1
|
Song Y, Zhang Y, Xiao S, Li P, Lu L, Wang H. Akt inhibitors prevent CyHV-2 infection in vitro. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109940. [PMID: 39389175 DOI: 10.1016/j.fsi.2024.109940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Cyprinid herpesvirus 2 (CyHV-2) is a double-stranded DNA virus that infects goldfish (Carassius auratus) and crucian carp (C. carassius), resulting in substantial mortality rates and significant epidemiological implications. To gain deeper insights into CyHV-2-host interactions and identify potential therapeutic targets, quantitative proteomics analysis was conducted on CyHV-2-infected Ryukin goldfish fin (RyuF-2) cells. Our findings revealed significant alterations in the expression of proteins associated with the PI3K/Akt signaling pathway, which were up-regulated upon viral infection. Building on these observations, we employed LY294002, a specific inhibitor of PI3K, to investigate its impact on viral replication by inhibiting the PI3K/Akt pathway in GiCF cell line derived from the caudal fin of Carassius auratus gibelio (Bloch). Our results demonstrated the inhibition of both CyHV-2 replication and Akt phosphorylation within this pathway. Quercetin, a plant-derived analogue of LY294002, was further investigated for its anti-CyHV-2 effects in vitro as well as its underlying mechanism. The results suggested that quercetin exhibits antiviral properties against CyHV-2 and may exert its effects through mechanisms similar to those observed with LY294002. Given that aquaculture water serves as a vector for aquaculture viral diseases and the release of chemical compounds can lead to pollution of the aquatic environment, our study shifted focus to crude extracts obtained from plants. We confirmed crude quercetin extract derived from Cuminum anisum has antiviral activity against CyHV-2 in vitro. Therefore, based on our identification of the involvement of PI3K/Akt signaling pathway in CyHV-2 replication, along with verification of its antiviral mechanism using LY294002, we propose natural dietary quercetin as a promising candidate for development into a novel anti-CyHV-2 drug.
Collapse
Affiliation(s)
- Yu Song
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China
| | - Ye Zhang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China
| | - Simin Xiao
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China
| | - Pengfei Li
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, 530007, China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hao Wang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
2
|
Yang J, Xiao S, Lu L, Wang H, Jiang Y. Genomic and molecular characterization of a cyprinid herpesvirus 2 YC-01 strain isolated from gibel carp. Heliyon 2024; 10:e32811. [PMID: 39035518 PMCID: PMC11259805 DOI: 10.1016/j.heliyon.2024.e32811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 07/23/2024] Open
Abstract
Cyprinid herpesvirus 2 (CyHV-2) is the pathogen of herpesviral hematopoietic necrosis (HVHN), causing the severe economic losses in farmed gibel carp (Carassius gibelio). Further exploration of the genome structure and potential molecular pathogenesis of CyHV-2 through complete genome sequencing, comparative genomics, and molecular characterization is required. Herein, the genome of a CyHV-2 YC-01 strain isolated from diseased gibel carp collected in Yancheng, Jiangsu Province, China was sequenced, then we analyzed the genomic structure, genetic properties, and molecular characterization. First, the complete YC-01 genome comprises 275,367 bp without terminal repeat (TR) regions, with 151 potential open reading frames (ORFs). Second, compared with other representative published strains of the genus Cyvirus, several evident variations are found in YC-01, particularly the orientation and position of ORF25 and ORF25B. ORF107 and ORF156 are considered as potential molecular genetic markers for YC-01. ORF55 (encoding thymidine kinase) might be used to distinguish YC-01 and ST-J1 from other CyHV-2 isolates. Third, phylogenetically, YC-01 clusters with the members of the genus Cyvirus (together with the other six CyHV-2 isolates). Fourth, 43 putative proteins are predicted to be functional and are mainly divided into five categories. Several conserved motifs are found in nucleotide, amino acid, and promoter sequences including cis-acting elements identification of YC-01. Finally, the potential virulence factors and linear B cell epitopes of CyHV-2 are predicted to supply possibilities for designing novel vaccines rationally. Our results provide insights for further understanding genomic structure, genetic evolution, and potential molecular mechanisms of CyHV-2.
Collapse
Affiliation(s)
- Jia Yang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China
| | - Simin Xiao
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Hao Wang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Yousheng Jiang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
3
|
Tong JF, Yu L, Gan RH, Shi LP, Bu SY, Gu Y, Wen X, Sun JL, Song FB, Zhou L, Gui JF, Luo J. Establishment and characterization of a golden pompano (Trachinotus blochii) fin cell line for applications in marine fish pathogen immunology. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109568. [PMID: 38636741 DOI: 10.1016/j.fsi.2024.109568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Pompano fishes have been widely farmed worldwide. As a representative commercial marine species of the Carangidae family, the golden pompano (Trachinotus blochii) has gained significant popularity in China and worldwide. However, because of rapid growth and high-density aquaculture, the golden pompano has become seriously threatened by various diseases. Cell lines are the most cost-effective resource for in vitro studies and are widely used for physiological and pathological research owing to their accessibility and convenience. In this study, we established a novel immortal cell line, GPF (Golden pompano fin cells). GPF has been passaged over 69 generations for 10 months. The morphology, adhesion and extension processes of GPF were evaluated using light and electron microscopy. GPF cells were passaged every 3 days with L-15 containing 20 % fetal bovine serum (FBS) at 1:3. The optimum conditions for GPF growth were 28 °C and a 20 % FBS concentration. DNA sequencing of 18S rRNA and mitochondrial 16S rRNA confirmed that GPF was derived from the golden pompano. Chromosomal analysis revealed that the number pattern of GPF was 48 chromosomes. Transfection experiments demonstrated that GPF could be utilized to express foreign genes. Furthermore, heavy metals (Cd, Cu, and Fe) exhibited dose-dependent cytotoxicity against GPF. After polyinosinic-polycytidylic acid (poly I:C) treatment, transcription of the retinoic acid-inducible gene I-like receptor (RLR) pathway genes, including mda5, mita, tbk1, irf3, and irf7 increased, inducing the expression of interferon (IFN) and anti-viral proteins in GPF cells. In addition, lipopolysaccharide (LPS) stimulation up-regulated the expression of inflammation-related factors, including myd88, irak1, nfκb, il1β, il6, and cxcl10 expression. To the best of our knowledge, this is the first study on the immune response signaling pathways of the golden pompano using an established fin cell line. In this study, we describe a preliminary investigation of the GPF cell line immune response to poly I:C and LPS, and provide a more rapid and efficient experimental material for research on marine fish immunology.
