1
|
Kuang G, Wang J, Feng Y, Wu W, Han X, Xin G, Yang W, Pan H, Yang L, Wang J, Shi M, Gao Z. The discovery of novel variants reveals the genetic diversity and potential origin of Seoul orthohantavirus. PLoS Negl Trop Dis 2024; 18:e0012478. [PMID: 39264900 PMCID: PMC11392341 DOI: 10.1371/journal.pntd.0012478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/21/2024] [Indexed: 09/14/2024] Open
Abstract
Seoul orthohantavirus (SEOV) has been identified as one of the main causative agents of hemorrhagic fever with renal syndrome (HFRS) in China. The virus was found circulating in rodent populations in almost all provinces of the country, reflecting the wide distribution of HFRS. Here, using the direct immunofluorescence assay (DFA) and real-time quantitative reverse transcription PCR (qRT-PCR) approach, we performed screening in 1784 small mammals belonging to 14 species of three orders captured in the main areas of HFRS endemicity in Yunnan province (southwestern China) and identified 37 SEOV-positive rats (36 Rattus norvegicus and 1 Rattus tanezumi). A 3-year surveillance of HFRS epidemics and dynamics of rodent reservoir density and virus prevalence implied a potential correlation between them. The subsequent meta-transcriptomic sequencing and phylogenetic analyses revealed three SEOV variants, among which two are completely novel. The ancestral character state reconstruction (ACSR) analysis based on both novel variants and documented strains from 5 continents demonstrated that SEOV appeared to originate near the southwestern area (Yunnan-Kweichow Plateau) of China, then could spread to other regions and countries by their rodent carriers, resulting in a global distribution today. In summary, these data furthered the understanding regards genetic diversity and the potential origin for SEOV. However, the expanding endemic foci in the province suggest that the virus is spreading over a wider region and is much more diverse than previous depicted, which means that increased sampling is necessary.
Collapse
Affiliation(s)
- Guopeng Kuang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, China
| | - Jing Wang
- The Centre for Infection and Immunity Study, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yun Feng
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, China
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
- School of Public Health, Dali University, Dali, Yunnan, China
| | - Weichen Wu
- The Centre for Infection and Immunity Study, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xi Han
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, China
| | - Genyang Xin
- The Centre for Infection and Immunity Study, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Weihong Yang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, China
| | - Hong Pan
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, China
| | - Lifen Yang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, China
| | - Juan Wang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, China
| | - Mang Shi
- The Centre for Infection and Immunity Study, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zihou Gao
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, China
| |
Collapse
|
2
|
Kabwe E, Davidyuk Y, Shamsutdinov A, Garanina E, Martynova E, Kitaeva K, Malisheni M, Isaeva G, Savitskaya T, Urbanowicz RA, Morzunov S, Katongo C, Rizvanov A, Khaiboullina S. Orthohantaviruses, Emerging Zoonotic Pathogens. Pathogens 2020; 9:E775. [PMID: 32971887 PMCID: PMC7558059 DOI: 10.3390/pathogens9090775] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/23/2022] Open
Abstract
Orthohantaviruses give rise to the emerging infections such as of hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) in Eurasia and the Americas, respectively. In this review we will provide a comprehensive analysis of orthohantaviruses distribution and circulation in Eurasia and address the genetic diversity and evolution of Puumala orthohantavirus (PUUV), which causes HFRS in this region. Current data indicate that the geographical location and migration of the natural hosts can lead to the orthohantaviruses genetic diversity as the rodents adapt to the new environmental conditions. The data shows that a high level of diversity characterizes the genome of orthohantaviruses, and the PUUV genome is the most divergent. The reasons for the high genome diversity are mainly caused by point mutations and reassortment, which occur in the genome segments. However, it still remains unclear whether this diversity is linked to the disease's severity. We anticipate that the information provided in this review will be useful for optimizing and developing preventive strategies of HFRS, an emerging zoonosis with potentially very high mortality rates.
Collapse
Affiliation(s)
- Emmanuel Kabwe
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.K.); (Y.D.); (A.S.); (E.G.); (E.M.); (K.K.); (A.R.)
