1
|
Zhao Y, Zhang X, Mu T, Wu X. Complete genome sequence of a novel partitivirus with a dsRNA3 segment, isolated from Fusarium commune strain CP-SX-3 causing strawberry root rot. Arch Virol 2024; 169:60. [PMID: 38430446 DOI: 10.1007/s00705-024-06004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/24/2024] [Indexed: 03/03/2024]
Abstract
A novel partitivirus, Fusarium commune partitivirus 1 (FcoPV1), was identified in Fusarium commune strain CP-SX-3 isolated from diseased roots of strawberry with symptoms of root rot. The complete genome of FcoPV1 comprises three double-stranded RNAs (dsRNAs): dsRNA1 (1,825 nt), dsRNA2 (1,592 nt), and dsRNA3 (1,421 nt). dsRNA1 contains a single open reading frame (ORF1) encoding an RNA-dependent RNA polymerase (RdRp), and dsRNA2 contains a single ORF (ORF2) encoding a coat protein (CP). dsRNA3 is a possible satellite RNA that does not appear to encode a known protein. BLASTp analysis revealed that RdRp (86.59%) and CP (74.13%) encoded by the two ORFs (ORF1 and ORF2) had the highest sequence similarity to their counterparts in Fusarium equiseti partitivirus 1 (FePV1). Phylogenetic analysis based on the complete amino acid sequence of RdRp suggested that FcoPV1 should be considered a member of a new species in the proposed genus "Zetapartitivirus" within the family Partitiviridae. To the best of our knowledge, this is the first report of a zetapartitivirus infecting phytopathogenic F. commune.
Collapse
Affiliation(s)
- Yumeng Zhao
- Department of Plant Pathology, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China
- Liaoning Institute of Pomology, Yingkou City, Liaoning, 115009, People's Republic of China
| | - Xinyi Zhang
- Department of Plant Pathology, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China
| | - Tongyu Mu
- Department of Plant Pathology, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China
| | - Xuehong Wu
- Department of Plant Pathology, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
2
|
Khan HA, Baig DI, Bhatti MF. An Overview of Mycoviral Curing Strategies Used in Evaluating Fungal Host Fitness. Mol Biotechnol 2023; 65:1547-1564. [PMID: 36841858 PMCID: PMC9963364 DOI: 10.1007/s12033-023-00695-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/11/2023] [Indexed: 02/27/2023]
Abstract
The number of novel mycoviruses is increasing at a high pace due to advancements in sequencing technologies. As a result, an uncountable number of mycoviral sequences are available in public sequence repositories. However, only genomic information is not sufficient to understand the impact of mycoviruses on their host biology. Biological characterization is required to determine the nature of mycoviruses (cryptic, hypervirulent, or hypovirulent) and to search for mycoviruses with biocontrol and therapeutic potential. Currently, no particular selective method is used as the gold standard against these mycoviral infections. Given the importance of curing, we present an overview of procedures used in preparation of isogenic lines, along with their benefits and drawbacks. We concluded that a combination of single-spore isolation and hyphal tipping is the best fit for preparation of isogenic lines. Furthermore, recent bioinformatic approaches should be introduced in the field of mycovirology to predict virus-specific antivirals to get robust results.
Collapse
Affiliation(s)
- Haris Ahmed Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000 Pakistan
- Department of Biotechnology, University of Mianwali, Punjab, 42200 Pakistan
| | - Danish Ilyas Baig
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000 Pakistan
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000 Pakistan
| |
Collapse
|
3
|
Wang P, Yang G, Shi N, Zhao C, Hu F, Coutts RHA, Kotta-Loizou I, Huang B. A novel partitivirus orchestrates conidiation, stress response, pathogenicity, and secondary metabolism of the entomopathogenic fungus Metarhizium majus. PLoS Pathog 2023; 19:e1011397. [PMID: 37216409 DOI: 10.1371/journal.ppat.1011397] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/01/2023] [Indexed: 05/24/2023] Open
Abstract
Mycoviruses are widely present in all major groups of fungi but those in entomopathogenic Metarhizium spp. remain understudied. In this investigation, a novel double-stranded (ds) RNA virus is isolated from Metarhizium majus and named Metarhizium majus partitivirus 1 (MmPV1). The complete genome sequence of MmPV1 comprises two monocistronic dsRNA segments (dsRNA 1 and dsRNA 2), which encode an RNA-dependent RNA polymerase (RdRp) and a capsid protein (CP), respectively. MmPV1 is classified as a new member of the genus Gammapartitivirus in the family Partitiviridae based on phylogenetic analysis. As compared to an MmPV1-free strain, two isogenic MmPV1-infected single-spore isolates were compromised in terms of conidiation, and tolerance to heat shock and UV-B irradiation, while these phenotypes were accompanied by transcriptional suppression of multiple genes involved in conidiation, heat shock response and DNA damage repair. MmPV1 attenuated fungal virulence since infection resulted in reduced conidiation, hydrophobicity, adhesion, and cuticular penetration. Additionally, secondary metabolites were significantly altered by MmPV1 infection, including reduced production of triterpenoids, and metarhizins A and B, and increased production of nitrogen and phosphorus compounds. However, expression of individual MmPV1 proteins in M. majus had no impact on the host phenotype, suggesting insubstantive links between defective phenotypes and a single viral protein. These findings indicate that MmPV1 infection decreases M. majus fitness to its environment and its insect-pathogenic lifestyle and environment through the orchestration of the host conidiation, stress tolerance, pathogenicity, and secondary metabolism.
