1
|
MATSUMURA R, KOBAYASHI D, ITOYAMA K, ISAWA H. Detection of novel coltivirus-related sequences in Haemaphysalis megaspinosa ticks collected from Kanagawa Prefecture, Japan. J Vet Med Sci 2024; 86:866-871. [PMID: 38880612 PMCID: PMC11300128 DOI: 10.1292/jvms.24-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/01/2024] [Indexed: 06/18/2024] Open
Abstract
Coltiviruses, belonging to the genus Coltivirus within the family Spinareoviridae, are predominantly tick-borne viruses. Some of these species have been implicated in human diseases; however, their diversity, geographical distribution, and evolutionary dynamics remain inadequately. Therefore, this study was undertaken to explore the phylogenetic evolution of coltiviruses and related viruses. Our results revealed the detection of novel coltivirus-related sequences in adult female Haemaphysalis megaspinosa ticks collected from Kanagawa Prefecture, Japan. Molecular phylogenetic analysis revealed a close association between the sequences and the genome sequences of known coltivirus-related viruses, namely Qinghe tick reovirus and Fennes virus. The putative coltivirus-related virus was tentatively designated the Nakatsu tick virus. This study provides insights into the phylogenetic evolution of coltiviruses and related viruses.
Collapse
Affiliation(s)
- Ryo MATSUMURA
- Graduate School of Agriculture, Meiji University, Kanagawa,
Japan
- Department of Medical Entomology, National Institute of
Infectious Diseases, Tokyo, Japan
| | - Daisuke KOBAYASHI
- Department of Medical Entomology, National Institute of
Infectious Diseases, Tokyo, Japan
- Management Department of Biosafety, Laboratory Animal, and
Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kyo ITOYAMA
- Graduate School of Agriculture, Meiji University, Kanagawa,
Japan
| | - Haruhiko ISAWA
- Department of Medical Entomology, National Institute of
Infectious Diseases, Tokyo, Japan
| |
Collapse
|
2
|
Hu Z, Zhang J, Liu Y, Liu L, Tang F, Si G, Zhang M, Li S, Zhang Y, Peng C, Zhang L, Ma X, Zhang X, Liu W. First Genomic Evidence of California Hare Coltivirus from Natural Populations of Ixodes persulcatus Ticks in Northeast China. Pathogens 2024; 13:614. [PMID: 39204215 PMCID: PMC11357685 DOI: 10.3390/pathogens13080614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Background: California hare coltivirus (CHCV) was isolated in California in 1976 from a hare. Despite its long history, it remained unclear whether CHCV was exclusively distributed in California with limited host ranges. Main body: By next-generation sequencing (NGS), we obtained a complete sequence of CHCV from Ixodes persulcatus collected in 2019 in northeast China. An expanded epidemiological investigation was subsequently performed on ticks belonging to four species (Ix. persulcatus, Haemaphysalis concinna, Devmacentor silvarum, Haemaphysalis longicornis) collected in northeastern China by applying CHCV-specific RT-PCR and sequencing. CHCV RNA-positive results were found in 1.56% of the tick samples. Positive ticks were obtained in three of four sampled locations, with the highest rate observed in Inner Mongolia (2.69%), followed by Heilongjiang (1.94%) and Jilin provinces (0.55%). All positive results were derived from Ix. persulcatus ticks (2.33%), while no positive detection was found in the other tick species, even at the same location. Sequence analysis revealed that the current CHCV showed a high genetic identity (>80% amino acid identity) with the previously reported CHCV in all segments except segment seven (64.59% amino acid identity). Phylogenetic analysis based on RNA-dependent RNA polymerase (RdRp) amino acid sequences demonstrated that both the current and previously reported CHCV strains were grouped phylogenetically into the genus Coltivirus. Both CHCV strains formed a distinct clade, clustering with three human pathogenic coltiviruses (Colorado tick fever virus, Salmon River virus, and Eyach virus), and were distant from the other coltiviruses. Conclusions: We report the identification and characterization of CHCV for the first time in Ix. persulcatus ticks, expanding the currently known geographic scope, host, and genetic heterogeneity in CHCV.
Collapse
Affiliation(s)
- Zhenyu Hu
- School of Public Health, Anhui Medical University, Hefei 230032, China;
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China; (J.Z.); (G.S.); (M.Z.); (S.L.); (Y.Z.); (C.P.); (L.Z.)
| | - Jingtao Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China; (J.Z.); (G.S.); (M.Z.); (S.L.); (Y.Z.); (C.P.); (L.Z.)
| | - Yantao Liu
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao 266033, China; (Y.L.); (X.M.)
| | - Liming Liu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China;
| | - Fang Tang
- Institute of Medical Prevention and Control of Public Health Emergencies, Characteristic Medical Center of the Chinese People’s Armed Police Force, Beijing 102613, China;
| | - Guangqian Si
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China; (J.Z.); (G.S.); (M.Z.); (S.L.); (Y.Z.); (C.P.); (L.Z.)
| | - Meiqi Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China; (J.Z.); (G.S.); (M.Z.); (S.L.); (Y.Z.); (C.P.); (L.Z.)
| | - Shuang Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China; (J.Z.); (G.S.); (M.Z.); (S.L.); (Y.Z.); (C.P.); (L.Z.)
| | - Yunfa Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China; (J.Z.); (G.S.); (M.Z.); (S.L.); (Y.Z.); (C.P.); (L.Z.)
| | - Cong Peng
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China; (J.Z.); (G.S.); (M.Z.); (S.L.); (Y.Z.); (C.P.); (L.Z.)
| | - Lei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China; (J.Z.); (G.S.); (M.Z.); (S.L.); (Y.Z.); (C.P.); (L.Z.)
| | - Xiaofang Ma
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao 266033, China; (Y.L.); (X.M.)
| | - Xiaoai Zhang
- School of Public Health, Anhui Medical University, Hefei 230032, China;
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China; (J.Z.); (G.S.); (M.Z.); (S.L.); (Y.Z.); (C.P.); (L.Z.)
| | - Wei Liu
- School of Public Health, Anhui Medical University, Hefei 230032, China;
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China; (J.Z.); (G.S.); (M.Z.); (S.L.); (Y.Z.); (C.P.); (L.Z.)
| |
Collapse
|
3
|
Takeishi M, Morikawa S, Kuwata R, Kawaminami M, Shimoda H, Isawa H, Maeda K, Yoshikawa Y. Characterization and arbovirus susceptibility of cultured CERNI cells derived from sika deer (Cervus nippon). In Vitro Cell Dev Biol Anim 2024:10.1007/s11626-024-00933-z. [PMID: 38961045 DOI: 10.1007/s11626-024-00933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/23/2024] [Indexed: 07/05/2024]
Abstract
Cervus nippon (sika deer) are widely distributed throughout eastern Asia. Deer possess a variety of antibodies against several zoonotic pathogens, indicating that they act as reservoir of zoonoses. In this study, we reported the characterization of cultured cells derived from sika deer and evaluated their susceptibility to arthropod-borne viruses to clarify their usefulness in virological studies. Cells derived from testicular tissue in Dulbecco's modified eagle medium with 16% fetal bovine serum started growing as primary cultured cells. The diploid cells consisted of 68 chromosomes, consistent with those of Japanese sika deer previously reported. The phylogenetic analysis showed the cells formed a robust clade with Japanese population of C. nippon, indicating that the cultured cells established in this study were originated from the Japanese sika deer. The cells immortalized by the simian virus 40 T-antigen were predominantly spindle-shaped cells exhibiting adhesive properties, and cultivated at 37°C and 5% CO2, which are common culture conditions for many mammalian cell lines. Western blotting analysis indicated that the cultured cells were multiple types of cells that coexist, including at least epithelial, fibroblast, and also Leydig cells. We confirmed that the cells have susceptibility to several arboviruses distributed in Japan: Getah virus, Japanese encephalitis virus, Oz virus, and severe fever with thrombocytopenia syndrome virus, but not to Tarumiz tick virus. From these results, the cells contribute to clarify the role of sika deer as a reservoir of zoonoses in nature and deer-associated experimental research at the cellular and molecular levels.