- Kazan Research Institute of Epidemiology and Microbiology, 420012 Kazan, Russia; (G.I.); (T.S.)
| | - Yuriy Davidyuk
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.K.); (Y.D.); (A.S.); (E.G.); (E.M.); (K.K.); (A.R.)
| | - Anton Shamsutdinov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.K.); (Y.D.); (A.S.); (E.G.); (E.M.); (K.K.); (A.R.)
| | - Ekaterina Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.K.); (Y.D.); (A.S.); (E.G.); (E.M.); (K.K.); (A.R.)
| | - Ekaterina Martynova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.K.); (Y.D.); (A.S.); (E.G.); (E.M.); (K.K.); (A.R.)
| | - Kristina Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.K.); (Y.D.); (A.S.); (E.G.); (E.M.); (K.K.); (A.R.)
| | | | - Guzel Isaeva
- Kazan Research Institute of Epidemiology and Microbiology, 420012 Kazan, Russia; (G.I.); (T.S.)
| | - Tatiana Savitskaya
- Kazan Research Institute of Epidemiology and Microbiology, 420012 Kazan, Russia; (G.I.); (T.S.)
| | - Richard A. Urbanowicz
- Wolfson Centre for Global Virus Infections, University of Nottingham, Nottingham NG7 2UH, UK;
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Sergey Morzunov
- Department of Pathology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Cyprian Katongo
- Department of Biological Sciences, University of Zambia, Lusaka 10101, Zambia;
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.K.); (Y.D.); (A.S.); (E.G.); (E.M.); (K.K.); (A.R.)
| | - Svetlana Khaiboullina
- Department of Microbiology and Immunology, University of Nevada, Reno, NV 89557, USA;
| |
Collapse
|
3
|
Laenen L, Vergote V, Calisher CH, Klempa B, Klingström J, Kuhn JH, Maes P. Hantaviridae: Current Classification and Future Perspectives. Viruses 2019; 11:v11090788. [PMID: 31461937 PMCID: PMC6784073 DOI: 10.3390/v11090788] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 08/23/2019] [Indexed: 01/19/2023] Open
Abstract
In recent years, negative-sense RNA virus classification and taxon nomenclature have undergone considerable transformation. In 2016, the new order Bunyavirales was established, elevating the previous genus Hantavirus to family rank, thereby creating Hantaviridae. Here we summarize affirmed taxonomic modifications of this family from 2016 to 2019. Changes involve the admission of >30 new hantavirid species and the establishment of subfamilies and novel genera based on DivErsity pArtitioning by hieRarchical Clustering (DEmARC) analysis of genomic sequencing data. We outline an objective framework that can be used in future classification schemes when more hantavirids sequences will be available. Finally, we summarize current taxonomic proposals and problems in hantavirid taxonomy that will have to be addressed shortly.
Collapse
Affiliation(s)
- Lies Laenen
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Zoonotic Infectious Diseases Unit, 3000 Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Valentijn Vergote
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Zoonotic Infectious Diseases Unit, 3000 Leuven, Belgium
| | | | - Boris Klempa
- Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, B-8200 Research Plaza, Frederick, MD 21702, USA
| | - Piet Maes
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Zoonotic Infectious Diseases Unit, 3000 Leuven, Belgium.
| |
Collapse
|
4
|
Phylogeography of Puumala orthohantavirus in Europe. Viruses 2019; 11:v11080679. [PMID: 31344894 PMCID: PMC6723369 DOI: 10.3390/v11080679] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/12/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Puumala virus is an RNA virus hosted by the bank vole (Myodes glareolus) and is today present in most European countries. Whilst it is generally accepted that hantaviruses have been tightly co-evolving with their hosts, Puumala virus (PUUV) evolutionary history is still controversial and so far has not been studied at the whole European level. This study attempts to reconstruct the phylogeographical spread of modern PUUV throughout Europe during the last postglacial period in the light of an upgraded dataset of complete PUUV small (S) segment sequences and by using most recent computational approaches. Taking advantage of the knowledge on the past migrations of its host, we identified at least three potential independent dispersal routes of PUUV during postglacial recolonization of Europe by the bank vole. From the Alpe-Adrian region (Balkan, Austria, and Hungary) to Western European countries (Germany, France, Belgium, and Netherland), and South Scandinavia. From the vicinity of Carpathian Mountains to the Baltic countries and to Poland, Russia, and Finland. The dissemination towards Denmark and North Scandinavia is more hypothetical and probably involved several independent streams from south and north Fennoscandia.
