.2018.02421] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/21/2018] [Indexed: 01/20/2023] Open
Abstract
West Nile Virus (WNV) is an arthropod-borne flavivirus whose zoonotic cycle includes both mosquitoes and birds as amplifiers and humans and horses as dead-end hosts. In recent years WNV has been spreading globally and is currently endemic in Africa, The Middle East, India, Australia, central and southern Europe, and the Americas. Integrated surveillance schemes and environmental data aim to detect viral circulation and reduce the risk of infection for the human population emphasizing the critical role for One Health principles in public health. Approximately 20% of WNV infected patients develop West Nile Fever while in less than 1%, infection results in West Nile Neurological Disease. Currently, the diagnosis of WNV infection is primarily based on serology, since molecular identification of WNV RNA is unreliable due to the short viremia. The recent emergence of Zika virus epidemic in America and Asia has added another layer of complexity to WNV diagnosis due to significant cross-reactivity between several members of the Flaviviridae family such as Zika, dengue, Usutu, and West Nile viruses. Diagnosis is especially challenging in persons living in regions with flavivirus co-circulation as well as in travelers from WNV endemic countries traveling to Zika or dengue infected areas or vise-versa. Here, we review the recent studies implementing WNV surveillance of mosquitoes and birds within the One Health initiative. Furthermore, we discuss the utility of novel molecular methods, alongside traditional molecular and serological methods, in WNV diagnosis and epidemiological research.
Collapse
Affiliation(s)
- Yaniv Lustig
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan, Israel
| | - Danit Sofer
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan, Israel
| | - Efrat Dahan Bucris
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan, Israel
| | - Ella Mendelson
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan, Israel.,School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
34
|
Ji H, Enns E, Brumme CJ, Parkin N, Howison M, Lee ER, Capina R, Marinier E, Avila‐Rios S, Sandstrom P, Van Domselaar G, Harrigan R, Paredes R, Kantor R, Noguera‐Julian M. Bioinformatic data processing pipelines in support of next-generation sequencing-based HIV drug resistance testing: the Winnipeg Consensus. J Int AIDS Soc 2018; 21:e25193. [PMID: 30350345 PMCID: PMC6198166 DOI: 10.1002/jia2.25193] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/26/2018] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION Next-generation sequencing (NGS) has several advantages over conventional Sanger sequencing for HIV drug resistance (HIVDR) genotyping, including detection and quantitation of low-abundance variants bearing drug resistance mutations (DRMs). However, the high HIV genomic diversity, unprecedented large volume of data, complexity of analysis and potential for error pose significant challenges for data processing. Several NGS analysis pipelines have been developed and used in HIVDR research; however, the absence of uniformity in data processing strategies results in lack of consistency and comparability of outputs from different pipelines. To fill this gap, an international symposium on bioinformatic strategies for NGS-based HIVDR testing was held in February 2018 in Winnipeg, Canada, convening laboratory scientists, bioinformaticians and clinicians involved in four recently developed, publicly available NGS HIVDR pipelines. The goal of this symposium was to establish a consensus on effective bioinformatic strategies for NGS data management and its use for HIVDR reporting. DISCUSSION Essential functionalities of an NGS HIVDR pipeline were divided into five analytic blocks: (1) NGS read quality control (QC)/quality assurance (QA); (2) NGS read alignment and reference mapping; (3) HIV variant calling and variant QC; (4) NGS HIVDR reporting; and (5) extended data applications and additional considerations for data management. The consensuses reached among the participants on all major aspects of these blocks are summarized here. They encompass not only recommended data management and analysis strategies, but also detailed bioinformatic approaches that help ensure accuracy of the derived HIVDR analysis outputs for both research and potential clinical use. CONCLUSIONS While NGS is being adopted more broadly in HIVDR testing laboratories, data processing is often a bottleneck hindering its generalized application. The proposed standardization of NGS read QC/QA, read alignment and reference mapping, variant calling and QC, HIVDR reporting and relevant data management strategies in this "Winnipeg Consensus" may serve as a starting guideline for NGS HIVDR data processing that informs the refinement of existing pipelines and those yet to be developed. Moreover, the bioinformatic strategies presented here may apply more broadly to NGS data analysis of microbes harbouring significant genomic diversity.