Collapse
Affiliation(s)
- Makoto Takeishi
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan
| | - Shigeru Morikawa
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan
| | - Ryusei Kuwata
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan.
| | - Mitsumori Kawaminami
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan
| | - Hiroshi Shimoda
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8515, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Ken Maeda
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8515, Japan
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Yasuhiro Yoshikawa
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan
| |
Collapse
|
4
|
Lin Y, Pascall DJ. Characterisation of putative novel tick viruses and zoonotic risk prediction. Ecol Evol 2024; 14:e10814. [PMID: 38259958 PMCID: PMC10800298 DOI: 10.1002/ece3.10814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/02/2023] [Accepted: 11/24/2023] [Indexed: 01/24/2024] Open
Abstract
Tick-associated viruses remain a substantial zoonotic risk worldwide, so knowledge of the diversity of tick viruses has potential health consequences. Despite their importance, large amounts of sequences in public data sets from tick meta-genomic and -transcriptomic projects remain unannotated, sequence data that could contain undocumented viruses. Through data mining and bioinformatic analysis of more than 37,800 public meta-genomic and -transcriptomic data sets, we found 83 unannotated contigs exhibiting high identity with known tick viruses. These putative viral contigs were classified into three RNA viral families (Alphatetraviridae, Orthomyxoviridae and Chuviridae) and one DNA viral family (Asfarviridae). After manual checking of quality and dissimilarity towards other sequences in the data set, these 83 contigs were reduced to five contigs in the Alphatetraviridae from four putative viruses, four in the Orthomyxoviridae from two putative viruses and one in the Chuviridae which clustered with known tick-associated viruses, forming a separate clade within the viral families. We further attempted to assess which previously known tick viruses likely represent zoonotic risks and thus deserve further investigation. We ranked the human infection potential of 133 known tick-associated viruses using a genome composition-based machine learning model. We found five high-risk tick-associated viruses (Langat virus, Lonestar tick chuvirus 1, Grotenhout virus, Taggert virus and Johnston Atoll virus) that have not been known to infect human and two viral families (Nairoviridae and Phenuiviridae) that contain a large proportion of potential zoonotic tick-associated viruses. This adds to the knowledge of tick virus diversity and highlights the importance of surveillance of newly emerging tick-associated diseases.
Collapse
Affiliation(s)
- Yuting Lin
- MRC Biostatistics UnitUniversity of CambridgeCambridgeUK
- Royal Veterinary CollegeUniversity of LondonLondonUK
| | | |
Collapse
|
5
|
Wang A, Tang Y, Pang Z, Gong Y, Wu J, Qi J, Niu G. Molecular evidence for potential transovarial transmission of Dabieshan tick virus in Haemaphysalis longicornis from Shandong Province, China. PLoS One 2023; 18:e0296213. [PMID: 38134039 PMCID: PMC10745148 DOI: 10.1371/journal.pone.0296213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Dabieshan tick virus (DBTV) is a newly identified arbovirus, first detected in Haemaphysalis longicornis collected from Hubei Province in 2015. It has been confirmed that DBTV is widely distributed in Shandong Province, China. However, its entomological and epidemiological features remain to be further explored, particularly the feasibility of transovarial transmission. Our research tries to explain the possibility of transovarial transmission of DBTV from engorged female ticks to their offspring. All engorged female adult ticks were sampled from domestic sheep and allowed to lay eggs and hatch in appropriate laboratory conditions. All engorged ticks, larvae and unhatched eggs were classified into pools for nucleic acid extraction and DBTV RNA detection. According to the results of qRT-PCR, the positive rate of DBTV was 6.25% (8/128) in engorged female ticks, 3.57% (1/28) in eggs and 5% (3/60) in larvae pools, respectively. Phylogenetic analysis indicated that DBTV isolates from larvae were similar to those from maternal ticks with more than 99.5% homology, and DBTV was relatively conservative in evolution. Our findings are the first to provide molecular evidence of potential transovarial transmission of DBTV among H. longicornis. Nonetheless, the transovarial transmission of DBTV in frequency and proportion occurring in nature deserves further investigation.
Collapse
Affiliation(s)
- Anan Wang
- School of Public Health, WeiFang Medical University, Weifang, China
| | - Yunfeng Tang
- School of Public Health, WeiFang Medical University, Weifang, China
| | - Zheng Pang
- Tianjin Customs Port Out-Patient Department, Tianjin International Travel Healthcare Center, Tianjin, China
| | - Yaxuan Gong
- Yantai Zhifu District Center for Disease Control and Prevention, Yantai, China
| | - Jintao Wu
- Yantai Zhifu District Center for Disease Control and Prevention, Yantai, China
| | - Jun Qi
- Tianjin Customs Port Out-Patient Department, Tianjin International Travel Healthcare Center, Tianjin, China
| | - Guoyu Niu
- School of Public Health, WeiFang Medical University, Weifang, China
| |
Collapse
|
6
|
Harris EK, Foy BD, Ebel GD. Colorado tick fever virus: a review of historical literature and research emphasis for a modern era. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:1214-1220. [PMID: 37862094 DOI: 10.1093/jme/tjad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/14/2023] [Accepted: 07/05/2023] [Indexed: 10/21/2023]
Abstract
Colorado tick fever virus is an understudied tick-borne virus of medical importance that is primarily transmitted in the western United States and southwestern Canada. The virus is the type species of the genus Coltivirus (Spinareoviridae) and consists of 12 segments that remain largely uncharacterized. Patterns of viral distribution are driven by the presence of the primary vector, the Rocky Mountain wood tick, Dermacentor andersoni. Infection prevalence in D. andersoni can range from 3% to 58% across the geographic distribution of the tick. Infection in humans can be severe and often presents with fever relapses but is rarely fatal. Here, we review the literature from primary characterizations in the early 20th century to current virus/vector research being conducted and identify vacancies in current research.
Collapse
Affiliation(s)
- Emma K Harris
- Center for Vector-Borne Infectious Diseases, Colorado State University, Fort Collins, CO, USA
| | - Brian D Foy
- Center for Vector-Borne Infectious Diseases, Colorado State University, Fort Collins, CO, USA
| | - Gregory D Ebel
- Center for Vector-Borne Infectious Diseases, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
7
|
Huang Y, Wang S, Liu H, Atoni E, Wang F, Chen W, Li Z, Rodriguez S, Yuan Z, Ming Z, Xia H. A global dataset of sequence, diversity and biosafety recommendation of arbovirus and arthropod-specific virus. Sci Data 2023; 10:305. [PMID: 37208388 DOI: 10.1038/s41597-023-02226-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023] Open
Abstract
Arthropod-borne virus (arbovirus) and arthropod-specific virus (ASV) are viruses circulating amongst hematophagous arthropods that are broadly transmitted in ecological systems. Arbovirus may replicate in both vertebrates and invertebrates and some are known to be pathogenic to animals or humans. ASV only replicate in invertebrate arthropods yet they are basal to many types of arboviruses. We built a comprehensive dataset of arbovirus and ASV by curating globally available data from the Arbovirus Catalog, the arbovirus list in Section VIII-F of the Biosafety in Microbiological and Biomedical Laboratories 6th edition, Virus Metadata Resource of International Committee on Taxonomy of Viruses, and GenBank. Revealing the diversity, distribution and biosafety recommendation of arbovirus and ASV at a global scale is essential to the understanding of potential interactions, evolution, and risks associated with these viruses. Moreover, the genomic sequences associated with the dataset will enable the investigation of genetic patterns distinguishing the two groups, as well as aid in predicting the vector/host relationships of the newly discovered viruses.