Collapse
|
5
|
Liphardt SW, Kang HJ, Dizney LJ, Ruedas LA, Cook JA, Yanagihara R. Complex History of Codiversification and Host Switching of a Newfound Soricid-Borne Orthohantavirus in North America. Viruses 2019; 11:v11070637. [PMID: 31373319 PMCID: PMC6669566 DOI: 10.3390/v11070637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022] Open
Abstract
Orthohantaviruses are tightly linked to the ecology and evolutionary history of their mammalian hosts. We hypothesized that in regions with dramatic climate shifts throughout the Quaternary, orthohantavirus diversity and evolution are shaped by dynamic host responses to environmental change through processes such as host isolation, host switching, and reassortment. Jemez Springs virus (JMSV), an orthohantavirus harbored by the dusky shrew (Sorex monticola) and five close relatives distributed widely in western North America, was used to test this hypothesis. Total RNAs, extracted from liver or lung tissue from 164 shrews collected from western North America during 1983–2007, were analyzed for orthohantavirus RNA by reverse transcription polymerase chain reaction (RT-PCR). Phylogenies inferred from the L-, M-, and S-segment sequences of 30 JMSV strains were compared with host mitochondrial cytochrome b. Viral clades largely corresponded to host clades, which were primarily structured by geography and were consistent with hypothesized post-glacial expansion. Despite an overall congruence between host and viral gene phylogenies at deeper scales, phylogenetic signals were recovered that also suggested a complex pattern of host switching and at least one reassortment event in the evolutionary history of JMSV. A fundamental understanding of how orthohantaviruses respond to periods of host population expansion, contraction, and secondary host contact is the key to establishing a framework for both more comprehensive understanding of orthohantavirus evolutionary dynamics and broader insights into host–pathogen systems.
Collapse
Affiliation(s)
- Schuyler W Liphardt
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Hae Ji Kang
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Laurie J Dizney
- Department of Biology, University of Portland, Portland, OR 97203, USA
| | - Luis A Ruedas
- Department of Biology and Museum of Vertebrate Biology, Portland State University, Portland, OR 97207-0751, USA
| | - Joseph A Cook
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Richard Yanagihara
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA.
| |
Collapse
|
6
|
Marston DA, Banyard AC, McElhinney LM, Freuling CM, Finke S, de Lamballerie X, Müller T, Fooks AR. The lyssavirus host-specificity conundrum-rabies virus-the exception not the rule. Curr Opin Virol 2017; 28:68-73. [PMID: 29182939 DOI: 10.1016/j.coviro.2017.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 12/29/2022]
Abstract
Lyssaviruses are a diverse range of viruses which all cause the disease rabies. Of the 16 recognized species, only rabies viruses (RABV) have multiple host reservoirs. Although lyssaviruses are capable of infecting all mammals, onward transmission in a new host population requires adaptation of the virus, in a number of stages with both host and virus factors determining the outcome. Due to an absence of recorded non-RABV host shifts, RABV data is extrapolated to draw conclusions for all lyssaviruses. In this article, we have focused on evidence of host shifts in the same insectivorous bat reservoir species in North America (RABV) and Europe (EBLV-1, EBLV-2 and BBLV). How RABV has successfully crossed species barriers and established infectious cycles in new hosts to be the global multi-host pathogen it is today, whilst other lyssaviruses appear restricted in host species is explored in this review. It hypothesized that RABV is the exception, rather than the rule, in this fascinating genus of viruses.
Collapse
Affiliation(s)
- Denise A Marston
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, United Kingdom; UMR 'Émergence des Pathologies Virales' (EPV: Aix-Marseille Univ - IRD 190 - Inserm 1207 - EHESP - IHU Méditerranée Infection), Marseille, France
| | - Ashley C Banyard
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, United Kingdom
| | - Lorraine M McElhinney
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, United Kingdom; Institute of Infection and Global Health, University of Liverpool, United Kingdom
| | - Conrad M Freuling
- Friedrich-Loeffler-Institute, (FLI), Institute of Molecular Virology and Cell Biology, Greifswald-Insel Riems, Germany
| | - Stefan Finke
- Friedrich-Loeffler-Institute, (FLI), Institute of Molecular Virology and Cell Biology, Greifswald-Insel Riems, Germany
| | - Xavier de Lamballerie
- UMR 'Émergence des Pathologies Virales' (EPV: Aix-Marseille Univ - IRD 190 - Inserm 1207 - EHESP - IHU Méditerranée Infection), Marseille, France
| | - Thomas Müller
- Friedrich-Loeffler-Institute, (FLI), Institute of Molecular Virology and Cell Biology, Greifswald-Insel Riems, Germany
| | - Anthony R Fooks
- Wildlife Zoonoses & Vector-Borne Diseases Research Group, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, United Kingdom; Institute of Infection and Global Health, University of Liverpool, United Kingdom.