Collapse
Affiliation(s)
- Jin-Feng Tong
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Marine Biology and Fisheries, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China
| | - Lang Yu
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Marine Biology and Fisheries, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China
| | - Rui-Hai Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Li-Ping Shi
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Marine Biology and Fisheries, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China
| | - Shao-Yang Bu
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Marine Biology and Fisheries, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China
| | - Yue Gu
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Marine Biology and Fisheries, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China
| | - Xin Wen
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Marine Biology and Fisheries, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China
| | - Jun-Long Sun
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Marine Biology and Fisheries, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China
| | - Fei-Biao Song
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Marine Biology and Fisheries, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian Luo
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Marine Biology and Fisheries, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| |
Collapse
|
4
|
Cheng W, Ren Y, Yu C, Zhou T, Zhang Y, Lu L, Liu Y, Xu D. CyHV-2 infection triggers mitochondrial-mediated apoptosis in GiCF cells by upregulating the pro-apoptotic gene ccBAX. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109400. [PMID: 38253137 DOI: 10.1016/j.fsi.2024.109400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
Apoptosis is a physiological cell death phenomenon, representing one of the fundamental physiological mechanisms for maintaining homeostasis in living organisms. Previous studies have observed typical apoptotic features in Carassius auratus gibelio caudal fin cell (GiCF) infected with Cyprinid herpesvirus 2 (CyHV-2), and found a significant up-regulation of ccBAX expression in these infected cells. However, the specific apoptotic mechanism involved remains unclear. In this study, we utilized the GiCF cell line to investigate the apoptotic mechanism during CyHV-2 infection. Immunofluorescence staining revealed translocation of ccBAX into mitochondria upon CyHV-2 infection. Flow cytometry analysis demonstrated that overexpression of ccBAX expedited virus-induced apoptosis, characterized by heightened mitochondrial depolarization, increased transcriptional levels of Cytochrome c (Cyto c) in both the cytoplasm and mitochondria, and augmented Caspase 3/7 enzyme activity. Bax inhibitor peptide V5 (BIP-V5), an inhibitor interfering with the function of Bax proteins, inhibited Bax-mediated apoptotic events through the mitochondrial pathway and attenuated apoptosis induced by CyHV-2. In this study, it was identified for the first time that CyHV-2 induces apoptosis via the mitochondrial pathway in GiCF cells, bridging an important gap in our understanding regarding cell death mechanisms induced by herpesvirus infections in fish species. These findings provide a theoretical basis for comprehending viral apoptotic regulation mechanisms and the prevention and control of cellular pathologies caused by CyHV-2 infection.
Collapse
Affiliation(s)
- Wenjie Cheng
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yilin Ren
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Chenwei Yu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Tianqi Zhou
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Ye Zhang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yanli Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Dan Xu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
5
|
Feng Z, Cheng W, Ma M, Yu C, Zhang Y, Lu L, Wang H, Gui L, Xu D, Dong C. Generation and Characterization of ORF55/ORF57-Deleted Recombinant Cyprinid herpesvirus 2 Mutants with Chimeric Capsid Protein Gene of Grouper Nervous Necrosis Virus. Vaccines (Basel) 2023; 12:43. [PMID: 38250856 PMCID: PMC10820899 DOI: 10.3390/vaccines12010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024] Open
Abstract
Cyprinid herpesvirus 2 (CyHV-2) is a pathogen that causes significant losses to the global aquaculture industry due to mass mortality in crucian carp and goldfish. This study demonstrates that the ORF55/ORF57 deletion mutants CyHV-2-Δ55-CP and CyHV-2-Δ57-CP obtained through homologous recombination replicate effectively within the caudal fin of Carassius auratus gibelio (GiCF) cells and exhibit morphologies similar to the CyHV-2 wild-type strain. Both mutants demonstrated a decrease in virulence, with CyHV-2-Δ57-CP exhibiting a more significant reduction. This serves as a reference for the subsequent development of recombinant attenuated vaccines against CyHV-2. Additionally, both mutants expressed the inserted RGNNV-CP (capsid protein of Redspotted grouper nervous necrosis virus) fusion protein gene, and inoculation with CyHV-2-Δ57-CP-infected GiCF cell lysates elicited an antibody response in the grouper. These results indicate that, while ORF55 and ORF57 genes of CyHV-2 are not required for viral replication in vitro, they do play a role in virulence in vivo. Additionally, expression of foreign protein in CyHV-2 suggests that the fully attenuated mutant of CyHV-2 could potentially function as a viral vector for developing subunit vaccines or multivalent recombinant attenuated vaccines.