Collapse
Affiliation(s)
- Ying Huang
- Key Laboratory of Highly pathogenic Viruses and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shunlong Wang
- Key Laboratory of Highly pathogenic Viruses and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Evans Atoni
- Key Laboratory of Highly pathogenic Viruses and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Wang
- Key Laboratory of Highly pathogenic Viruses and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Wei Chen
- Key Laboratory of Highly pathogenic Viruses and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaolin Li
- Key Laboratory of Highly pathogenic Viruses and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sergio Rodriguez
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, 77551, USA
| | - Zhiming Yuan
- Key Laboratory of Highly pathogenic Viruses and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoyan Ming
- School of Computer and Computing Science, Hangzhou City University, Hangzhou, 310015, China.
| | - Han Xia
- Key Laboratory of Highly pathogenic Viruses and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Hubei Jiangxia Laboratory, Wuhan, 430207, China.
| |
Collapse
|
8
|
Liu YK, Liu GH, Liu L, Wang AB, Cheng TY, Duan DY. Comparative analysis of the anticoagulant activities and immunogenicity of HSC70 and HSC70 TKD of Haemaphysalis flava. Parasit Vectors 2022; 15:411. [PMID: 36335395 PMCID: PMC9636643 DOI: 10.1186/s13071-022-05521-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Haemaphysalis flava is a hematophagous ectoparasite that acquires the nutrition needed for development and reproduction by sucking blood and digesting the blood meal. During blood-sucking and blood-meal digestion, the prevention of blood coagulation is important for this tick. Previous studies have shown that heat shock cognate 70 (HSC70) protein has certain anticoagulant activities, but its immunogenicity remains unclear. Also, whether the mutation of individual bases of the TKD-like peptide of HSC70 through the overlap extension method can change its anticoagulant activities and immunogenicity remains to be investigated. METHODS The gene encoding the HSC70 protein was cloned from a complementary DNA library synthesized from H. flava. The coding gene of the TKD-like peptide of HSC70 was mutated into a TKD peptide coding gene (HSC70TKD) using the overlap extension method. Escherichia coli prokaryotic expression plasmids were constructed to obtain the recombinant proteins of HSC70 (rHSC70) and HSC70TKD (rHSC70TKD). The purified rHSC70 and rHSC70TKD were evaluated at different concentrations for anticoagulant activities using four in vitro clotting assays. Emulsifying recombinant proteins with complete and incomplete Freund's adjuvants were subcutaneously immunized in Sprague Dawley rats. The serum antibody titers and serum concentrations of interferon-gamma (IFN-γ) and interleukin-4 (IL-4) were detected using an indirect enzyme-linked immunosorbent assay to assess the immunogenicity of rHSC70 and rHSC70TKD. RESULTS The open reading frame of HSC70 was successfully amplified and found to have a length of 1958 bp. The gene encoding the TKD-like peptide of HSC70 was artificially mutated, with the 1373-position adenine (A) of the original sequence mutated into guanine (G), the 1385-position cytosine (C) mutated into G and the 1386-position G mutated into C. rHSC70 and rHSC70TKD that fused with His-tag were obtained using the expression plasmids pET-28a-HSC70 and pET-28a-HSC70TKD, respectively. rHSC70 and rHSC70TKD prolonged the thrombin time (TT) and reduced the fibrinogen (FIB) content in the plasma, but did not affect the prothrombin time (PT) or activated partial thromboplastin time (APTT) when compared to the negative control. Interestingly, the ability of rHSC70TKD to prolong the TT and reduce the FIB content in the plasma was better than that of rHSC70. The specific antibody titers of both rHSC70 and rHSC70TKD in rat serum reached 1:124,000 14 days after the third immunization. The serum concentration of IFN-γ in the rHSC70TKD group was higher than that in the rHSC70 group. The rHSC70 group has the highest serum concentration of IL-4, and the serum concentration of IL-4 in the rHSC70TKD group was higher than that in the negative group. CONCLUSIONS rHSC70 and rHSC70TKD exhibited anticoagulant activities by prolonging the TT and reducing the FIB content in vitro. rHSC70TKD had better anticoagulant activities than rHSC70. Both rHSC70 and rHSC70TKD had good immunogenicity and induced humoral and cellular immunity.
Collapse
Affiliation(s)
- Yu-Ke Liu
- grid.257160.70000 0004 1761 0331Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan Province China
| | - Guo-Hua Liu
- grid.257160.70000 0004 1761 0331Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan Province China
| | - Lei Liu
- grid.257160.70000 0004 1761 0331Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan Province China
| | - Ai-Bing Wang
- grid.257160.70000 0004 1761 0331Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan Province China
| | - Tian-Yin Cheng
- grid.257160.70000 0004 1761 0331Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan Province China
| | - De-Yong Duan
- grid.257160.70000 0004 1761 0331Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan Province China
| |
Collapse
|
9
|
Abstract
Blood-sucking ticks are obligate parasites and vectors of a variety of human and animal viruses. Some tick-borne viruses have been identified as pathogens of infectious diseases in humans or animals, potentially imposing significant public health burdens and threats to the husbandry industry. Therefore, identifying the profiles of tick-borne viruses will provide valuable information about the evolution and pathogen ecology of tick-borne viruses. In this study, we investigated the viromes of parasitic ticks collected from the body surfaces of herbivores in Xinjiang Uyghur Autonomous Region and Inner Mongolia Autonomous Region of China, two regions in northwest China. By using a metatranscriptomic approach, 17 RNA viruses with high diversity in genomic organization and evolution were identified. Among them, nine are proposed to be novel species. The classified viruses belonged to six viral families, including Phenuiviridae, Rhabdoviridae, Peribunyaviridae, Lispiviridae, Chuviridae, and Reoviridae, and unclassified viruses were also identified. In addition, although some viruses from different sampling locations shared significant similarities, the abundance and diversity of viruses notably varied among the different collection locations. This study demonstrates the diversity of tick-borne viruses in Xinjiang and Inner Mongolia and provides informative data for further study of the evolution and pathogenicity of these RNA viruses. IMPORTANCE Ticks are widely distributed in pastoral areas in northwestern China and act as vectors that carry and transmit a variety of pathogens, especially viruses. Our study revealed the diversity of tick viruses in Xinjiang and Inner Mongolia and uncovered the phylogenetic relationships of some RNA viruses, especially the important zoonotic tick-borne severe fever with thrombocytopenia syndrome virus in Inner Mongolia. These data suggest a complex and diverse evolutionary history and potential ecological factors associated with pathogenic viruses. The pathogenicity of these tick-borne viruses currently remains unclear. Therefore, future research should focus on evaluating the transmissability and pathogenicity of these tick-borne viruses.
Collapse
|
10
|
Zhang Y, Li Z, Pang Z, Wu Z, Lin Z, Niu G. Identification of Jingmen tick virus (JMTV) in Amblyomma testudinarium from Fujian Province, southeastern China. Parasit Vectors 2022; 15:339. [PMID: 36167570 PMCID: PMC9513871 DOI: 10.1186/s13071-022-05478-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Background Jingmen tick virus (JMTV) is a newly discovered tick-borne virus that can cause disease in humans. This virus has been authenticated as being extremely widespread worldwide and as posing a significant threat to public health and safety. Methods We collected 35 ticks belonging to two tick species from wild boars in Nanping, Fujian Province, China. JMTV-specific genes were amplified by qRT-PCR and nested PCR to confirm the presence of this pathogen. Results More than one third of of all ticks collected (11/35) were positive for JMTV. Viral sequences were obtained from three of the JMTV-positive ticks, including the complete genomic sequence from one tick. This was the first time that JMTV was identified in the hard-bodied tick Amblyomma testudinarium. Phylogenetic analysis revealed that JMTV from Fujian Province shared > 90% identity with other isolates derived from China, but was distinct from those reported in France and Cambodia. Conclusions JMTV is characterized by relatively low mutations and has its own local adaptive characteristics in different regions. Our findings provide molecular evidence of the presence of JMTV in an overlooked tick species from an area not unrecognized as being endemic. They also suggest that JMTV occupies a wider geographical distribution than currently believed and is a potential disease vector. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05478-2.