Collapse
Affiliation(s)
- Ping Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Guogen Yang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Najie Shi
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Cheng Zhao
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Fenglin Hu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Robert H A Coutts
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| |
Collapse
|
4
|
Hough B, Steenkamp E, Wingfield B, Read D. Fungal Viruses Unveiled: A Comprehensive Review of Mycoviruses. Viruses 2023; 15:1202. [PMID: 37243288 PMCID: PMC10224137 DOI: 10.3390/v15051202] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Mycoviruses (viruses of fungi) are ubiquitous throughout the fungal kingdom and are currently classified into 23 viral families and the genus botybirnavirus by the International Committee on the Taxonomy of Viruses (ICTV). The primary focus of mycoviral research has been on mycoviruses that infect plant pathogenic fungi, due to the ability of some to reduce the virulence of their host and thus act as potential biocontrol against these fungi. However, mycoviruses lack extracellular transmission mechanisms and rely on intercellular transmission through the hyphal anastomosis, which impedes successful transmission between different fungal strains. This review provides a comprehensive overview of mycoviruses, including their origins, host range, taxonomic classification into families, effects on their fungal counterparts, and the techniques employed in their discovery. The application of mycoviruses as biocontrol agents of plant pathogenic fungi is also discussed.
Collapse
Affiliation(s)
| | | | - Brenda Wingfield
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria 0002, South Africa; (B.H.); (E.S.); (D.R.)
| | | |
Collapse
|
5
|
Diversity of Mycoviruses Present in Strains of Binucleate Rhizoctonia and Multinucleate Rhizoctonia, Causal Agents for Potato Stem Canker or Black Scurf. J Fungi (Basel) 2023; 9:jof9020214. [PMID: 36836328 PMCID: PMC9967303 DOI: 10.3390/jof9020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
In this study, the diversity of putative mycoviruses present in 66 strains of binucleate Rhizoctonia (BNR, including anastomosis group (AG)-A, AG-Fa, AG-K, and AG-W) and 192 strains of multinucleate Rhizoctonia (MNR, including AG-1-IA, AG-2-1, AG-3 PT, AG-4HGI, AG-4HGII, AG-4HGIII, and AG-5), which are the causal agents of potato stem canker or black scurf, was studied using metatranscriptome sequencing. The number of contigs related to mycoviruses identified from BNR and MNR was 173 and 485, respectively. On average, each strain of BNR accommodated 2.62 putative mycoviruses, while each strain of MNR accommodated 2.53 putative mycoviruses. Putative mycoviruses detected in both BNR and MNR contained positive single-stranded RNA (+ssRNA), double-stranded RNA (dsRNA), and negative single-stranded RNA (-ssRNA) genomes, with +ssRNA genome being the prevalent nucleic acid type (82.08% in BNR and 75.46% in MNR). Except for 3 unclassified, 170 putative mycoviruses found in BNR belonged to 13 families; excluding 33 unclassified, 452 putative mycoviruses found in MNR belonged to 19 families. Through genome organization, multiple alignments, and phylogenetic analyses, 4 new parititviruses, 39 novel mitoviruses, and 4 new hypoviruses with nearly whole genome were detected in the 258 strains of BNR and MNR.