| |
Collapse
|
7
|
Forbes KM, Sironen T, Plyusnin A. Hantavirus maintenance and transmission in reservoir host populations. Curr Opin Virol 2017; 28:1-6. [PMID: 29024905 DOI: 10.1016/j.coviro.2017.09.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/24/2022]
Abstract
Hantaviruses are primarily hosted by mammalian species of the orders Rodentia, Eulipotyphla and Chiroptera. Spillover to humans is common, and understanding hantavirus maintenance and transmission in reservoir host populations is important for efforts to curtail human disease. Recent field research challenges traditional phases of virus shedding kinetics derived from laboratory rodent infection experiments. Organ infection sites in non-rodent hosts suggest similar transmission routes to rodents, but require direct assessment. Further advances have also been made in understanding virus persistence (and fadeouts) in fluctuating host populations, as well as occupational, recreational and environmental risk factors associated with spillover to humans. However, despite relevance for both intra-species and inter-species transmission, our understanding of the longevity of hantaviruses in natural environments remains limited.
Collapse
Affiliation(s)
- Kristian M Forbes
- Department of Virology, University of Helsinki, Haartmaninkatu 3, Helsinki FI-00290, Finland; Centre for Infectious Disease Dynamics and Department of Biology, The Pennsylvania State University, Millennium Science Complex, State College, PA 16802, United States.
| | - Tarja Sironen
- Department of Virology, University of Helsinki, Haartmaninkatu 3, Helsinki FI-00290, Finland; Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöbergin katu 2, Helsinki FI-00014, Finland
| | - Alexander Plyusnin
- Department of Virology, University of Helsinki, Haartmaninkatu 3, Helsinki FI-00290, Finland
| |
Collapse
|
8
|
Kuno G, Mackenzie JS, Junglen S, Hubálek Z, Plyusnin A, Gubler DJ. Vertebrate Reservoirs of Arboviruses: Myth, Synonym of Amplifier, or Reality? Viruses 2017; 9:E185. [PMID: 28703771 PMCID: PMC5537677 DOI: 10.3390/v9070185] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
The rapid succession of the pandemic of arbovirus diseases, such as dengue, West Nile fever, chikungunya, and Zika fever, has intensified research on these and other arbovirus diseases worldwide. Investigating the unique mode of vector-borne transmission requires a clear understanding of the roles of vertebrates. One major obstacle to this understanding is the ambiguity of the arbovirus definition originally established by the World Health Organization. The paucity of pertinent information on arbovirus transmission at the time contributed to the notion that vertebrates played the role of reservoir in the arbovirus transmission cycle. Because this notion is a salient feature of the arbovirus definition, it is important to reexamine its validity. This review addresses controversial issues concerning vertebrate reservoirs and their role in arbovirus persistence in nature, examines the genesis of the problem from a historical perspective, discusses various unresolved issues from multiple points of view, assesses the present status of the notion in light of current knowledge, and provides options for a solution to resolve the issue.
Collapse
Affiliation(s)
- Goro Kuno
- Formerly at the Division of Vector-Borne Infectious Diseases, Centers for Control and Prevention, Fort Collins, CO, USA.
| | - John S Mackenzie
- Faculty of Medical Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
- Division of Microbiology & Infectious Diseases, PathWest, Nedlands, Western Australia 6009.
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin Berlin, Helmut-Ruska-Haus, Chariteplatz 1, 10117 Berlin, Germany.
| | - Zdeněk Hubálek
- Institute of Vertebrate Biology, Academy of Sciences of Czech Republic, 60365 Brno, Czech Republic.
| | - Alexander Plyusnin
- Department of Virology, University of Helsinki, Haartmaninkatu 3, University of Helsinki, 00014 Helsinki, Finland.
| | - Duane J Gubler
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Rd., Singapore 169857 Singapore.
| |
Collapse
|