Collapse
Affiliation(s)
- Yuli Zhang
- WeiFang Medical University, Weifang, 261053, China
| | - Zhenfeng Li
- Department of Public Health, Gaomi People's Hospital, Weifang, 261500, China
| | - Zheng Pang
- Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Zhen Wu
- WeiFang Medical University, Weifang, 261053, China
| | - Zhijuan Lin
- WeiFang Medical University, Weifang, 261053, China.
| | - Guoyu Niu
- WeiFang Medical University, Weifang, 261053, China.
| |
Collapse
|
11
|
Balinandi S, Hayer J, Cholleti H, Wille M, Lutwama JJ, Malmberg M, Mugisha L. Identification and molecular characterization of highly divergent RNA viruses in cattle, Uganda. Virus Res 2022; 313:198739. [PMID: 35271887 DOI: 10.1016/j.virusres.2022.198739] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 10/18/2022]
Abstract
The risk for the emergence of novel viral zoonotic diseases in animals and humans in Uganda is high given its geographical location with high biodiversity. We aimed to identify and characterize viruses in 175 blood samples from cattle selected in Uganda using molecular approaches. We identified 8 viral species belonging to 4 families (Flaviviridae, Peribunyaviridae, Reoviridae and Rhabdoviridae) and 6 genera (Hepacivirus, Pestivirus, Orthobunyavirus, Coltivirus, Dinovernavirus and Ephemerovirus). Four viruses were highly divergent and tetantively named Zikole virus (Family: Flaviviridae), Zeboroti virus (Family: Reoviridae), Zebtine virus (Family: Rhabdoviridae) and Kokolu virus (Family: Rhabdoviridae). In addition, Bovine hepacivirus, Obodhiang virus, Aedes pseudoscutellaris reovirus and Schmallenberg virus were identified for the first time in Ugandan cattle. We report 8 viral species belonging to 4 viral families including divergent ones in the blood of cattle in Uganda. Hence, cattle may be reservoir hosts for likely emergence of novel viruses with pathogenic potential to cause zoonotic diseases in different species with serious public health implications.
Collapse
Affiliation(s)
- Stephen Balinandi
- Uganda Virus Research Institute; Entebbe, Uganda; College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Juliette Hayer
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Harindranath Cholleti
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Michelle Wille
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Maja Malmberg
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden; Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lawrence Mugisha
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda; Ecohealth Research Group, Conservation & Ecosystem Health Alliance (CEHA), Kampala, Uganda.
| |
Collapse
|
12
|
Kanai Y, Nouda R, Kobayashi T. [Reverse genetics systems for Reoviridae viruses]. Uirusu 2022; 72:55-62. [PMID: 37899230 DOI: 10.2222/jsv.72.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
|
13
|
Detection of Jingmenviruses in Japan with Evidence of Vertical Transmission in Ticks. Viruses 2021; 13:v13122547. [PMID: 34960816 PMCID: PMC8709010 DOI: 10.3390/v13122547] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 12/04/2022] Open
Abstract
Jingmen tick virus (JMTV) and the related jingmenvirus-termed Alongshan virus are recognized as globally emerging human pathogenic tick-borne viruses. These viruses have been detected in various mammals and invertebrates, although their natural transmission cycles remain unknown. JMTV and a novel jingmenvirus, tentatively named Takachi virus (TAKV), have now been identified during a surveillance of tick-borne viruses in Japan. JMTV was shown to be distributed across extensive areas of Japan and has been detected repeatedly at the same collection sites over several years, suggesting viral circulation in natural transmission cycles in these areas. Interestingly, these jingmenviruses may exist in a host tick species-specific manner. Vertical transmission of the virus in host ticks in nature was also indicated by the presence of JMTV in unfed host-questing Amblyomma testudinarium larvae. Further epidemiological surveillance and etiological studies are necessary to assess the status and risk of jingmenvirus infection in Japan.
Collapse
|
14
|
Hughes HR, Velez JO, Fitzpatrick K, Davis EH, Russell BJ, Lambert AJ, Staples JE, Brault AC. Genomic Evaluation of the Genus Coltivirus Indicates Genetic Diversity among Colorado Tick Fever Virus Strains and Demarcation of a New Species. Diseases 2021; 9:92. [PMID: 34940030 PMCID: PMC8700517 DOI: 10.3390/diseases9040092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
The type species of the genus Coltivirus, Colorado tick fever virus (CTFV), was discovered in 1943 and is the most common tick-borne viral infection in the Western US. Despite its long history, very little is known about the molecular diversity of viruses classified within the species Colorado tick fever coltivirus. Previous studies have suggested genetic variants and potential serotypes of CTFV, but limited genetic sequence information is available for CTFV strains. To address this knowledge gap, we report herein the full-length genomes of five strains of CTFV, including Salmon River virus and California hare coltivirus (CTFV-Ca). The sequence from the full-length genome of Salmon River virus identified a high genetic identity to the CTFV prototype strain with >90% amino acid identity in all the segments except segment four, suggesting Salmon River virus is a strain of the species Colorado tick fever coltivirus. Additionally, analysis suggests that segment four has been associated with reassortment in at least one strain. The CTFV-Ca full-length genomic sequence was highly variable from the prototype CTFV in all the segments. The genome of CTFV-Ca was most similar to the Eyach virus, including similar segments six and seven. These data suggest that CTFV-Ca is not a strain of CTFV but a unique species. Additional sequence information of CTFV strains will improve the molecular surveillance tools and provide additional taxonomic resolution to this understudied virus.
Collapse
Affiliation(s)
- Holly R. Hughes
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA; (J.O.V.); (K.F.); (E.H.D.); (B.J.R.); (A.J.L.); (J.E.S.); (A.C.B.)
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Development of an entirely plasmid-based reverse genetics system for 12-segmented double-stranded RNA viruses. Proc Natl Acad Sci U S A 2021; 118:2105334118. [PMID: 34635593 DOI: 10.1073/pnas.2105334118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 01/03/2023] Open
Abstract
The family Reoviridae is a nonenveloped virus group with a double-stranded (ds) RNA genome comprising 9 to 12 segments. In the family Reoviridae, the genera Cardoreovirus, Phytoreovirus, Seadornavirus, Mycoreovirus, and Coltivirus contain virus species having 12-segmented dsRNA genomes. Reverse genetics systems used to generate recombinant infectious viruses are powerful tools for investigating viral gene function and for developing vaccines and therapeutic interventions. Generally, this methodology has been utilized for Reoviridae viruses such as Orthoreovirus, Orbivirus, Cypovirus, and Rotavirus, which have genomes with 10 or 11 segments, respectively. However, no reverse genetics system has been developed for Reoviridae viruses with a genome harboring 12 segments. Herein, we describe development of an entire plasmid-based reverse genetics system for Tarumizu tick virus (TarTV) (genus Coltivirus, family Reoviridae), which has a genome of 12 segments. Recombinant TarTVs were generated by transfection of 12 cloned complementary DNAs encoding the TarTV genome into baby hamster kidney cells expressing T7 RNA polymerase. Using this technology, we generated VP12 mutant viruses and demonstrated that VP12 is an N-glycosylated protein. We also generated a reporter virus expressing the HiBiT-tagged VP8 protein. This reverse genetics system will increase our understanding of not only the biology of the genus Coltivirus but also the replication machinery of the family Reoviridae.