Collapse
|
6
|
Novel Mycoviruses Discovered from a Metatranscriptomics Survey of the Phytopathogenic Alternaria Fungus. Viruses 2022; 14:v14112552. [PMID: 36423161 PMCID: PMC9693364 DOI: 10.3390/v14112552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Alternaria fungus can cause notable diseases in cereals, ornamental plants, vegetables, and fruits around the world. To date, an increasing number of mycoviruses have been accurately and successfully identified in this fungus. In this study, we discovered mycoviruses from 78 strains in 6 species of the genus Alternaria, which were collected from 10 pear production areas using high-throughput sequencing technology. Using the total RNA-seq, we detected the RNA-dependent RNA polymerase of 19 potential viruses and the coat protein of two potential viruses. We successfully confirmed these viruses using reverse transcription polymerase chain reaction with RNA as the template. We identified 12 mycoviruses that were positive-sense single-stranded RNA (+ssRNA) viruses, 5 double-strand RNA (dsRNA) viruses, and 4 negative single-stranded RNA (-ssRNA) viruses. In these viruses, five +ssRNA and four -ssRNA viruses were novel mycoviruses classified into diverse the families Botourmiaviridae, Deltaflexivirus, Mymonaviridea, and Discoviridae. We identified a novel -ssRNA mycovirus isolated from an A. tenuissima strain HB-15 as Alternaria tenuissima negative-stranded RNA virus 2 (AtNSRV2). Additionally, we characterized a novel +ssRNA mycovirus isolated from an A. tenuissima strain SC-8 as Alternaria tenuissima deltaflexivirus 1 (AtDFV1). According to phylogenetic and sequence analyses, we determined that AtNSRV2 was related to the viruses of the genus Sclerotimonavirus in the family Mymonaviridae. We also found that AtDFV1 was related to the virus family Deltaflexivirus. This study is the first to use total RNA sequencing to characterize viruses in Alternaria spp. These results expand the number of Alternaria viruses and demonstrate the diversity of these mycoviruses.
Collapse
|
7
|
Characterization of a novel alternavirus infecting the fungal pathogen Fusarium solani. Virus Res 2022; 317:198817. [DOI: 10.1016/j.virusres.2022.198817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 11/20/2022]
|
8
|
Li B, Cao Y, Ji Z, Zhang J, Meng X, Dai P, Hu T, Wang S, Cao K, Wang Y. Coinfection of Two Mycoviruses Confers Hypovirulence and Reduces the Production of Mycotoxin Alternariol in Alternaria alternata f. sp. mali. Front Microbiol 2022; 13:910712. [PMID: 35756001 PMCID: PMC9218907 DOI: 10.3389/fmicb.2022.910712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/28/2022] [Indexed: 11/22/2022] Open
Abstract
Alternaria leaf blotch caused by Alternaria alternata apple pathotype (Alternaria mali) is an important fungal disease that affects the production of apples worldwide. Mycoviruses harbored in plant pathogenic fungi can confer hypovirulence in their hosts and have attracted widespread attention as potential biocontrol tools. In this study, the coinfection of two mycoviruses, named A. alternata chrysovirus 1 strain QY2 (AaCV1-QY2) and A. alternata magoulivirus 1 (AaMV1), respectively, were isolated from A. alternata f. sp. mali strain QY21. Sequence analyses revealed that AaCV1-QY2 virus belonged to the genus Betachrysovirus and AaMV1 virus belonged to the genus Magoulvirus. These two mycoviruses were found to be associated with hypovirulence in A. alternata, among which AaCV1-QY2 might play a relatively leading role. Because the elimination of AaMV1 from the strain QY21 does not affect the hypovirulence trait, which indicates that the virus AaCV1-QY2 can independently induce slow growth and reduce host virulence. Moreover, the presence of viruses decreased the accumulation of the mycotoxin alternariol (AOH) in A. alternata strains. Intriguingly, AaCV1-QY2/AaMV1 mycoviruses can be horizontally transmitted to other A. alternata strains, and this coinfection can promote the interspecific transmission efficiency of AaCV1-QY2. To our knowledge, this study reports the first description of the member of Chrysovirus is related to hypovirulence in Alternaria spp. that facilitates the development of biocontrol measures of A. mali Roberts.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Yuhan Cao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Zixuan Ji
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jingyi Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Xianglong Meng
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Pengbo Dai
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Tongle Hu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Shutong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Keqiang Cao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Yanan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| |
Collapse
|
9
|
Li Y, Li S, Liang Z, Cai Q, Zhou T, Zhao C, Wu X. RNA-seq Analysis of Rhizoctonia solani AG-4HGI Strain BJ-1H Infected by a New Viral Strain of Rhizoctonia solani Partitivirus 2 Reveals a Potential Mechanism for Hypovirulence. PHYTOPATHOLOGY 2022; 112:1373-1385. [PMID: 34965159 DOI: 10.1094/phyto-08-21-0349-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rhizoctonia solani partitivirus 2 (RsPV2), in the genus Alphapartitivirus, confers hypovirulence on R. solani AG-1-IA, the causal agent of rice sheath blight. In this study, a new strain of RsPV2 obtained from R. solani AG-4HGI strain BJ-1H, the causal agent of black scurf on potato, wasidentified and designated as Rhizoctonia solani partitivirus 2 strain BJ-1H (RsPV2-BJ). An RNA sequencing analysis of strain BJ-1H and the virus RsPV2-BJ-free strain BJ-1H-VF derived from strain BJ-1H was conducted to investigate the potential molecular mechanism of hypovirulence induced by RsPV2-BJ. In total, 14,319 unigenes were obtained, and 1,341 unigenes were identified as differentially expressed genes (DEGs), with 570 DEGs being down-regulated and 771 being up-regulated. Notably, several up-regulated DEGs were annotated to cell wall degrading enzymes, including β-1,3-glucanases. Strain BJ-1H exhibited increased expression of β-1,3-glucanase after RsPV2-BJ infection, suggesting that cell wall autolysis activity in R. solani AG-4HGI strain BJ-1H might be promoted by RsPV2-BJ, inducing hypovirulence in its host fungus R. solani AG-4HGI. To the best of our knowledge, this is the first report on the potential mechanism of hypovirulence induced by a mycovirus in R. solani.