Collapse
Affiliation(s)
- Hezhao Ji
- National HIV and Retrovirology Laboratories at JC Wilt Infectious Diseases Research CentrePublic Health Agency of CanadaWinnipegMBCanada
- Department of Medical Microbiology and Infectious DiseasesUniversity of ManitobaWinnipegMBCanada
| | - Eric Enns
- Bioinformatics Core at the National Microbiology LaboratoryPublic Health Agency of CanadaWinnipegMBCanada
| | | | | | - Mark Howison
- Watson Institute for International and Public AffairsBrown UniversityProvidenceRIUSA
| | - Emma R. Lee
- National HIV and Retrovirology Laboratories at JC Wilt Infectious Diseases Research CentrePublic Health Agency of CanadaWinnipegMBCanada
| | - Rupert Capina
- National HIV and Retrovirology Laboratories at JC Wilt Infectious Diseases Research CentrePublic Health Agency of CanadaWinnipegMBCanada
| | - Eric Marinier
- Bioinformatics Core at the National Microbiology LaboratoryPublic Health Agency of CanadaWinnipegMBCanada
| | - Santiago Avila‐Rios
- Centre for Research in Infectious DiseasesNational Institute of Respiratory DiseasesMexico CityMexico
| | - Paul Sandstrom
- National HIV and Retrovirology Laboratories at JC Wilt Infectious Diseases Research CentrePublic Health Agency of CanadaWinnipegMBCanada
- Department of Medical Microbiology and Infectious DiseasesUniversity of ManitobaWinnipegMBCanada
| | - Gary Van Domselaar
- Department of Medical Microbiology and Infectious DiseasesUniversity of ManitobaWinnipegMBCanada
- Bioinformatics Core at the National Microbiology LaboratoryPublic Health Agency of CanadaWinnipegMBCanada
| | - Richard Harrigan
- Division of AIDSDepartment of MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Roger Paredes
- IrsiCaixa AIDS Research InstituteBadalonaCataloniaSpain
| | - Rami Kantor
- Division of Infectious DiseasesBrown University Alpert Medical SchoolProvidenceRIUSA
| | | |
Collapse
|
35
|
Inzaule SC, Hamers RL, Noguera-Julian M, Casadellà M, Parera M, Kityo C, Steegen K, Naniche D, Clotet B, Rinke de Wit TF, Paredes R. Clinically relevant thresholds for ultrasensitive HIV drug resistance testing: a multi-country nested case-control study. Lancet HIV 2018; 5:e638-e646. [PMID: 30282603 DOI: 10.1016/s2352-3018(18)30177-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/04/2018] [Accepted: 07/13/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Implementation of ultrasensitive HIV drug resistance tests for routine clinical use is hampered by uncertainty about the clinical relevance of drug-resistant minority variants. We assessed different detection thresholds for pretreatment drug resistance to predict an increased risk of virological failure. METHODS We did a case-control study nested within a prospective multicountry cohort. Our study included patients from 12 clinical sites in Kenya, Nigeria, South Africa, Uganda, and Zambia. We defined cases as patients with virological failure (ie, those who had either viral load ≥400 copies per mL at 12 months or had switched to second-line antiretroviral therapy [ART] as a result of virological failure before 12 months) and controls as those with viral suppression (viral load <400 copies per mL at 12 months) on first-line non-nucleoside reverse transcriptase inhibitor-based antiretroviral therapy. We assessed pretreatment drug resistance with Illumina MiSeq next-generation sequencing, using the International Antiviral Society (IAS)-USA mutation list or the Stanford HIV Drug Resistance Database (HIVDB) genotypic sensitivity score. We calculated diagnostic accuracy measures and assessed the odds of virological failure using conditional logistic regression for 1%, 5%, and 10% pretreatment drug resistance detection thresholds, compared with the conventional 20% or more used in Sanger-based sequencing. FINDINGS Paired viral load results before ART and at month 12 of follow-up were available from 1896 participants. We identified 178 patients with virological failure and selected 338 matched controls. We excluded 117 patients from pretreatment drug resistance analysis; therefore, 