Collapse
|
16
|
Wang A, Pang Z, Liu L, Ma Q, Han Y, Guan Z, Qin H, Niu G. Detection and Phylogenetic Analysis of a Novel Tick-Borne Virus in Yunnan and Guizhou Provinces, Southwestern China. Pathogens 2021; 10:pathogens10091143. [PMID: 34578175 PMCID: PMC8465720 DOI: 10.3390/pathogens10091143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Dabieshan tick virus (DTV) is a novel tick-borne virus with the potential to infect both animals and humans. It has been confirmed that DTV is widely distributed in Shandong and Zhejiang Provinces. In this study, a total of 389 ticks were sampled from Honghe city of Yunnan Province and Bijie city of Guizhou Province, and then divided into 148 pools according to the location and species. QRT-PCR and nested PCR were performed to confirm the presence of DTV. The results showed a minimum infection rate of 2.43% (5/206) in Yunnan Province and 3.28% (6/183) in Guizhou Province, respectively. Interestingly, DTV was identified in Rhipicephalusmicroplus for the first time besides Haemaphysalis longicornis. Phylogenetic analysis showed that DTV from Yunnan and Guizhou Provinces shared over 94% identity with isolates derived from Hubei and Shandong Provinces, and DTV was relatively conservative in evolutionary dynamics. These findings provide molecular evidence of Dabieshan tick virus in different species of ticks from unrecognized endemic regions and suggest that DTV may be widely prevalent in southwestern China.
Collapse
Affiliation(s)
- Anan Wang
- Key Laboratory of Health Inspection and Quarantine, School of Public Health, Weifang Medical University, Weifang 261053, China; (A.W.); (Q.M.); (Y.H.); (Z.G.)
| | - Zheng Pang
- Infectious Disease Drug Discovery Institute, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China;
| | - Lin Liu
- Immune-Path Biotechnology (Suzhou) Co., Ltd., Suzhou 215000, China;
| | - Qianwen Ma
- Key Laboratory of Health Inspection and Quarantine, School of Public Health, Weifang Medical University, Weifang 261053, China; (A.W.); (Q.M.); (Y.H.); (Z.G.)
| | - Yize Han
- Key Laboratory of Health Inspection and Quarantine, School of Public Health, Weifang Medical University, Weifang 261053, China; (A.W.); (Q.M.); (Y.H.); (Z.G.)
| | - Zhijie Guan
- Key Laboratory of Health Inspection and Quarantine, School of Public Health, Weifang Medical University, Weifang 261053, China; (A.W.); (Q.M.); (Y.H.); (Z.G.)
| | - Hao Qin
- Key Laboratory of Health Inspection and Quarantine, School of Public Health, Weifang Medical University, Weifang 261053, China; (A.W.); (Q.M.); (Y.H.); (Z.G.)
- Correspondence: (H.Q.); (G.N.)
| | - Guoyu Niu
- Key Laboratory of Health Inspection and Quarantine, School of Public Health, Weifang Medical University, Weifang 261053, China; (A.W.); (Q.M.); (Y.H.); (Z.G.)
- Correspondence: (H.Q.); (G.N.)
| |
Collapse
|
17
|
Toyo virus, a novel member of the Kaisodi group in the genus Uukuvirus (family Phenuiviridae) found in Haemaphysalis formosensis ticks in Japan. Arch Virol 2021; 166:2751-2762. [PMID: 34341873 DOI: 10.1007/s00705-021-05193-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/08/2021] [Indexed: 10/20/2022]
Abstract
Ticks are important vector arthropods that transmit various pathogens to humans and other animals. Tick-borne viruses are of particular concern to public health as these are major agents of emerging and re-emerging infectious diseases. The Phenuiviridae family of tick-borne viruses is one of the most diverse groups and includes important human pathogenic viruses such as severe fever with thrombocytopenia syndrome virus. Phenuivirus-like sequences were detected during the surveillance of tick-borne viruses using RNA virome analysis from a pooled sample of Haemaphysalis formosensis ticks collected in Ehime, Japan. RT-PCR amplification and Sanger sequencing revealed the nearly complete viral genome sequence of all three segments. Comparisons of the viral amino acid sequences among phenuiviruses indicated that the detected virus shared 46%-70% sequence identity with known members of the Kaisodi group in the genus Uukuvirus. Furthermore, phylogenetic analysis of the viral proteins showed that the virus formed a cluster with the Kaisodi group viruses, suggesting that this was a novel virus, which was designated "Toyo virus" (TOYOV). Further investigation of TOYOV is needed, and it will contribute to understanding the natural history and the etiological importance of the Kaisodi group viruses.
Collapse
|
18
|
Liu L, Tang H, Duan DY, Liu JB, Wang J, Feng LL, Cheng TY. Characterization of AV422 from Haemaphysalis flava ticks in vitro. EXPERIMENTAL & APPLIED ACAROLOGY 2021; 84:809-823. [PMID: 34297228 DOI: 10.1007/s10493-021-00645-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Ticks are hematophagous ectoparasites and cause a major public health threat worldwide. Development of anti-tick vaccines is regarded to be an optimal alternative for tick control. AV422, a unique protein in ticks, is secreted into hosts during blood-feeding, but its roles are not confirmed in Haemaphysalis flava ticks. We retrieved a gene fragment encoding AV422 from a transcriptome dataset of H. flava, and based on it, we reconstructed the full length of AV422 from H. flava (Hf-AV422) by rapid amplification of cDNA ends. Expression profiles of Hf-AV422 in whole ticks and organs of different engorgement levels were determined by qPCR. Then its opening reading frame (ORF) was expressed in Escherichia coli strain BL21 (DE3). The prothrombin time (PT), activated partial thromboplastin time (APTT) and thrombin time (TT) assays were conducted to test anticoagulant activities of the purified recombinant protein (rHf-AV422). The full length of AV422 was 1152 bp. Hf-AV422 showed to be conserved as indicated by multiple sequence alignment. Expression of Hf-AV422 was significantly higher in salivary glands and cuticles than in ovaries. Its expression in whole ticks decreased during engorgement with the highest levels in 1/4 engorged ticks. rHf-AV422 prolonged PT, APTT and TT when incubated with rabbit plasma. Our data demonstrated that Hf-AV422 is a conserved salivary protein with anticoagulant activity. Further studies are needed to test in detail its functional properties to ensure it an adequate antigen candidate for the development of broad-spectrum vaccines against ticks.
Collapse
Affiliation(s)
- Lei Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center for Parasites & Vectors, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Hao Tang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center for Parasites & Vectors, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - De-Yong Duan
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center for Parasites & Vectors, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jin-Bao Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center for Parasites & Vectors, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jie Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center for Parasites & Vectors, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Li-Li Feng
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center for Parasites & Vectors, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Tian-Yin Cheng
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center for Parasites & Vectors, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
19
|
Viral RNA Metagenomics of Hyalomma Ticks Collected from Dromedary Camels in Makkah Province, Saudi Arabia. Viruses 2021; 13:v13071396. [PMID: 34372602 PMCID: PMC8310382 DOI: 10.3390/v13071396] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 12/30/2022] Open
Abstract
Arthropod-borne infections are a medical and economic threat to humans and livestock. Over the last three decades, several unprecedented viral outbreaks have been recorded in the Western part of the Arabian Peninsula. However, little is known about the circulation and diversity of arthropod-borne viruses in this region. To prepare for new outbreaks of vector-borne diseases, it is important to detect which viruses circulate in each vector population. In this study, we used a metagenomics approach to characterize the RNA virome of ticks infesting dromedary camels (Camelus dromedaries) in Makkah province, Saudi Arabia. Two hundred ticks of species Hyalomma dromedarii (n = 196) and Hyalomma impeltatum (n = 4) were collected from the Alkhurma district in Jeddah and Al-Taif city. Virome analysis showed the presence of several tick-specific viruses and tick-borne viruses associated with severe illness in humans. Some were identified for the first time in the Arabian Peninsula. The human disease-associated viruses detected included Crimean Congo Hemorrhagic fever virus and Tamdy virus (family Nairoviridae), Guertu virus (family Phenuiviridae), and a novel coltivirus that shares similarities with Tarumizu virus, Tai forest reovirus and Kundal virus (family Reoviridae). Furthermore, Alkhurma hemorrhagic virus (Flaviviridae) was detected in two tick pools by specific qPCR. In addition, tick-specific viruses in families Phenuiviridae (phleboviruses), Iflaviridae, Chuviridae, Totiviridae and Flaviviridae (Pestivirus) were detected. The presence of human pathogenetic viruses warrants further efforts in tick surveillance, xenosurveillence, vector control, and sero-epidemiological investigations in human and animal populations to predict, contain and mitigate future outbreaks in the region.