Collapse
Affiliation(s)
- Zizhao Feng
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; (Z.F.); (W.C.); (M.M.); (C.Y.); (Y.Z.); (L.L.); (H.W.); (L.G.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Wenjie Cheng
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; (Z.F.); (W.C.); (M.M.); (C.Y.); (Y.Z.); (L.L.); (H.W.); (L.G.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Mingyang Ma
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; (Z.F.); (W.C.); (M.M.); (C.Y.); (Y.Z.); (L.L.); (H.W.); (L.G.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Chenwei Yu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; (Z.F.); (W.C.); (M.M.); (C.Y.); (Y.Z.); (L.L.); (H.W.); (L.G.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Ye Zhang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; (Z.F.); (W.C.); (M.M.); (C.Y.); (Y.Z.); (L.L.); (H.W.); (L.G.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; (Z.F.); (W.C.); (M.M.); (C.Y.); (Y.Z.); (L.L.); (H.W.); (L.G.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Hao Wang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; (Z.F.); (W.C.); (M.M.); (C.Y.); (Y.Z.); (L.L.); (H.W.); (L.G.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Lang Gui
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; (Z.F.); (W.C.); (M.M.); (C.Y.); (Y.Z.); (L.L.); (H.W.); (L.G.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Dan Xu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; (Z.F.); (W.C.); (M.M.); (C.Y.); (Y.Z.); (L.L.); (H.W.); (L.G.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Chuanfu Dong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
6
|
Fu Y, Zhang J, Cheng W, Cheng X, Lu L, Gui L, Jiang Y, Zhang Y, Xu D. miR-124 mediates the expression of ccBax to regulate Cyprinid herpesvirus 2 (CyHV-2)-induced apoptosis and viral replication. JOURNAL OF FISH DISEASES 2023. [PMID: 37186311 DOI: 10.1111/jfd.13783] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 05/17/2023]
Abstract
Cyprinid herpesvirus 2 (CyHV-2), the etiological agent of herpesvirus haematopoietic necrosis (HVHN) in carp and goldfish, has caused significant economic losses in the aquaculture industry. During viral infection, the host initiates a series of active or passive defences to regulate the process of virus infection. Apoptosis is a key component of active cellular defence, and members of the Bcl-2 family have been shown to play a critical role in the apoptotic process. However, the mechanism of action of the Bcl-2 family in inducing apoptosis during CyHV-2 infection remains unclear. In this study, we revealed the molecular mechanism of miRNA-mediated silver crucian carp BAX (ccBax) in CyHV-2-induced apoptosis for the first time and demonstrated that the overexpression of miR-124 suppressed ccBax expression and significantly down-regulated apoptosis in caudal fin cells of Carassius auratus gibelio (GiCF), while miR-124 inhibitors were the opposite. These studies indicated that miR-124 inhibits CyHV-2-induced apoptosis by reducing the expression of ccBax. Furthermore, the fact that transfection of miR-124 mimics promoted CyHV-2 replication, whereas miR-124 inhibitors inhibited CyHV-2 replication, indicated that miR-124 inhibited CyHV-2-induced apoptosis and contributed to viral replication. All these results suggested that miR-124 suppresses virus-induced apoptosis and promotes viral replication by targeting and regulating ccBax expression.
Collapse
Affiliation(s)
- Yan Fu
- College of Fisheries and life science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Junzhe Zhang
- College of Fisheries and life science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Wenjie Cheng
- College of Fisheries and life science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Xingyu Cheng
- College of Fisheries and life science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Liqun Lu
- College of Fisheries and life science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Lang Gui
- College of Fisheries and life science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yousheng Jiang
- College of Fisheries and life science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Ye Zhang
- College of Fisheries and life science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Dan Xu
- College of Fisheries and life science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
7
|
Qian M, Xiao S, Yang Y, Yu F, Wen J, Lu L, Wang H. Screening and identification of cyprinid herpesvirus 2 (CyHV-2) ORF55-interacting proteins by phage display. Virol J 2023; 20:66. [PMID: 37046316 PMCID: PMC10091560 DOI: 10.1186/s12985-023-02026-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Cyprinid herpesvirus 2 (CyHV-2) is a pathogenic fish virus belonging to family Alloherpesviridae. The CyHV-2 gene encoding thymidine kinase (TK) is an important virulence-associated factor. Therefore, we aimed to investigate the biological function of open reading frame 55 (ORF55) in viral replication. METHODS Purified CyHV-2 ORF55 protein was obtained by prokaryotic expression, and the interacting peptide was screened out using phage display. Host interacting proteins were then predicted and validated. RESULTS ORF55 was efficiently expressed in the prokaryotic expression system. Protein and peptide interaction prediction and dot-blot overlay assay confirmed that peptides identified by phage display could interact with the ORF55 protein. Comparing the peptides to the National Center for Biotechnology Information database revealed four potential interacting proteins. Reverse transcription quantitative PCR results demonstrated high expression of an actin-binding Rho-activating protein in the latter stages of virus-infected cells, and molecular docking, cell transfection and coimmunoprecipitation experiments confirmed that it interacted with the ORF55 protein. CONCLUSION During viral infection, the ORF55 protein exerts its biological function through interactions with host proteins. The specific mechanisms remain to be further explored.
Collapse
Affiliation(s)
- Min Qian
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Simin Xiao
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Yapeng Yang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Fei Yu
- Institute of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Jinxuan Wen
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Hao Wang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China.