152 cases of virological failure and 247 controls were included in the final analysis. With the IAS-USA mutation list, at a detection threshold of 20% or more in patients with pretreatment drug resistance, the adjusted odds ratio (OR) for virological failure was 9·2 (95% CI 4·2-20·1) compared with those without pretreatment drug resistance. Lowering the threshold resulted in adjusted ORs of virological failure of 6·8 (95% CI 3·3-13·9) at the 10% threshold, 7·6 (3·4-17·1) at the 5% threshold, and 4·5 (2·0-10·2) at the 1% threshold. Lowering the detection threshold from 20% improved the sensitivity (ie, ability to identify cases) from 12% (n=18) to 13% (n=19) at detection threshold 10%, to 15% (n=23) at detection threshold 5%, and to 17% (n=26) at detection threshold 1%, but caused a slight reduction in specificity (ie, ability to identify controls) from 98% (n=241) to 96% (n=238) at the 10% threshold, 96% (n=236) at the 5% threshold, and a larger reduction to 92% (n=227) at the 1% threshold. Diagnostic ORs were 5·4 (95% CI 2·1-13·9) at the 20% threshold, 3·8 (1·7-8·6) at the 10% threshold, 3·8 (1·8-8·1) at the 5% threshold, and 2·3 (1·2-4·2) at the 1% threshold. Use of the Stanford HIVDB genotypic sensitivity scores yielded similar ORs for virological failure, sensitivities, specificities, and diagnostic ORs. INTERPRETATION Ultrasensitive resistance testing for pretreatment drug resistance improved identification of people at risk of virological failure; however, this came with a reduction in our ability to identify people with viral suppression, especially at very low thresholds. Further modelling is needed to estimate the optimal trade-off for the 5% and 20% thresholds, balancing improved case finding against unnecessary regimen switching. FUNDING The Netherlands Ministry of Foreign Affairs, IrsiCaixa, and European Union.
Collapse
Affiliation(s)
- Seth C Inzaule
- Department of Global Health, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Amsterdam Institute for Global Health and Development, Amsterdam, Netherlands
| | - Raph L Hamers
- Department of Global Health, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Department of Internal Medicine, Division of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Amsterdam Institute for Global Health and Development, Amsterdam, Netherlands; Eijkman-Oxford Clinical Research Unit, Eijkman Institute for Molecular Biology, and Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Marc Noguera-Julian
- Infectious Diseases Service & IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain; Universitat de Vic-Universitat Central de Catalunya, Vic, Spain
| | - Maria Casadellà
- Infectious Diseases Service & IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Mariona Parera
- Infectious Diseases Service & IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Cissy Kityo
- Joint Clinical Research Centre, Kampala, Uganda
| | - Kim Steegen
- Department of Molecular Medicine and Haematology, University of the Witwatersrand, Johannesburg, South Africa; National Health Laboratory Service, Johannesburg, South Africa
| | - Denise Naniche
- ISGlobal, Barcelona Institute for Global Health Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Bonaventura Clotet
- Infectious Diseases Service & IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain; Universitat de Vic-Universitat Central de Catalunya, Vic, Spain
| | - Tobias F Rinke de Wit
- Department of Global Health, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Amsterdam Institute for Global Health and Development, Amsterdam, Netherlands
| | - Roger Paredes
- Infectious Diseases Service & IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain; Universitat de Vic-Universitat Central de Catalunya, Vic, Spain
| | | |
Collapse
|
36
|
Sanger and Next Generation Sequencing Approaches to Evaluate HIV-1 Virus in Blood Compartments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15081697. [PMID: 30096879 PMCID: PMC6122037 DOI: 10.3390/ijerph15081697] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 01/23/2023]