Collapse
|
20
|
Vanmechelen B, Merino M, Vergote V, Laenen L, Thijssen M, Martí-Carreras J, Claerebout E, Maes P. Exploration of the Ixodes ricinus virosphere unveils an extensive virus diversity including novel coltiviruses and other reoviruses. Virus Evol 2021; 7:veab066. [PMID: 34532065 PMCID: PMC8438917 DOI: 10.1093/ve/veab066] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/25/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
Recent metagenomics studies have revealed several tick species to host a variety of previously undiscovered RNA viruses. Ixodes ricinus, which is known to be a vector for many viral, bacterial, and protozoan pathogens, is the most prevalent tick species in Europe. For this study, we decided to investigate the virosphere of Belgian I. ricinus ticks. High-throughput sequencing of tick pools collected from six different sampling sites revealed the presence of viruses belonging to many different viral orders and families, including Mononegavirales, Bunyavirales, Partitiviridae, and Reoviridae. Of particular interest was the detection of several new reoviruses, two of which cluster together with members of the genus Coltivirus. This includes a new strain of Eyach virus, a known causative agent of tick-borne encephalitis. All genome segments of this new strain are highly similar to those of previously published Eyach virus genomes, except for the fourth segment, encoding VP4, which is markedly more dissimilar, potentially indicating the occurrence of a genetic reassortment. Further polymerase chain reaction-based screening of over 230 tick pools for 14 selected viruses showed that most viruses could be found in all six sampling sites, indicating the wide spread of these viruses throughout the Belgian tick population. Taken together, these results illustrate the role of ticks as important virus reservoirs, highlighting the need for adequate tick control measures.
Collapse
Affiliation(s)
| | - Michelle Merino
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, KU Leuven—University of Leuven, Herestraat 49, Box 1040, Leuven BE3000, Belgium
| | - Valentijn Vergote
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, KU Leuven—University of Leuven, Herestraat 49, Box 1040, Leuven BE3000, Belgium
| | - Lies Laenen
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, KU Leuven—University of Leuven, Herestraat 49, Box 1040, Leuven BE3000, Belgium
| | - Marijn Thijssen
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, KU Leuven—University of Leuven, Herestraat 49, Box 1040, Leuven BE3000, Belgium
| | - Joan Martí-Carreras
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, KU Leuven—University of Leuven, Herestraat 49, Box 1040, Leuven BE3000, Belgium
| | - Edwin Claerebout
- Faculty of Veterinary Medicine, Laboratory of Parasitology, Ghent University, Salisburylaan 133-D13, Merelbeke BE9820, Belgium
| | | |
Collapse
|
21
|
Fang LZ, Lei SC, Yan ZJ, Xiao X, Liu JW, Gong XQ, Yu H, Yu XJ. Detection of Multiple Intracellular Bacterial Pathogens in Haemaphysalis flava Ticks Collected from Hedgehogs in Central China. Pathogens 2021; 10:pathogens10020115. [PMID: 33498714 PMCID: PMC7911675 DOI: 10.3390/pathogens10020115] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/03/2021] [Accepted: 01/15/2021] [Indexed: 11/23/2022] Open
Abstract
Tickborne intracellular bacterial pathogens including Anaplasma, Coxiella burnetti, Ehrlichia, and Rickettsia cause emerging infectious diseases worldwide. PCR was used to amplify the genes of these pathogens in Haemaphysalis flava ticks collected from hedgehogs in Central China. Among 125 samples including 20 egg batches, 24 engorged females, and 81 molted male and female adult ticks, the DNA sequences and phylogenetic analysis showed that the minimum infection rate of the ticks was 4% (5/125) for A. bovis, 3.2% (4/125) for C. burnetti, 9.6%, (12/125) for E. ewingii, and 5.6% for Rickettsia including R.japonica (3.2%, 4/125) and R. raoultii (2.4%, 3/125), respectively. The prevalence of these pathogens was significantly higher in dead engorged females (83.3%, 20/24) than in eggs (5%, 1/20) and molted ticks (8.6%, 7/81). Our study indicated that H. flava ticks could be infected with multiple species of tickborne pathogens including Anaplasma, C. burnetti, Ehrlichia, and Rickettsia in Central China, and the prevalence of these pathogens was reduced during transovarial and transstadial transmission in ticks, suggesting that ticks may not be real reservoirs but only vectors for these tickborne pathogens.
Collapse
Affiliation(s)
- Li-Zhu Fang
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan 430071, China; (L.-Z.F.); (S.-C.L.); (X.X.); (J.-W.L.); (X.-Q.G.); (H.Y.)
| | - Si-Cong Lei
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan 430071, China; (L.-Z.F.); (S.-C.L.); (X.X.); (J.-W.L.); (X.-Q.G.); (H.Y.)
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | | | - Xiao Xiao
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan 430071, China; (L.-Z.F.); (S.-C.L.); (X.X.); (J.-W.L.); (X.-Q.G.); (H.Y.)
- Lab Animal Research Center, Hubei University of Chinese Medicine, Wuhan 430000, China
| | - Jian-Wei Liu
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan 430071, China; (L.-Z.F.); (S.-C.L.); (X.X.); (J.-W.L.); (X.-Q.G.); (H.Y.)
| | - Xiao-Qing Gong
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan 430071, China; (L.-Z.F.); (S.-C.L.); (X.X.); (J.-W.L.); (X.-Q.G.); (H.Y.)
| | - Hao Yu
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan 430071, China; (L.-Z.F.); (S.-C.L.); (X.X.); (J.-W.L.); (X.-Q.G.); (H.Y.)
| | - Xue-Jie Yu
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan 430071, China; (L.-Z.F.); (S.-C.L.); (X.X.); (J.-W.L.); (X.-Q.G.); (H.Y.)
- Correspondence:
| |
Collapse
|
22
|
Identification of recently identified tick-borne viruses (Dabieshan tick virus and SFTSV) by metagenomic analysis in ticks from Shandong Province, China. J Infect 2020; 81:973-978. [PMID: 33115659 DOI: 10.1016/j.jinf.2020.10.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/30/2020] [Accepted: 10/23/2020] [Indexed: 11/24/2022]
Abstract
The aim of this study is to systematically examine the variety of viruses maintained in ticks from Shandong Province. A total of 2522 ticks were sampled from five cities of Shandong Province and divided into 264 pools according to location and species. Viral megagenomic analysis revealed the sequences of two viruses, Dabieshan tick virus and SFTSV. Then qRT-PCR and nested PCR were performed to confirm the presence of corresponding pathogens, which showed positive results for Dabieshan tick virus and SFTSV, with a minimum infection rate of 0.67% (17/2522) and 2.5% (63/2522), respectively. Phylogenetic analysis showed that Dabieshan tick virus formed a monophyletic cluster with the Yongjia tick virus and Uukuniemi virus from China, and SFTSV shared over 95% identity with human and animal derived isolates. These findings are the first time to demonstrate molecular evidence of Dabieshan tick virus in unrecognized endemic regions and indicate the need for further investigation.