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
8
|
Volpe E, Errani F, Mandrioli L, Ciulli S. Advances in Viral Aquatic Animal Disease Knowledge: The Molecular Methods' Contribution. BIOLOGY 2023; 12:biology12030466. [PMID: 36979158 PMCID: PMC10045235 DOI: 10.3390/biology12030466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Aquaculture is the fastest-growing food-producing sector, with a global production of 122.6 million tonnes in 2020. Nonetheless, aquatic animal production can be hampered by the occurrence of viral diseases. Furthermore, intensive farming conditions and an increasing number of reared fish species have boosted the number of aquatic animals' pathogens that researchers have to deal with, requiring the quick development of new detection and study methods for novel unknown pathogens. In this respect, the molecular tools have significantly contributed to investigating thoroughly the structural constituents of fish viruses and providing efficient detection methods. For instance, next-generation sequencing has been crucial in reassignment to the correct taxonomic family, the sturgeon nucleo-cytoplasmic large DNA viruses, a group of viruses historically known, but mistakenly considered as iridoviruses. Further methods such as in situ hybridisation allowed objectifying the role played by the pathogen in the determinism of disease, as the cyprinid herpesvirus 2, ostreid herpesvirus 1 and betanodaviruses. Often, a combination of molecular techniques is crucial to understanding the viral role, especially when the virus is detected in a new aquatic animal species. With this paper, the authors would critically revise the scientific literature, dealing with the molecular techniques employed hitherto to study the most relevant finfish and shellfish viral pathogens.
Collapse
Affiliation(s)
- Enrico Volpe
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, 47042 Cesenatico, FC, Italy
| | - Francesca Errani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, 47042 Cesenatico, FC, Italy
| | - Luciana Mandrioli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, 47042 Cesenatico, FC, Italy
| | - Sara Ciulli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, 47042 Cesenatico, FC, Italy
| |
Collapse
|
9
|
Hutson KS, Davidson IC, Bennett J, Poulin R, Cahill PL. Assigning cause for emerging diseases of aquatic organisms. Trends Microbiol 2023:S0966-842X(23)00031-8. [PMID: 36841735 DOI: 10.1016/j.tim.2023.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/25/2023]
Abstract
Resolving the cause of disease (= aetiology) in aquatic organisms is a challenging but essential goal, heightened by increasing disease prevalence in a changing climate and an interconnected world of anthropogenic pathogen spread. Emerging diseases play important roles in evolutionary ecology, wildlife conservation, the seafood industry, recreation, cultural practices, and human health. As we emerge from a global pandemic of zoonotic origin, we must focus on timely diagnosis to confirm aetiology and enable response to diseases in aquatic ecosystems. Those systems' resilience, and our own sustainable use of seafood, depend on it. Synchronising traditional and recent advances in microbiology that span ecological, veterinary, and medical fields will enable definitive assignment of risk factors and causal agents for better biosecurity management and healthier aquatic ecosystems.
Collapse
Affiliation(s)
- Kate S Hutson
- Cawthron Institute, 98 Halifax St East, Nelson, New Zealand; College of Science and Engineering, James Cook University, Townsville, Australia.
| | - Ian C Davidson
- Cawthron Institute, 98 Halifax St East, Nelson, New Zealand
| | - Jerusha Bennett
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
10
|
Cheng W, Chen Q, Ren Y, Zhang Y, Lu L, Gui L, Xu D. The identification of viral ribonucleotide reductase encoded by ORF23 and ORF141 genes and effect on CyHV-2 replication. Front Microbiol 2023; 14:1154840. [PMID: 37143536 PMCID: PMC10151572 DOI: 10.3389/fmicb.2023.1154840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Ribonucleotide reductase (RR) is essential for the replication of the double-stranded DNA virus CyHV-2 due to its ability to catalyze the conversion of ribonucleotides to deoxyribonucleotides, and is a potential target for the development of antiviral drugs to control CyHV-2 infection. Methods Bioinformatic analysis was conducted to identify potential homologues of RR in CyHV-2. The transcription and translation levels of ORF23 and ORF141, which showed high homology to RR, were measured during CyHV-2 replication in GICF. Co-localization experiments and immunoprecipitation were performed to investigate the interaction between ORF23 and ORF141. siRNA interference experiments were conducted to evaluate the effect of silencing ORF23 and ORF141 on CyHV-2 replication. The inhibitory effect of hydroxyurea, a nucleotide reductase inhibitor, on CyHV-2 replication in GICF cells and RR enzymatic activity in vitro was also evaluated. Results ORF23 and ORF141 were identified as potential viral ribonucleotide reductase homologues in CyHV-2, and their transcription and translation levels increased with CyHV-2 replication. Co-localization experiments and immunoprecipitation suggested an interaction between the two proteins. Simultaneous silencing of ORF23 and ORF141 effectively inhibited the replication of CyHV-2. Additionally, hydroxyurea inhibited the replication of CyHV-2 in GICF cells and the in vitro enzymatic activity of RR. Conclusion These results suggest that the CyHV-2 proteins ORF23 and ORF141 function as viral ribonucleotide reductase and their function makes an effect to CyHV-2 replication. Targeting ribonucleotide reductase could be a crucial strategy for developing new antiviral drugs against CyHV-2 and other herpesviruses.