Abstract
The implementation of antiretroviral treatment combined with the monitoring of drug resistance mutations improves the quality of life of HIV-1 positive patients. The drug resistance mutation patterns and viral genotypes are currently analyzed by DNA sequencing of the virus in the plasma of patients. However, the virus compartmentalizes, and different T cell subsets may harbor distinct viral subsets. In this study, we compared the patterns of HIV distribution in cell-free (blood plasma) and cell-associated viruses (peripheral blood mononuclear cells, PBMCs) derived from ART-treated patients by using Sanger sequencing- and Next-Generation sequencing-based HIV assay. CD4+CD45RA−RO+ memory T-cells were isolated from PBMCs using a BD FACSAria instrument. HIV pol (protease and reverse transcriptase) was RT-PCR or PCR amplified from the plasma and the T-cell subset, respectively. Sequences were obtained using Sanger sequencing and Next-Generation Sequencing (NGS). Sanger sequences were aligned and edited using RECall software (beta v3.03). The Stanford HIV database was used to evaluate drug resistance mutations. Illumina MiSeq platform and HyDRA Web were used to generate and analyze NGS data, respectively. Our results show a high correlation between Sanger sequencing and NGS results. However, some major and minor drug resistance mutations were only observed by NGS, albeit at different frequencies. Analysis of low-frequency drugs resistance mutations and virus distribution in the blood compartments may provide information to allow a more sustainable response to therapy and better disease management.
Collapse
|
37
|
Rupérez M, Noguera-Julian M, González R, Maculuve S, Bellido R, Vala A, Rodríguez C, Sevene E, Paredes R, Menéndez C. HIV drug resistance patterns in pregnant women using next generation sequence in Mozambique. PLoS One 2018; 13:e0196451. [PMID: 29742132 PMCID: PMC5942837 DOI: 10.1371/journal.pone.0196451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/13/2018] [Indexed: 11/30/2022] Open
Abstract
Background Few data on HIV resistance in pregnancy are available from Mozambique, one of the countries with the highest HIV toll worldwide. Understanding the patterns of HIV drug resistance in pregnant women might help in tailoring optimal regimens for prevention of mother to child transmission of HIV (pMTCT) and antenatal care. Objectives To describe the frequency and characteristics of HIV drug resistance mutations (HIVDRM) in pregnant women with virological failure at delivery, despite pMTCT or antiretroviral therapy (ART). Methods Samples from HIV-infected pregnant women from a rural area in southern Mozambique were analysed. Only women with HIV-1 RNA >400c/mL at delivery were included in the analysis. HIVDRM were determined using MiSeq® (detection threshold 1%) at the first antenatal care (ANC) visit and at the time of delivery. Results Ninety and 60 samples were available at the first ANC visit and delivery, respectively. At first ANC, 97% of the women had HIV-1 RNA>400c/mL, 39% had CD4+ counts <350 c/mm3 and 30% were previously not on ART. Thirteen women (14%) had at least one HIVDRM of whom 70% were not on previous ART. Eight women (13%) had at least one HIVDRM at delivery. Out of 37 women with data available from the two time points, 8 (21%) developed at least one new HIVDRM during pMTCT or ART. Twenty seven per cent (53/191), 32% (44/138) and 100% (5/5) of the mutations that were present at enrolment, delivery and that emerged during pregnancy, respectively, were minority mutations (frequency <20%). Conclusions Even with ultrasensitive HIV-1 genotyping, less than 20% of women with detectable viremia at delivery had HIVDRM before initiating pMTCT or ART. This suggests that factors other than pre-existing resistance, such as lack of adherence or interruptions of the ANC chain, are also relevant to explain lack of virological suppression at the time of delivery in women receiving antiretrovirals drugs during pregnancy.