Collapse
|
23
|
Liu L, He XM, Feng LL, Duan DY, Zhan Y, Cheng TY. Cloning of four HSPA multigene family members in Haemaphysalis flava ticks. MEDICAL AND VETERINARY ENTOMOLOGY 2020; 34:192-200. [PMID: 31802518 DOI: 10.1111/mve.12423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/29/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
The heat shock protein 70 (HSPA) family and their genes have been studied in ticks and are considered as possible antigen candidates for the development of anti-tick vaccines. However, knowledge about their members, structure and function in ticks is incomplete. Based on our transcriptomic data, the full length of four HSPA genes in Haemaphysalis flava (Acari: Ixodidae) was cloned via rapid amplification of cDNA ends. The open reading frame of HSPA2A, HSPA2B, HSPA5 and HSPA9 was 1920, 1911, 1983 and 2088 bp in length, respectively. Three family signatures and one localization motif were in the encoding proteins. HSPA2A and HSPA2B were predicted to be located at cytoplasm/nucleus, whereas HSPA5 and HSPA9 were at endoplasmic reticulum and mitochondria, respectively. In silico simulation demonstrated that those proteins had distinct numbers of α-helixes, extended strands and coils, and different antigenic epitopes. Expression of HSPA5 and HSPA9 in the salivary gland was significantly higher in partially-engorged female adult ticks than the fully-engorged (P < 0.01) as shown by a quantitative polymerase chain reaction. Our data indicated that H. flava ticks had at least four HSPA genes encoding proteins with different cellular locations, structures and expression profiles, suggesting their diverse roles in tick biology.
Collapse
Affiliation(s)
- L Liu
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, Hunan, China
| | - X-M He
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, Hunan, China
| | - L-L Feng
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, Hunan, China
| | - D-Y Duan
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, Hunan, China
| | - Y Zhan
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, Hunan, China
| | - T-Y Cheng
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
24
|
Sustained RNA virome diversity in Antarctic penguins and their ticks. ISME JOURNAL 2020; 14:1768-1782. [PMID: 32286545 PMCID: PMC7305176 DOI: 10.1038/s41396-020-0643-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 01/07/2023]
Abstract
Despite its isolation and extreme climate, Antarctica is home to diverse fauna and associated microorganisms. It has been proposed that the most iconic Antarctic animal, the penguin, experiences low pathogen pressure, accounting for their disease susceptibility in foreign environments. There is, however, a limited understanding of virome diversity in Antarctic species, the extent of in situ virus evolution, or how it relates to that in other geographic regions. To assess whether penguins have limited microbial diversity we determined the RNA viromes of three species of penguins and their ticks sampled on the Antarctic peninsula. Using total RNA sequencing we identified 107 viral species, comprising likely penguin associated viruses (n = 13), penguin diet and microbiome associated viruses (n = 82), and tick viruses (n = 8), two of which may have the potential to infect penguins. Notably, the level of virome diversity revealed in penguins is comparable to that seen in Australian waterbirds, including many of the same viral families. These data run counter to the idea that penguins are subject to lower pathogen pressure. The repeated detection of specific viruses in Antarctic penguins also suggests that rather than being simply spill-over hosts, these animals may act as key virus reservoirs.
Collapse
|
25
|
Gao WH, Lin XD, Chen YM, Xie CG, Tan ZZ, Zhou JJ, Chen S, Holmes EC, Zhang YZ. Newly identified viral genomes in pangolins with fatal disease. Virus Evol 2020; 6:veaa020. [PMID: 32296543 PMCID: PMC7151644 DOI: 10.1093/ve/veaa020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epizootic pathogens pose a major threat to many wildlife species, particularly in the context of rapidly changing environments. Pangolins (order Pholidota) are highly threatened mammals, in large part due to the trade in illegal wildlife. During July to August 2018 four sick wild pangolins (three Manis javanica and one Manis pentadactyla) exhibiting a variety of clinical symptoms were rescued by the Jinhua Wildlife Protection Station in Zhejiang province, China. Although three of these animals died, fortunately one recovered after 2 weeks of symptomatic treatment. Using meta-transcriptomics combined with reverse transcription polymerase chain reaction (RT-PCR), we identified two novel RNA viruses in two of the dead pangolins. Genomic analysis revealed that these viruses were most closely related to pestiviruses and coltiviruses, although still highly genetically distinct, with more than 48 and 25 per cent sequence divergence at the amino acid level, respectively. We named these Dongyang pangolin virus (DYPV) and Lishui pangolin virus (LSPV) based on the sampling site and hosts. Although coltiviruses (LSPV) are known to be transmitted by ticks, we found no evidence of LSPV in ticks sampled close to where the pangolins were collected. In addition, although DYPV was present in nymph ticks (Amblyomma javanense) collected from a diseased pangolin, they were not found in the local tick population. Epidemiological investigation revealed that both novel viruses might have been imported following the illegal international trade of pangolins. Hence, these data indicate that illegal wildlife trafficking not only threatens the status of pangolin populations, but may also spread epizootic pathogens.
Collapse
Affiliation(s)
- Wen-Hua Gao
- Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xian-Dan Lin
- Wenzhou Center for Disease Control and Prevention, Wenzhou, 325001, Zhejiang, China
| | - Yan-Mei Chen
- Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,Shanghai Public Health Clinical Center & School of Life Science, Fudan University, Shanghai, 201052, China
| | - Chun-Gang Xie
- Jinhua Wildlife Protection Station, Jinhua Forestry Bureau, Jinhua, 321000, Zhejiang, China
| | - Zhi-Zhou Tan
- Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jia-Jun Zhou
- Zhejiang Forest Resource Monitoring Center, Hangzhou, 310020, Zhejiang, China
| | - Shuai Chen
- Wenzhou Center for Disease Control and Prevention, Wenzhou, 325001, Zhejiang, China
| | - Edward C Holmes
- Shanghai Public Health Clinical Center & School of Life Science, Fudan University, Shanghai, 201052, China.,Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yong-Zhen Zhang
- Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,Shanghai Public Health Clinical Center & School of Life Science, Fudan University, Shanghai, 201052, China
| |
Collapse
|
26
|
Ergünay K. Revisiting new tick-associated viruses: what comes next? Future Virol 2020. [DOI: 10.2217/fvl-2019-0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tick-borne viral infections continue to cause diseases with considerable impact on humans, livestock, companion animals and wildlife. Many lack specific therapeutics and vaccines are available for only a few. Tick-borne viruses will continue to emerge, facilitated by anthroponotic factors related to the modern lifestyle. We persistently identify and are obliged to cope with new examples of emerging tick-borne viral diseases and novel viruses today. Many new strains have been detected in vertebrates and arthropods, some causing severe diseases likely to challenge public and veterinary health. This manuscript aims to provide a narrative overview of recently-described tick-associated viruses, with perspectives on changing paradigms in identification, screening and control.
Collapse
Affiliation(s)
- Koray Ergünay
- Hacettepe University, Faculty of Medicine, Department of Medical Microbiology, Virology Unit, Ankara 06100, Turkey
| |
Collapse
|
27
|
Kobayashi D, Murota K, Itokawa K, Ejiri H, Amoa-Bosompem M, Faizah AN, Watanabe M, Maekawa Y, Hayashi T, Noda S, Yamauchi T, Komagata O, Sawabe K, Isawa H. RNA virome analysis of questing ticks from Hokuriku District, Japan, and the evolutionary dynamics of tick-borne phleboviruses. Ticks Tick Borne Dis 2019; 11:101364. [PMID: 31928929 DOI: 10.1016/j.ttbdis.2019.101364] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/13/2019] [Accepted: 12/21/2019] [Indexed: 01/23/2023]
Abstract
Tick-borne viruses have emerged recently in many parts of the world, and the discoveries of novel tick-borne viruses have been accelerated by the development of high-throughput sequencing technology. In this study, a cost-efficient small benchtop next-generation sequencer, the Illumina MiniSeq, was used for the RNA virome analysis of questing ticks collected from Hokuriku District, Japan, and assessed for their potential utility in a tick-borne virus surveillance system. We detected two phleboviruses [Kabuto Mountain virus (KAMV) and Okutama tick virus (OKTV)], a coltivirus [Tarumizu tick virus (TarTV)], and a novel iflavirus [Hamaphysalis flava iflavirus (HfIFV)] from tick homogenates and/or cell culture supernatants after virus isolation processes. The number of sequence reads from KAMV and TarTV markedly increased when cell culture supernatants were used, indicating a successful isolation of these viruses. In contrast, OKTV and HfIFV were detected only in tick homogenates but not from cell culture supernatants, suggesting a failure to isolate these viruses. Furthermore, we performed genomic and phylogenetic analyzes of these detected viruses. OKTV and some phleboviruses discovered recently by NGS-based methods were probably deficient in the M genome segment, which are herein proposed as M segment-deficient phlebovirus (MdPV). A phylogenetic analysis of phleboviruses, including MdPV, suggested that Uukuniemi and Kaisodi group viruses and kabutoviruses evolved from an ancestral MdPV, which provides insights into the evolutionary dynamics of phleboviruses as emerging pathogens.