Collapse
Affiliation(s)
- Yuting Li
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Siwei Li
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Zhijian Liang
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Qingnian Cai
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Tao Zhou
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Can Zhao
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
- College of Horticulture, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| |
Collapse
|
10
|
Ma G, Wu C, Li Y, Mi Y, Zhou T, Zhao C, Wu X. Identification and genomic characterization of a novel polymycovirus from Alternaria alternata causing watermelon leaf blight. Arch Virol 2021; 167:223-227. [PMID: 34636952 DOI: 10.1007/s00705-021-05272-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/29/2021] [Indexed: 11/25/2022]
Abstract
A double-stranded RNA (dsRNA) mycovirus from the phytopathogenic fungus Alternaria alternata, which causes watermelon leaf blight, was characterized. The genome of this virus has eight dsRNA segments, ranging from 1039 bp to 2398 bp. DsRNAs 1-6 each contain a single large open reading frame (ORF), while dsRNAs 7 and 8 each dsRNA contain two ORFs. The RNA-dependent RNA polymerase (RdRp) encoded by dsRNA1 and the viral methyltransferase encoded by dsRNA3 share 97.6% and 98.9% amino acid sequence identity, respectively, with the corresponding proteins of Plasmopara viticola lesion associated polymycovirus 1. The dsRNA5-encoded proline-alanine-serine-rich protein shows 48.1% sequence identity to that of Beauveria bassiana polymycovirus 3. The proteins encoded on dsRNAs 2, 4, and 8 have 99.7%, 98.2%, and 65.1% sequence identity, respectively, to the corresponding proteins of a mycovirus identified in Alternaria sp. FA0703 (AltR1). The proteins encoded by dsRNAs 6 and 7 do not match any known proteins of mycoviruses. Phylogenetic analysis of the RdRp domain showed that the virus clustered with members of the family Polymycoviridae. Based on these characteristics, the mycovirus was identified as a polymycovirus and designated as "Alternaria alternata polymycovirus 1" (AaPmV1). This is the first report of a polymycovirus associated with A. alternata.
Collapse
Affiliation(s)
- Guoping Ma
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.,Institute of Plant Protection, Shandong Academy of Agricultural Sciences/Shandong Key Laboratory of Plant Virology, Jinan, 250100, People's Republic of China
| | - Chunyan Wu
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yuting Li
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yiran Mi
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Tao Zhou
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Can Zhao
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China. .,College of Horticulture, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China.
| | - Xuehong Wu
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
11
|
Complete genome sequence of the first chrysovirus from the phytopathogenic fungus Alternaria solani on potato in China. Arch Virol 2021; 166:3493-3497. [PMID: 34622361 DOI: 10.1007/s00705-021-05263-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
The complete genome sequence of a double-stranded RNA (dsRNA) mycovirus that was isolated from Alternaria solani strain DT-10 causing potato foliar disease was determined. The virus, designated as "Alternaria solani chrysovirus 1" (AsCV1), has four dsRNA segments (dsRNA 1-4) with a length of 3600 bp, 3128 bp, 2996 bp, and 2714 bp, respectively. The RNA-dependent RNA polymerase (RdRp, 1084 amino acids [aa]), putative capsid protein (905 aa), alphachryso-P3 (835 aa), and alphachryso-P4 (729 aa) were encoded by dsRNA1, dsRNA2, dsRNA3, and dsRNA4, respectively, which had the highest sequence identity of 41.77%-72.38% to their counterparts in Helminthosporium victoriae virus 145S (HvV145S) of the genus Alphachrysovirus, family Chrysoviridae. Moreover, the 5'-untranslated regions (UTRs) of AsCV1 dsRNA 1-4, which contained several unique inserts (3-37 bp) and deletions (5-64 bp), shared 51.65%-68.01% identity with those of HvV145S. Phylogenetic analysis based on RdRp sequences showed that AsCV1 clustered the most closely with HvV145S. Considering its distinct host specificity, the low sequence similarity of its encoded proteins to those of other viruses, the unusual features of the 5'-UTRs of its dsRNA 1-4, and the phylogenetic position of its RdRp gene, AsCV1 should be considered a member of a new species in the genus Alphachrysovirus. To the best of our knowledge, this is the first alphachrysovirus identified from phytopathogenic A. solani.