Collapse
Affiliation(s)
- María Rupérez
- Manhiça Health Research Center (CISM), Manhiça, Maputo, Mozambique
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- * E-mail:
| | - Marc Noguera-Julian
- IrsiCaixa AIDS Research Institute, Badalona, Catalonia, Spain
- Universitat de Vic-Universitat Central de Catalunya, Vic, Catalonia, Spain
| | - Raquel González
- Manhiça Health Research Center (CISM), Manhiça, Maputo, Mozambique
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
| | - Sonia Maculuve
- Manhiça Health Research Center (CISM), Manhiça, Maputo, Mozambique
| | - Rocío Bellido
- IrsiCaixa AIDS Research Institute, Badalona, Catalonia, Spain
| | - Anifa Vala
- Manhiça Health Research Center (CISM), Manhiça, Maputo, Mozambique
| | | | - Esperança Sevene
- Manhiça Health Research Center (CISM), Manhiça, Maputo, Mozambique
- Faculdade de Medicina, Universidade Eduardo Mondlane (UEM), Maputo, Mozambique
| | - Roger Paredes
- IrsiCaixa AIDS Research Institute, Badalona, Catalonia, Spain
- Universitat de Vic-Universitat Central de Catalunya, Vic, Catalonia, Spain
- Lluita Contra la Sida Foundation, HIV Unit, Hosp Univ Germans Trias i Pujol, Badalona, Catalonia, Spain
| | - Clara Menéndez
- Manhiça Health Research Center (CISM), Manhiça, Maputo, Mozambique
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
38
|
Zeng X, Lian T, Lin J, Li S, Zheng H, Cheng C, Ye J, Jing Z, Wang X, Huang W. Whole-exome sequencing improves genetic testing accuracy in pulmonary artery hypertension. Pulm Circ 2018; 8:2045894018763682. [PMID: 29480072 PMCID: PMC5858635 DOI: 10.1177/2045894018763682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Sanger sequencing, the traditional “gold standard” for mutation detection, has been wildly used in genetic testing of pulmonary artery hypertension (PAH). However, with the advent of whole-exome sequencing (WES), few studies have compared the accuracy of WES and Sanger sequencing in routine genetic testing of PAH. PAH individuals were enrolled from Fu Wai Hospital and Shanghai Pulmonary Hospital. WES was used to analyze DNA samples from 120 PAH patients whose bone morphogenetic protein receptor type 2 (BMPR2) mutation statuses had been previously studied using Sanger sequencing. The Sanger sequencing and WES agreement was 98.3% (118/120) with near-perfect agreement (κ coefficient = 0.848). There was no significant difference between the two methods on the McNemar–Bowker test (P > 0.05). Twenty-one BMPR2 mutation carriers and 99 non-carriers were detected by Sanger sequencing. Among the 21 BMPR2 carriers detected by Sanger sequencing, one variant (c.1040 T > A) was not found by WES. Among the 99 BMPR2 non-carriers, WES detected an extra mutation carrier (c.76 + 1 G > C) missed by Sanger sequencing. Both false-positive and false-negative results were highly conserved and were re-analyzed by Sanger sequencing. WES improved the accuracy of Sanger sequencing and detected 1% (1/99) false-positive and 4.8% (1/21) false-negative results of Sanger sequencing. No false-positive and false-negative results of WES were identified in our analysis. WES is non-inferior to Sanger sequencing and may play a more important role in genetic testing of PAH patients in the future.