Collapse
Affiliation(s)
- Wenjie Cheng
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Qikang Chen
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Yilin Ren
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Ye Zhang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Liqun Lu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Lang Gui
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Dan Xu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- *Correspondence: Dan Xu,
| |
Collapse
|
11
|
Zhao L, Gao W, Zheng Y, Lu L, Li Q, Jiang Y. Development and characterization of monoclonal antibodies specific for cyprinid herpesvirus 2. JOURNAL OF FISH DISEASES 2022; 45:1673-1681. [PMID: 35904338 DOI: 10.1111/jfd.13689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Infections of Cyprinid herpesvirus 2 in goldfish and farmed crucian carp (Carassius auratus gibelio) are still an urgent problem worldwide. Detection and prevention are necessary for the control of haematopoietic necrosis disease caused by CyHV-2. Although many sensitive molecular diagnostic methods have been developed, effective immunodiagnosis and neutralization approaches based on monoclonal antibodies (MAbs) against CyHV-2 are still important to CyHV-2 study. In this experiment, purified CyHV-2 was used as antigens to produce monoclonal antibodies (Mabs). Six Mabs bound to different proteins were selected by Dot-blot screening and Western-blot analysis, and no one had cross-reactivity with closely related koi herpesvirus. Among them, Mabs 2E1-B10, 1F5-A3 and 4C4-A7 belonged to IgG1 isotype, while other three Mabs 3G9-B11, 3B4-G5 and 4F4-B7 belonged to IgM isotype. These six Mabs all could specifically detect CyHV-2 in CyHV-2 infected caudal fin of Carassius auratus gibelio (GiCF) cells by immunofluorescence assays. Then, the neutralization ability was tested in vitro, and the result showed that all six Mabs can attenuate CPE by CyHV-2 in vitro among which 2E1-B10 had the best neutralization ability. The virus proteins recognized by these six Mabs were identified by mass spectrometry identification, and the result showed they probably were ORF88, ORF55R, ORF115 and ORF151R. This study is the first to prepare Mabs by purifying CyHV-2, which will provide a practical basis for the in-depth study of CyHV-2 virus.
Collapse
Affiliation(s)
- Lupin Zhao
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, P. R. China
| | - Wa Gao
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, P. R. China
| | - Yihua Zheng
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, P. R. China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, P. R. China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, P. R. China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, P. R. China
| | - Qiang Li
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Yousheng Jiang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, P. R. China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, P. R. China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, P. R. China
| |
Collapse
|
12
|
Combination of iron flocculation and qPCR for quantitative evaluation of virus-shedding intensity of goldfish Carassius auratus infected with cyprinid herpesvirus 2 in the water and the effect of sodium chlorite powder in blocking waterborne horizontal viral transmission. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
13
|
Chen Q, Luo Y, Fu Y, Feng Z, Lu L, Jiang Y, Xu D. microRNA (miR-KT-635) encoded by Cyprinid herpesvirus 2 regulates the viral replication with targeting to the ORF23. JOURNAL OF FISH DISEASES 2022; 45:631-639. [PMID: 35181893 DOI: 10.1111/jfd.13589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Herpesviruses have been reported to be able to encode and express functional viral microRNAs that target both viral and cellular transcripts. In our previous studies, we found a new miRNA miR-KT-635 encoded by Cyprinid herpesvirus 2, which is predicted to target viral genes and cellular genes involved in innate immune signalling pathway and apoptosis. However, the function and target gene of miR-KT-635 are not proved. In this study, the regulating target gene of miR-KT-635 was proved as the viral gene ORF23 directly, the target point sequence on gene was verified and miR-KT-635 was identified to regulate the expression of ORF23 protein. According to the bioinformatics analysis, the tRNA domain and ribosome domain in the protein sequence of ORF23 were found to share high homology with R2i and P53R2i, which are related to the ribonucleotide reductase small subunit in the host (transform NTP to dNTP). Within expectations, silencing of viral ORF23 or transfecting miR-KT-635 mimics in Carassius auratus gibelio caudal fin cell line (GiCF) could suppress viral propagation significantly.
Collapse
Affiliation(s)
- Qikang Chen
- College of Fisheries and life science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
| | - Yang Luo
- College of Fisheries and life science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
| | - Yan Fu
- College of Fisheries and life science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
| | - Zizhao Feng
- College of Fisheries and life science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
| | - Liqun Lu
- College of Fisheries and life science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, China
| | - Yousheng Jiang
- College of Fisheries and life science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, China
| | - Dan Xu
- College of Fisheries and life science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
14
|
Gao W, Zhao L, Zheng Y, Wu K, Xu F, Wang H, Lu L, Jiang Y. Generation and application of a monoclonal antibody specific for the ORF121 of cyprinid herpesvirus 2. JOURNAL OF FISH DISEASES 2022; 45:387-394. [PMID: 34871462 DOI: 10.1111/jfd.13566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Cyprinid herpesvirus 2 (CyHV-2) is a viral pathogen worldwide and causing high mortality on goldfish and silver crucian carp (Carassius auratus gibelio). In order to establish a stable and sensitive immunological diagnostic approach, the recombinant ORF121 protein encoded by the CyHV-2 ORF121 gene, was selected as a capture antigen to identify cells and tissues infected with CyHV-2 by immunological methods in this study. Firstly, the open reading frame of CyHV-2 ORF121 was cloned into the PGEX-4T-3 vector and expressed in Escherichia coli. Purified recombinant ORF121 protein was then used as an antigen to prepare monoclonal antibodies, and an efficient hybridoma cell line was selected by dot-blot assay. The resulting mAb-3D9 was applied to detect CyHV-2 in infected caudal fin of Carassius auratus gibelio (GiCF) cells and fish tissues by western blotting, immunofluorescence assays and immunohistological asays. The monoclonal antibody could specifically identify CyHV-2 in infected GiCF cells and the gills, the kidney and the spleen tissues, and it could attenuate CPE by CyHV-2 in vitro, suggesting it can be applied for CyHV-2 detection in the crucian carp and ORF121 may be a candidate vaccine against CyHV-2.