Collapse
|
12
|
Molecular characterization of a novel fusarivirus infecting the plant-pathogenic fungus Alternaria solani. Arch Virol 2021; 166:2063-2067. [PMID: 33983501 DOI: 10.1007/s00705-021-05105-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
A novel mycovirus belonging to the proposed family "Fusariviridae" was discovered in Alternaria solani by sequencing a cDNA corresponding to double-stranded RNA extracted from this phytopathogenic fungus. The virus was tentatively named "Alternaria solani fusarivirus 1" (AsFV1). AsFV1 has a single-stranded positive-sense (+ssRNA) genome of 6845 nucleotides containing three open reading frames (ORFs) and a poly(A) tail. The largest ORF, ORF1, encodes a large polypeptide of 1,556 amino acids (aa) with conserved RNA-dependent RNA polymerase and helicase domains. The ORF2 and ORF3 have overlapping regions, encoding a putative protein of 522 amino acids (aa) and a putative protein of 105 amino acids (aa), respectively, both of unknown function. A multiple sequence alignment and phylogenetic analysis revealed that AsFV1 could be a new member of the "Fusariviridae". This is the first report of the full-length nucleotide sequence of a fusarivirus that infects Alternaria solani.
Collapse
|
13
|
Mahillon M, Decroës A, Caulier S, Tiendrebeogo A, Legrève A, Bragard C. Genomic and biological characterization of a novel partitivirus infecting Fusarium equiseti. Virus Res 2021; 297:198386. [PMID: 33716183 DOI: 10.1016/j.virusres.2021.198386] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022]
Abstract
This study describes a new mycovirus infecting a strain from the Fusarium incarnatum-equiseti species complex. Based on phylogenetic and genomic analyses, this virus belongs to the recently proposed genus "Zetapartitivirus" in the family Partitiviridae. The name "Fusarium equiseti partitivirus 1″ (FePV1) is therefore suggested for this novel viral species. Similar to other partitiviruses, FePV1 genome is composed by two dsRNA segments that exhibit each one large ORF encoding for an RdRp and a CP, respectively. A smaller dsRNA was also detected in infected mycelium and could be a satellite RNA of FePV1. In addition to characterized zetapartitiviruses, other FePV1-related sequences were retrieved from online databases and their significance is discussed. Following conidial isolation, an FePV1-free isogenic line of the fungal host was obtained. In comparison with the original infected strain, this line showed higher growth, biomass production and pathogenicity on tomato, advocating that FePV1 induces hypovirulence on its host.
Collapse
Affiliation(s)
- Mathieu Mahillon
- Earth and Life Institute, Applied Microbiology-Phytopathology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Alain Decroës
- Earth and Life Institute, Applied Microbiology-Phytopathology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Simon Caulier
- Earth and Life Institute, Applied Microbiology-Phytopathology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Assiata Tiendrebeogo
- Earth and Life Institute, Applied Microbiology-Phytopathology, UCLouvain, Louvain-la-Neuve, Belgium; Natural System, Agrosystem and Environmental Engineering, Phytopathology, Nazi Boni University, Bobo-Dioulasso, Burkina-Faso
| | - Anne Legrève
- Earth and Life Institute, Applied Microbiology-Phytopathology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Claude Bragard
- Earth and Life Institute, Applied Microbiology-Phytopathology, UCLouvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
14
|
Full genome sequence of a new three-segment gammapartitivirus from the phytopathogenic fungus Alternaria tenuissima on cotton in China. Arch Virol 2021; 166:973-976. [PMID: 33427965 DOI: 10.1007/s00705-020-04937-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/10/2020] [Indexed: 10/22/2022]
Abstract
In this study, a new double-stranded RNA (dsRNA) virus, Alternaria tenuissima partitivirus 1 (AttPV1), was isolated from Alternaria tenuissima strain XJ-BZ-2-6, a phytopathogenic fungus infecting cotton in China. The genome of AttPV1 comprised three dsRNAs of 1,785 nt (dsRNA1), 1,545 nt (dsRNA2), and 1,537 nt (dsRNA3) in length, the nucleotide sequence of which was determined using reverse transcription polymerase chain reaction, random-primed clones, and RNA-ligase-mediated rapid amplification of cDNA ends. dsRNA1 had a single open reading frame encoding a putative 61.54-kDa RNA-dependent RNA polymerase (RdRp). dsRNA2 and dsRNA3 were predicted to encode putative coat proteins (CPs) of 47.90 kDa and 46.25 kDa, respectively. The RdRp domain shared 63.54-73.17% amino acid sequence identity with members of the genus Gammapartitivirus. Phylogenetic trees based on RdRp or CP sequences showed that AttPV1 clustered with members of the genus Gammapartitivirus. Hence, these results indicate that AttPV1 is a new gammapartitivirus from A. tenuissima.