Collapse
Affiliation(s)
- Xiaofang Zeng
- 1 Department of Cardiology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Tianyu Lian
- 2 State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Jianhui Lin
- 3 Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| | - Suqi Li
- 2 State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Haikuo Zheng
- 4 Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chunyan Cheng
- 2 State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Jue Ye
- 2 State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Zhicheng Jing
- 2 State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Xiaojian Wang
- 2 State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Wei Huang
- 1 Department of Cardiology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
39
|
A Bioinformatic Pipeline for Monitoring of the Mutational Stability of Viral Drug Targets with Deep-Sequencing Technology. Viruses 2017; 9:v9120357. [PMID: 29168754 PMCID: PMC5744132 DOI: 10.3390/v9120357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 12/24/2022] Open
Abstract
The efficient development of antiviral drugs, including efficient antiviral small interfering RNAs (siRNAs), requires continuous monitoring of the strict correspondence between a drug and the related highly variable viral DNA/RNA target(s). Deep sequencing is able to provide an assessment of both the general target conservation and the frequency of particular mutations in the different target sites. The aim of this study was to develop a reliable bioinformatic pipeline for the analysis of millions of short, deep sequencing reads corresponding to selected highly variable viral sequences that are drug target(s). The suggested bioinformatic pipeline combines the available programs and the ad hoc scripts based on an original algorithm of the search for the conserved targets in the deep sequencing data. We also present the statistical criteria for the threshold of reliable mutation detection and for the assessment of variations between corresponding data sets. These criteria are robust against the possible sequencing errors in the reads. As an example, the bioinformatic pipeline is applied to the study of the conservation of RNA interference (RNAi) targets in human immunodeficiency virus 1 (HIV-1) subtype A. The developed pipeline is freely available to download at the website http://virmut.eimb.ru/. Brief comments and comparisons between VirMut and other pipelines are also presented.
Collapse
|
40
|
Metcalfe JZ, Streicher E, Theron G, Colman RE, Allender C, Lemmer D, Warren R, Engelthaler DM. Cryptic Microheteroresistance Explains Mycobacterium tuberculosis Phenotypic Resistance. Am J Respir Crit Care Med 2017; 196:1191-1201. [PMID: 28614668 DOI: 10.1164/rccm.201703-0556oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
RATIONALE Minority drug-resistant Mycobacterium tuberculosis subpopulations can be associated with phenotypic resistance but are poorly detected by Sanger sequencing or commercial molecular diagnostic assays. OBJECTIVES To determine the role of targeted next-generation sequencing in resolving these minor variant subpopulations. METHODS We used single molecule overlapping reads (SMOR), a targeted next-generation sequencing approach that dramatically reduces sequencing error, to analyze primary cultured isolates phenotypically resistant to rifampin, fluoroquinolones, or aminoglycosides, but for which Sanger sequencing found no resistance-associated variants (RAVs) within respective resistance-determining regions (study group). Isolates also underwent single-colony selection on antibiotic-containing agar, blinded to sequencing results. As a positive control, isolates with multiple colocalizing chromatogram peaks were also analyzed (control group). MEASUREMENTS AND MAIN RESULTS Among 61 primary culture isolates (25 study group and 36 control group), SMOR described 66 (49%) and 45 (33%) of 135 total heteroresistant RAVs at frequencies less than 5% and less than 1% of the total mycobacterial population, respectively. In the study group, SMOR detected minor resistant variant subpopulations in 80% (n = 20/25) of isolates with no Sanger-identified RAVs (median subpopulation size, 1.0%; interquartile range, 0.2-3.9%). Single-colony selection on drug-containing media corroborated SMOR results for 90% (n = 18/20) of RAV-containing specimens, and the absence of RAVs in 60% (n = 3/5) of isolates. Overall, Sanger sequencing was concordant with SMOR for 77% (n = 53/69) of macroheteroresistant (5-95% total population), but only 5% of microheteroresistant (<5%) subpopulations (n = 3/66) across both groups. CONCLUSIONS Cryptic minor variant mycobacterial subpopulations exist below the resolving capability of current drug susceptibility testing methodologies, and may explain an important proportion of false-negative resistance determinations.
Collapse
Affiliation(s)
- John Z Metcalfe
- 1 Division of Pulmonary and Critical Care Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California
| | - Elizabeth Streicher
- 2 DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, and SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Grant Theron
- 2 DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, and SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Rebecca E Colman
- 3 Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, San Diego, San Diego, California; and
| | | | - Darrin Lemmer
- 4 Translational Genomics Research Institute, Flagstaff, Arizona
| | - Rob Warren
- 2 DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, and SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | | |
Collapse
|