Collapse
Affiliation(s)
- Wa Gao
- National Pathogen Collection Center for Aquatic Animals, Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Lupin Zhao
- National Pathogen Collection Center for Aquatic Animals, Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yihua Zheng
- National Pathogen Collection Center for Aquatic Animals, Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Kaixuan Wu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Feiyang Xu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Hao Wang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yousheng Jiang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
15
|
Das S, Dharmaratnam A, Ravi C, Kumar R, Swaminathan TR. Immune gene expression in cyprinid herpesvirus-2 (CyHV-2)-sensitized peripheral blood leukocytes (PBLs) co-cultured with CyHV-2-infected goldfish fin cell line. AQUACULTURE INTERNATIONAL : JOURNAL OF THE EUROPEAN AQUACULTURE SOCIETY 2021; 29:1925-1934. [PMID: 34334971 PMCID: PMC8310777 DOI: 10.1007/s10499-021-00721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/11/2021] [Indexed: 06/13/2023]
Abstract
Goldfish is one of the preferred ornamental fish which is highly susceptible to cyprinid herpesvirus-2 (CyHV-2) infection. The present study aimed to analyse immune gene expression in a co-culture of CyHV-2-sensitized goldfish peripheral blood leukocytes (PBLs) with CyHV-2-infected fantail goldfish fin cell lines (FtGF). Goldfish were sensitized with intraperitoneal TCID50 dose (107.8±0.26/mL) of CyHV-2. After 2 weeks, PBLs were collected and co-cultured with CyHV-2-infected FtGF cells keeping both uninfected FtGF cells and PBL control groups. After 2 days of co-culture, WST-1 assay for cell proliferation was performed at 450 nm during the 2nd, 4th and 6th days of co-culture. The results showed a significant increase (p < 0.05) in cell density in CyHV-2-infected PBL and virus-infected FtGF cells during the 4th day post co-culture which confirmed effector cell generation. Expressions of few immune genes were checked taking RNA samples of CyHV-2-induced PBLs post co-culture with infected FtGF cells along with uninfected FtGF cells as control group at different time periods (2nd, 4th and 6th days) in triplicate. The results indicated increased expression of CD8α, IFNγ, b2m, MHC I, LMP 7, IL-10, IL-12 and GATA3 except Tapasin. From the above study, we concluded that goldfish showed both Th1- and Th2-mediated immune responses to CyHV-2. The current findings support the scope for further vaccine development against CyHV-2 for goldfish.
Collapse
Affiliation(s)
- Sweta Das
- Peninsular and Marine Fish Genetic Resources Centre, ICAR-National Bureau of Fish Genetic Resources, CMFRI Campus, P.O. Number 1603, Kochi, Kerala 682018 India
| | - Arathi Dharmaratnam
- Peninsular and Marine Fish Genetic Resources Centre, ICAR-National Bureau of Fish Genetic Resources, CMFRI Campus, P.O. Number 1603, Kochi, Kerala 682018 India
| | - Charan Ravi
- Peninsular and Marine Fish Genetic Resources Centre, ICAR-National Bureau of Fish Genetic Resources, CMFRI Campus, P.O. Number 1603, Kochi, Kerala 682018 India
| | - Raj Kumar
- Peninsular and Marine Fish Genetic Resources Centre, ICAR-National Bureau of Fish Genetic Resources, CMFRI Campus, P.O. Number 1603, Kochi, Kerala 682018 India
| | - Thangaraj Raja Swaminathan
- Peninsular and Marine Fish Genetic Resources Centre, ICAR-National Bureau of Fish Genetic Resources, CMFRI Campus, P.O. Number 1603, Kochi, Kerala 682018 India
| |
Collapse
|
16
|
Yu L, Chen Q, Chu X, Luo Y, Feng Z, Lu L, Zhang Y, Xu D. Expression and regulation of ccBAX by miR-124 in the caudal fin cell of C. auratus gibelio upon cyprinid herpesvirus 2 infection. JOURNAL OF FISH DISEASES 2021; 44:837-845. [PMID: 33400351 DOI: 10.1111/jfd.13313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Bcl2 family proteins play a critical role in cell death or survival. BAX, the death-promoting protein of bcl2 family, mediated mitochondrial pathway inducing cells' apoptosis in mammal. MiRNAs have been implicated as negative regulators down-regulating genes' expression after post-transcriptional level. At present, little is known about the regulatory mechanism of miRNA on the Bcl2 family proteins during CyHV-2 infection in silver crucian carp (Carassius auratus gibelio). In this study, the ccBAX (silver crucian carp BAX) gene was cloned and expressed, and polyclonal antibodies were raised in mouse against the purified ccBAX-GST fusion protein. The structure analysis indicated that ccBAX protein included four conserve domains (BH1, BH2, BH3 and transmembrane domains) and the expression of ccBAX protein occurred throughout the cells. Furthermore, two miRNAs (miR-124 and miRNA-29b) were identified to negatively regulate ccBAX gene expression in GiCF cell. miR-124 was found to suppress the expression of WT-ccBAX (wild type), but not the MT-ccBAX (mutant). Overall, the results demonstrated that the expression of the ccBAX gene was significantly down-regulated by miR-124 in silver crucian carp (Carassius auratus gibelio) during CyHV-2 infection.