Collapse
|
15
|
Ma G, Zhang X, Hua H, Zhou T, Wu X. Molecular and biological characterization of a novel strain of Alternaria alternata chrysovirus 1 identified from the pathogen Alternaria tenuissima causing watermelon leaf blight. Virus Res 2020; 280:197904. [PMID: 32105762 DOI: 10.1016/j.virusres.2020.197904] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 12/17/2022]
Abstract
The leaf blight caused by the genus Alternaria is one of the most epidemic diseases on watermelon, and A. tenuissima is the dominant pathogenic species in China. Mycoviruses are found ubiquitously in filamentous fungi, and an increasing number of novel mycoviruses infecting the genus Alternaria have been reported. In this study, a mycovirus from A. tenuissima strain SD-BZF-12 was identified and characterized, whose genome size was very similar with Alternaria alternata chrysovirus 1-N18 (AaCV1-N18). The dsRNA1- and dsRNA2-encoded proteins of the virus had 99 % identities with counterparts of AaCV1-N18; and the dsRNA3- and dsRNA4-encoded proteins of the virus showed the 80 % and 94 % sequence identities with proteins deduced from dsRNA4 and dsRNA3 of AaCV1-N18, respectively. Intriguingly, dsRNA5 of the virus encoded a truncated protein with 68 amino acids (aa) by comparing with 115 aa of AaCV1-N18 dsRNA5. Phylogenetic analysis of RNA-dependent RNA polymerase domain suggested that the virus clustered together with AaCV1-N18. Based on these characteristics, the mycovirus was identified to be a novel strain of AaCV1 and designated as AaCV1-AT1. In addition, no obvious differences were observed on colony morphology between AaCV1-AT1-infected and virus-cured strains of A. tenuissima; however, AaCV1-AT1 infection reduced colony growth rate and spore production ability on host fungus, and increased the median effective concentration of difenoconazole or tebuconazole on its host. This is the first report of AaCV1-AT1 associated with A. tenuissima.
Collapse
Affiliation(s)
- Guoping Ma
- Department of Plant Pathology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China
| | - Xiaofang Zhang
- Department of Plant Pathology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China
| | - Huihui Hua
- Department of Plant Pathology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China
| | - Tao Zhou
- Department of Plant Pathology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China
| | - Xuehong Wu
- Department of Plant Pathology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China.
| |
Collapse
|
16
|
Characterization of three novel betapartitiviruses co-infecting the phytopathogenic fungus Rhizoctonia solani. Virus Res 2019; 270:197649. [DOI: 10.1016/j.virusres.2019.197649] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 11/17/2022]
|
17
|
Gilbert KB, Holcomb EE, Allscheid RL, Carrington JC. Hiding in plain sight: New virus genomes discovered via a systematic analysis of fungal public transcriptomes. PLoS One 2019; 14:e0219207. [PMID: 31339899 PMCID: PMC6655640 DOI: 10.1371/journal.pone.0219207] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/18/2019] [Indexed: 11/25/2022] Open
Abstract
The distribution and diversity of RNA viruses in fungi is incompletely understood due to the often cryptic nature of mycoviral infections and the focused study of primarily pathogenic and/or economically important fungi. As most viruses that are known to infect fungi possess either single-stranded or double-stranded RNA genomes, transcriptomic data provides the opportunity to query for viruses in diverse fungal samples without any a priori knowledge of virus infection. Here we describe a systematic survey of all transcriptomic datasets from fungi belonging to the subphylum Pezizomycotina. Using a simple but effective computational pipeline that uses reads discarded during normal RNA-seq analyses, followed by identification of a viral RNA-dependent RNA polymerase (RdRP) motif in de novo assembled contigs, 59 viruses from 44 different fungi were identified. Among the viruses identified, 88% were determined to be new species and 68% are, to our knowledge, the first virus described from the fungal species. Comprehensive analyses of both nucleotide and inferred protein sequences characterize the phylogenetic relationships between these viruses and the known set of mycoviral sequences and support the classification of up to four new families and two new genera. Thus the results provide a deeper understanding of the scope of mycoviral diversity while also increasing the distribution of fungal hosts. Further, this study demonstrates the suitability of analyzing RNA-seq data to facilitate rapid discovery of new viruses.