Collapse
Affiliation(s)
- Daisuke Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Department of Research Promotion, Japan Agency for Medical Research and Development, 20F Yomiuri Shimbun Bldg. 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Katsunori Murota
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Kyushu Research Station, National Institute of Animal Health, NARO, 2702 Chuzan, Kagoshima 891-0105, Japan
| | - Kentaro Itokawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Pathogen genomics center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Hiroko Ejiri
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Division of infectious Diseases Epidemiology and Control, National Defense Medical Research Institute, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Michael Amoa-Bosompem
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Astri Nur Faizah
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Mamoru Watanabe
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yoshihide Maekawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Toshihiko Hayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Shinichi Noda
- Research Center for the Pacific Islands, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-8580, Japan
| | - Takeo Yamauchi
- Laboratory of Entomology, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Osamu Komagata
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| |
Collapse
|
28
|
Characterization of Novel Reoviruses Wad Medani Virus (Orbivirus) and Kundal Virus (Coltivirus) Collected from Hyalomma anatolicum Ticks in India during Surveillance for Crimean Congo Hemorrhagic Fever. J Virol 2019; 93:JVI.00106-19. [PMID: 30971476 DOI: 10.1128/jvi.00106-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/20/2019] [Indexed: 11/20/2022] Open
Abstract
In 2011, ticks were collected from livestock following an outbreak of Crimean Congo hemorrhagic fever (CCHF) in Gujarat state, India. CCHF-negative Hyalomma anatolicum tick pools were passaged for virus isolation, and two virus isolates were obtained, designated Karyana virus (KARYV) and Kundal virus (KUNDV), respectively. Traditional reverse transcription-PCR (RT-PCR) identification of known viruses was unsuccessful, but a next-generation sequencing (NGS) approach identified KARYV and KUNDV as viruses in the Reoviridae family, Orbivirus and Coltivirus genera, respectively. Viral genomes were de novo assembled, yielding 10 complete segments of KARYV and 12 nearly complete segments of KUNDV. The VP1 gene of KARYV shared a most recent common ancestor with Wad Medani virus (WMV), strain Ar495, and based on nucleotide identity we demonstrate that it is a novel WMV strain. The VP1 segment of KUNDV shares a common ancestor with Colorado tick fever virus, Eyach virus, Tai Forest reovirus, and Tarumizu tick virus from the Coltivirus genus. Based on VP1, VP6, VP7, and VP12 nucleotide and amino acid identities, KUNDV is proposed to be a new species of Coltivirus Electron microscopy supported the classification of KARYV and KUNDV as reoviruses and identified replication morphology consistent with other orbi- and coltiviruses. The identification of novel tick-borne viruses carried by the CCHF vector is an important step in the characterization of their potential role in human and animal pathogenesis.IMPORTANCE Ticks and mosquitoes, as well Culicoides, can transmit viruses in the Reoviridae family. With the help of next-generation sequencing (NGS), previously unreported reoviruses such as equine encephalosis virus, Wad Medani virus (WMV), Kammavanpettai virus (KVPTV), and, with this report, KARYV and KUNDV have been discovered and characterized in India. The isolation of KUNDV and KARYV from Hyalomma anatolicum, which is a known vector for zoonotic pathogens, such as Crimean Congo hemorrhagic fever virus, Babesia, Theileria, and Anaplasma species, identifies arboviruses with the potential to transmit to humans. Characterization of KUNDV and KARYV isolated from Hyalomma ticks is critical for the development of specific serological and molecular assays that can be used to determine the association of these viruses with disease in humans and livestock.
Collapse
|
29
|
Sato K, Takano A, Gaowa, Ando S, Kawabata H. Epidemics of tick-borne infectious diseases in Japan. ACTA ACUST UNITED AC 2019. [DOI: 10.7601/mez.70.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kozue Sato
- National Institute of Infectious Diseases
| | - Ai Takano
- Joint Faculty of Veterinary Medicine, Yamaguchi University
| | - Gaowa
- Department of Medicine, Hetao College
| | - Shuji Ando
- National Institute of Infectious Diseases
| | | |
Collapse
|
30
|
Extensive Diversity of RNA Viruses in Australian Ticks. J Virol 2019; 93:JVI.01358-18. [PMID: 30404810 PMCID: PMC6340049 DOI: 10.1128/jvi.01358-18] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/13/2018] [Indexed: 12/25/2022] Open
Abstract
Each year a growing number of individuals along the east coast of Australia experience debilitating disease following tick bites. As there is no evidence for the presence of the causative agent of Lyme disease, Borrelia burgdorferisensu lato, in Australian ticks, the etiological basis of this disease syndrome remains controversial. To characterize the viruses associated with Australian ticks, particularly those that might be associated with mammalian infection, we performed unbiased RNA sequencing on 146 ticks collected across two locations along the coast of New South Wales, Australia. This revealed 19 novel RNA viruses from a diverse set of families. Notably, three of these viruses clustered with known mammalian viruses, including a novel coltivirus that was related to the human pathogen Colorado tick fever virus. Understanding the microbiome of ticks in Australia is of considerable interest given the ongoing debate over whether Lyme disease and its causative agent, the bacterium Borrelia burgdorferisensu lato, are present in Australia. The diversity of bacteria infecting Australian ticks has been studied using both culture- and metagenomics-based techniques. However, little is known about the virome of Australian ticks, including whether this includes viruses with the potential to infect mammals. We used a meta-transcriptomics approach to reveal the diversity and evolution of viruses from Australian ticks collected from two locations on the central east coast of Australia, including metropolitan Sydney. From this we identified 19 novel RNA viruses belonging to 12 families, as well as 1 previously described RNA virus. The majority of these viruses were related to arthropod-associated viruses, suggesting that they do not utilize mammalian hosts. However, two novel viruses discovered in ticks feeding on bandicoot marsupials clustered closely within the mammal-associated hepacivirus and pestivirus groups (family Flaviviridae). Another bandicoot tick yielded a novel coltivirus (family Reoviridae), a group of largely tick-associated viruses containing the known human pathogen Colorado tick fever virus and its relative, Eyach virus. Importantly, our transcriptomic data provided no evidence for the presence of B. burgdorferisensu lato in any tick sample, providing further evidence against the presence of Lyme disease in Australia. In sum, this study reveals that Australian ticks harbor a diverse virome, including some viruses that merit additional screening in the context of emerging infectious disease. IMPORTANCE Each year a growing number of individuals along the east coast of Australia experience debilitating disease following tick bites. As there is no evidence for the presence of the causative agent of Lyme disease, Borrelia burgdorferisensu lato, in Australian ticks, the etiological basis of this disease syndrome remains controversial. To characterize the viruses associated with Australian ticks, particularly those that might be associated with mammalian infection, we performed unbiased RNA sequencing on 146 ticks collected across two locations along the coast of New South Wales, Australia. This revealed 19 novel RNA viruses from a diverse set of families. Notably, three of these viruses clustered with known mammalian viruses, including a novel coltivirus that was related to the human pathogen Colorado tick fever virus.
Collapse
|