Collapse
Affiliation(s)
- Lu Yu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
| | - Qikang Chen
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
| | - Xin Chu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
| | - Yang Luo
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
| | - Zizhao Feng
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, China
| | - Ye Zhang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, China
| | - Dan Xu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, China
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|
17
|
Lu JF, Jin TC, Zhou T, Lu XJ, Chen JP, Chen J. Identification and characterization of a tumor necrosis factor receptor like protein encoded by Cyprinid Herpesvirus 2. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103930. [PMID: 33212093 DOI: 10.1016/j.dci.2020.103930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/10/2020] [Accepted: 11/15/2020] [Indexed: 06/11/2023]
Abstract
Virus-encoded tumor necrosis factor receptors (vTNFRs) facilitate viral escape from the host immune response during viral propagation. Cyprinid Herpesvirus-2 (CyHV-2) is a double-stranded DNA virus of alloherpesviridae family that causes great economic losses in the aquaculture industry. The present study identified and characterized a novel TNFR homolog termed ORF4 in CyHV-2. ORF4 was identified as a secreted protein and a homolog of herpesvirus entry mediator (HVEM). ORF4 localized to the cytoplasm in infected GiCF cells. ORF4 overexpression enhanced viral propagation, while downregulation of ORF4 via siRNA decreased viral propagation. ORF4 overexpression promoted GiCF proliferation, and its downregulation suppressed CyHV-2-induced apoptosis. GST-pulldown and LC-MS/MS assays identified 44 conditional binding proteins that interact with ORF4 protein, while the GST pulldown test did not support the idea that ORF4 interact with histone H3.3. Taken together, our results contribute to our understanding of the vTNFR function in alloherpesviridae pathogenesis and host immune regulation.
Collapse
Affiliation(s)
- Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Tian-Cheng Jin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Ting Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Xin-Jiang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
18
|
Su M, Tang R, Wang H, Lu L. Suppression effect of plant-derived berberine on cyprinid herpesvirus 2 proliferation and its pharmacokinetics in Crucian carp (Carassius auratus gibelio). Antiviral Res 2020; 186:105000. [PMID: 33359191 DOI: 10.1016/j.antiviral.2020.105000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/13/2020] [Accepted: 12/16/2020] [Indexed: 01/04/2023]
Abstract
Cyprinid herpesvirus 2 (CyHV-2), which infects silver crucian carp including goldfish (Carassius auratus auratus) and Crucian carp (Carassius auratus gibelio) with high mortality, is an emerging viral pathogen worldwide. Previous studies showed that berberine (BBR), a bioactive plant-derived alkaloid, demonstrated potential antiviral actions against many different viruses. Here, we assessed the effect of berberine hydrochloride (BBH) on the replication of CyHV-2 in vitro and in vivo. Cytotoxicity assay indicated that 5-25 μg/mL BBH was non-toxic to the RyuF-2 cells. In viral inhibition assays, real time PCR was employed to titrate the genomic copy number of progeny virus, real time RT-PCR was applied to monitor the transcriptional levels of viral genes, and Western blot analysis was performed to detect the synthetic levels of viral proteins. The results demonstrated that BBH systematically impedes the viral gene transcription and suppressed the replication of CyHV-2 in RyuF-2 cells. In animal challenge test, BBH was confirmed to protect Crucian carps from CyHV-2 infection in a dose-dependent manner, which was supported by suppressed viral replication levels, reduced viral pathogenesis and higher survival rates. Furthermore, pharmacokinetics data of BBH in Crucian carp revealed its rapid absorption (Tmax of 1.5 h), suitable plasma half-life (t1/2z/h of 7-12 h depending on oral dosage), and dose-dependent drug exposure properties following oral administration (revealed by AUC0-t values). These findings shed light on repurposing BBH to treat CyHV-2 infections in silver crucian carp.
Collapse
Affiliation(s)
- Meizhen Su
- National Pathogen Collection Center for Aquatic Animals, 201306, Shanghai, PR China
| | - Ruizhe Tang
- National Pathogen Collection Center for Aquatic Animals, 201306, Shanghai, PR China
| | - Hao Wang
- Key Laboratory of Agriculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, 201306, Shanghai, PR China.
| |
Collapse
|
19
|
Fei Y, Han M, Chu X, Feng Z, Yu L, Luo Y, Lu L, Xu D. Transcriptomic and proteomic analyses reveal new insights into the regulation of immune pathways during cyprinid herpesvirus 2 infection in vitro. FISH & SHELLFISH IMMUNOLOGY 2020; 106:167-180. [PMID: 32717324 DOI: 10.1016/j.fsi.2020.07.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/17/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Carassius auratus gibelio is susceptible to the herpesviral hematopoietic necrosis (HVHN) disease caused by cyprinid herpesvirus 2 (CyHV-2) infection during the breeding process. Nevertheless, the report on biological response of CyHV-2 with C. auratus gibelio was limited, especially in vitro. In this study, host gene expression profiling was mostly analyzed in caudal fin cells of Carassius auratus gibelio (GiCF) underlying CyHV-2 infection. Transcriptomics and proteomics were employed to study the differential expression gene and revealed the host genes involved in pathway during the CyHV-2 infection. Transcriptome analysis revealed that compared with the control group, there were 11 335 and 19 421 differentially expressed unigenes at 48 h and at 96 h, respectively. Furthermore, proteome analysis showed that there were a total of 9008 proteins, among which 169 proteins were differential expression in the 48 h group and 502 proteins in the 96 h group. Notably, 10 and 158 differentially co-expressed genes at mRNA and protein levels (cDEGs) were reliably quantified at 48 h and 96 h, respectively. Interestingly, significantly different expressed genes both in the transcriptome and the proteome were identified, including GNG7, Hsp90a, THBS1 and RRM2. The result suggested that PI3k-AKT pathway was activated, but the p53 signaling pathway was suppressed. The above result will lay the foundation for understanding the mechanisms of host defense virus invasion during CyHV-2 infection.