Collapse
Affiliation(s)
- Kerrigan B. Gilbert
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| | - Emily E. Holcomb
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| | - Robyn L. Allscheid
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| | - James C. Carrington
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| |
Collapse
|
18
|
Jamal A, Sato Y, Shahi S, Shamsi W, Kondo H, Suzuki N. Novel Victorivirus from a Pakistani Isolate of Alternaria alternata Lacking a Typical Translational Stop/Restart Sequence Signature. Viruses 2019; 11:E577. [PMID: 31242660 PMCID: PMC6631646 DOI: 10.3390/v11060577] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 01/27/2023] Open
Abstract
The family Totiviridae currently contains five genera Totivirus, Victorivirus, Leishmavirus, Trichomonasvirus, and Giardiavirus. Members in this family generally have a set of two-open reading frame (ORF) elements in their genome with the 5'-proximal ORF (ORF1) encoding a capsid protein (CP) and the 3'-proximal one (ORF2) for RNA-dependent RNA polymerase (RdRp). How the downstream open reading frames (ORFs) are expressed is genus-specific. All victoriviruses characterized thus far appear to use the stop/restart translation mechanism, allowing for the expression of two separate protein products from bicitronic genome-sized viral mRNA, while the totiviruses use a -1 ribosomal frame-shifting that leads to a fusion product of CP and RdRp. We report the biological and molecular characterization of a novel victorivirus termed Alternaria alternata victorivirus 1 (AalVV1) isolated from Alternaria alternata in Pakistan. The phylogenetic and molecular analyses showed AalVV1 to be distinct from previously reported victoriviruses. AalVV1 appears to have a sequence signature required for the -1 frame-shifting at the ORF1/2 junction region, rather than a stop/restart key mediator. By contrast, SDS-polyacrylamide gel electrophoresis and peptide mass fingerprinting analyses of purified virion preparations suggested the expression of two protein products, not a CP-RdRp fusion product. How these proteins are expressed is discussed in this study. Possible effects of infection by this virus were tested in two fungal species: A. alternata and RNA silencing proficient and deficient strains of Cryphonectria parasitica, a model filamentous fungus. AalVV1 showed symptomless infection in all of these fungal strains, even in the RNA silencing deficient C. parasitica strain.
Collapse
Affiliation(s)
- Atif Jamal
- Institute of Plant Science and Resources, Okayama University, Chuou 2-20-1, Kurashiki, Okayama 710-0046, Japan.
- Crop Diseases Research Institute, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan.
| | - Yukiyo Sato
- Institute of Plant Science and Resources, Okayama University, Chuou 2-20-1, Kurashiki, Okayama 710-0046, Japan.
| | - Sabitree Shahi
- Institute of Plant Science and Resources, Okayama University, Chuou 2-20-1, Kurashiki, Okayama 710-0046, Japan.
| | - Wajeeha Shamsi
- Institute of Plant Science and Resources, Okayama University, Chuou 2-20-1, Kurashiki, Okayama 710-0046, Japan.
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Chuou 2-20-1, Kurashiki, Okayama 710-0046, Japan.
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Chuou 2-20-1, Kurashiki, Okayama 710-0046, Japan.