Collapse
Affiliation(s)
- Yueyue Fei
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Minzhen Han
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Xin Chu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Zizhao Feng
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Lu Yu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Yang Luo
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China; National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, PR China
| | - Dan Xu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China; National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, PR China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, PR China.
| |
Collapse
|
20
|
Fei Y, Feng Z, Wu K, Luo Y, Yu L, Zhang Y, Lu L, Xu D. MicroRNA expression profiling of caudal fin cell of C. auratus gibelio upon cyprinid herpesvirus 2 infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 107:103637. [PMID: 32035081 DOI: 10.1016/j.dci.2020.103637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/26/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
As a member of the genus Cyprinivirus in the family Alloherpesviridae, Cyprinid herpesvirus 2 (CyHV-2) has caused great economic loss in the aquaculture industry, mainly in C. auratus gibelio and goldfish. However, the molecular mechanisms underlying the pathogenicity of CyHV-2 remain elusive. In this study, high-throughput sequencing technology was employed to explore the miRNA expression profiles of C. auratus gibelio (GiCF) caudal fin cells in response to Cyprinid Herpesvirus-2 (CyHV-2) infection. A total of 631 novel miRNAs and 409 known miRNAs were identified. The expression levels of 7 miRNAs were found as significantly modulated (5 down-regulation and 2 up-regulation; P < 0.01, |logFC|>1, TPM>10) in CyHV-2 infected cells. 7 miRNA and their potential mRNA targets were validated by Real-time PCR (qRT-PCR), respectively. Targets prediction and functional analysis of these 7 miRNAs revealed significant enrichment for several signaling pathways, including PPAR, p53 and FoxO pathways. These studies provided more valuable basis for further study on the roles of miRNAs in CyHV-2 replication and pathogenesis.
Collapse
Affiliation(s)
- Yueyue Fei
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Zizhao Feng
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Kaixuan Wu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Yang Luo
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Lu Yu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Ye Zhang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China; National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, PR China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China; National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, PR China
| | - Dan Xu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China; National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, PR China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China.
| |
Collapse
|
21
|
Evaluation of Cyprinid Herpesvirus 2 Latency and Reactivation in Carassius gibel. Microorganisms 2020; 8:microorganisms8030445. [PMID: 32245260 PMCID: PMC7143840 DOI: 10.3390/microorganisms8030445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/08/2020] [Accepted: 03/19/2020] [Indexed: 12/17/2022] Open
Abstract
Cyprinid herpesvirus 2 (CyHV-2, species Cyprinid herpesvirus 2) causes severe mortality in ornamental goldfish, crucian carp (Carassius auratus), and gibel carp (Carassius gibelio). It has been shown that the genomic DNA of CyHV-2 could be detected in subclinical fish, which implied that CyHV-2 could establish persistent infection. In this study, the latency of CyHV-2 was investigated in the survival fish after primary infection. CyHV-2 genomic DNA was detected in multiple tissues of acute infection samples; however, detection of CyHV-2 DNA was significantly reduced in fish recovered from the primary infection on day 300 postinfection. No active viral gene transcription, such as DNA polymerase and ORF99, was detected in recovered fish. Following temperature stress, an increase of CyHV-2 DNA copy numbers and gene transcription were observed in tissues examined, which suggests that CyHV-2 was reactivated under stress. In addition, a cell line (GCBLat1) derived from the brain tissue from CyHV-2-exposed fish harbored CyHV-2 genome but did not produce infectious virions under normal culture conditions. However, CyHV-2 replication and viral gene transcription occurred when GCBLat1 cells were treated with trichostatin A (TSA) or phorbol 12-myristate 13-acetate (TPA). It suggests CyHV-2 can remain latent in vitro and can reactivate under stress condition.
Collapse
|
22
|
Lu J, Shen Z, Lu L, Xu D. Cyprinid Herpesvirus 2 miR-C12 Attenuates Virus-Mediated Apoptosis and Promotes Virus Propagation by Targeting Caspase 8. Front Microbiol 2019; 10:2923. [PMID: 31921084 PMCID: PMC6930231 DOI: 10.3389/fmicb.2019.02923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/04/2019] [Indexed: 12/27/2022] Open
Abstract
DNA viruses, most notably members of the herpesvirus family, generally encode miRNAs to mediate both virus and host genes expression. We previously demonstrated that Cyprinid herpesvirus 2 (CyHV-2) encodes 17 miRNAs that are involved in innate immune signaling pathways. In this study, the function of CyHV-2-encoded miRNA was further investigated in GiCF cells. We found that miR-C4 promoted CyHV-2-induced apoptosis, while miR-C12 decreased CyHV-2-induced apoptosis. miR-C12 targeted to 3' UTR sequence of caspase 8 and suppressed the expression of caspase 8. Besides, the silencing of caspase 8 by specific siRNA led to the attenuation of CyHV-2-induced apoptosis. Furthermore, caspase 8 was downregulated in cells transfected with miR-C12 during CyHV-2 infection. Overexpression of miR-C12 significantly suppressed CyHV-2-induced apoptosis, while silencing of miR-C12 promoted CyHV-2-induced apoptosis. Finally, inhibition of miR-C12 resulted in suppression of CyHV-2 propagation, overexpression of miR-C12, and CASP8-siRNA-1 facilitated CyHV-2 propagation. Taken together, our results demonstrated that CyHV-2-encoded miR-C12 to suppress virus-induced apoptosis and promoted virus replication by targeting caspase 8.
Collapse
Affiliation(s)
- Jianfei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Zhaoyuan Shen
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, China
| | - Dan Xu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, China.,Guangxi Key Laboratory for Marine Biotechnology, Guangxi Institute of Oceanography, Guangxi Academy of Sciences, Beihai, China
| |
Collapse
|