| |
Collapse
|
19
|
Li H, Bian R, Liu Q, Yang L, Pang T, Salaipeth L, Andika IB, Kondo H, Sun L. Identification of a Novel Hypovirulence-Inducing Hypovirus From Alternaria alternata. Front Microbiol 2019; 10:1076. [PMID: 31156589 PMCID: PMC6530530 DOI: 10.3389/fmicb.2019.01076] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/29/2019] [Indexed: 11/13/2022] Open
Abstract
Mycoviruses are wide spread throughout almost all groups of fungi but only a small number of mycoviruses can attenuate the growth and virulence of their fungal hosts. Alternaria alternata is an ascomycete fungus that causes leaf spot diseases on various crop plants. In this study, we identified a novel ssRNA mycovirus infecting an A. alternata f. sp. mali strain isolated from an apple orchard in China. Sequence analyses revealed that this virus is related to hypoviruses, in particular to Wuhan insect virus 14, an unclassified hypovirus identified from insect meta-transcriptomics, as well as other hypoviruses belonging to the genus Hypovirus, and therefore this virus is designed as Alternaria alternata hypovirus 1 (AaHV1). The genome of AaHV1 contains a single large open-reading frame encoding a putative polyprotein (∼479 kDa) with a cysteine proteinase-like and replication-associated domains. Curing AaHV1 from the fungal host strain indicated that the virus is responsible for the slow growth and reduced virulence of the host. AaHV1 defective RNA (D-RNA) with internal deletions emerging during fungal subcultures but the presence of D-RNA does not affect AaHV1 accumulation and pathogenicities. Moreover, AaHV1 could replicate and confer hypovirulence in Botryosphaeria dothidea, a fungal pathogen of apple white rot disease. This finding could facilitate better understanding of A. alternata pathogenicity and is relevant for development of biocontrol methods of fungal diseases.
Collapse
Affiliation(s)
- Huan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Ruiling Bian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Qian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Liu Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Tianxing Pang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Lakha Salaipeth
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Ida Bagus Andika
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
20
|
Shamsi W, Sato Y, Jamal A, Shahi S, Kondo H, Suzuki N, Bhatti MF. Molecular and biological characterization of a novel botybirnavirus identified from a Pakistani isolate of Alternaria alternata. Virus Res 2019; 263:119-128. [DOI: 10.1016/j.virusres.2019.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 11/15/2022]
|
21
|
Ma G, Liang Z, Hua H, Zhou T, Wu X. Complete genome sequence of a new botybirnavirus isolated from a phytopathogenic Alternaria alternata in China. Arch Virol 2019; 164:1225-1228. [DOI: 10.1007/s00705-019-04189-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 01/14/2019] [Indexed: 11/29/2022]
|
22
|
Zoll J, Verweij PE, Melchers WJG. Discovery and characterization of novel Aspergillus fumigatus mycoviruses. PLoS One 2018; 13:e0200511. [PMID: 30044844 PMCID: PMC6059430 DOI: 10.1371/journal.pone.0200511] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/27/2018] [Indexed: 11/20/2022] Open
Abstract
In the last few years, increasing numbers of viruses infecting fungi have been identified. In this study, we used an in silico approach for the analysis of deep RNA sequencing data in order to discover and characterize putative genomic ssRNA or dsRNA mycovirus sequences in Aspergillus fumigatus. RNA sequencing reads of A. fumigatus strains were mapped against the A. fumigatus Af293 reference genome. Unmapped reads were collected for de novo assembly. Contigs were analyzed by Blastx comparison with a mycovirus protein database. Assembled viral genomes were used as template for remapping of RNA sequencing reads. In total, deep RNA sequencing results from 11 A. fumigatus strains were analyzed for the presence of mycoviral genomic RNAs. In 9 out of 11 strains, putative mycoviral RNA genomes were identified. Three strains were infected with two different mycovirus species. Two strains were infected with Aspergillus fumigatus polymycovirus type-1 (AfuPmV-1). Four strains contained fully recovered genomic RNA of unknown narna-like viruses designated as Aspergillus fumigatus narnavirus-1 and Aspergillus fumigatus narnavirus-2 (AfuNV-1 and AfuNV-2). Both viruses showed 38% amino acid sequence identity to Beihai narna-like virus-21. Three strains contained partially recovered genomic RNA of an unknown narna-like virus. Two strains contained fully recovered genomic RNAs of an unknown partitivirus designated as Aspergillus fumigatus partitivirus-2 (AfuPV-2) which showed 50% amino acid sequence identity to Alternaria alternata partitivirus-1. Finally, one strain contained fully recovered genomic RNA of an unknown mitovirus designated as Aspergillus fumigatus mitovirus-1 (AfuMV-1) which showed 34% amino acid sequence identity to Sclerotina sclerotiorum mitovirus. In silico analysis of deep RNA sequencing results showed that a majority of the A. fumigatus strains used here were infected with mycoviruses. Four novel A. fumigatus RNA mycoviruses could be identified: two different Aspergillus fumigatus narna-like viruses, one Aspergillus fumigatus partitivirus, and one Aspergillus fumigatus mitovirus.
Collapse
Affiliation(s)
- Jan Zoll
- Department of Medical Microbiology, Radboud University Medical Center, and Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
- * E-mail:
| | - Paul E. Verweij
- Department of Medical Microbiology, Radboud University Medical Center, and Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | - Willem J. G. Melchers
- Department of Medical Microbiology, Radboud University Medical Center, and Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| |
Collapse
|