1
|
Zheng W, Teng X, Jiang T, Tang W, Jiang L, Zhu H, Yu X, Chen G, Wang J, Zhang J, Qu M, Zhang X. Genome analysis of a novel avian atadenovirus reveals a possible horizontal gene transfer. Virology 2024; 593:109999. [PMID: 38368638 DOI: 10.1016/j.virol.2024.109999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/20/2024]
Abstract
We report the discovery and characterization of a novel adenovirus, Zoothera dauma adenovirus (ZdAdV), from a wild bird species, Zoothera dauma (Scaly thrush). This new atadenovirus was discovered by metagenomic sequencing without virus cultivation. Analyses of the full genome sequence revealed that this new virus is a distinct member of the genus Atadenovirus and represents a novel species. ZdAdV has a genome of 34,760 bp with 28 predicted genes and 39% GC content. ZdAdV is the first atadenovirus to contain ORF19, a gene previously found only in aviadenoviruses. Phylogenetic analysis of ORF19 suggests that it was acquired by ZdAdV through horizontal gene transfer from an aviadenovirus. By analyzing all orthologous genes of aviadenovirus, mastadenovirus, atadenovirus, and siadenovirus, we also found potential horizontal gene transfer for the E4 gene in Pigeon aviadenovirus B. Our study widens our knowledge concerning the genetic diversity and evolutionary history of atadenoviruses and their potential for cross-species transmission.
Collapse
Affiliation(s)
- Weibo Zheng
- School of Life Sciences, Ludong University, Yantai 264000, Shandong, China; Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264000, Shandong, China; Shandong Breeding Environmental Control Engineering Laboratory, Yantai 264000, Shandong, China
| | - Xiaopeng Teng
- Department of Pharmacy, Yantai Yuhuangding Hospital, Yantai 264000, Shandong China
| | - Tingshu Jiang
- Department of Pulmonary and Critical Care Medicine, Yantai Yuhuangding Hospital, Yantai 264000, Shandong China
| | - Wenli Tang
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Jinan 250022, Shandong, China
| | - Linlin Jiang
- School of Life Sciences, Ludong University, Yantai 264000, Shandong, China; Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264000, Shandong, China; Shandong Breeding Environmental Control Engineering Laboratory, Yantai 264000, Shandong, China
| | - Hongwei Zhu
- School of Life Sciences, Ludong University, Yantai 264000, Shandong, China; Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264000, Shandong, China; Shandong Breeding Environmental Control Engineering Laboratory, Yantai 264000, Shandong, China
| | - Xin Yu
- School of Life Sciences, Ludong University, Yantai 264000, Shandong, China; Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264000, Shandong, China; Shandong Breeding Environmental Control Engineering Laboratory, Yantai 264000, Shandong, China
| | - Guozhong Chen
- School of Life Sciences, Ludong University, Yantai 264000, Shandong, China; Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264000, Shandong, China; Shandong Breeding Environmental Control Engineering Laboratory, Yantai 264000, Shandong, China
| | - Jiao Wang
- School of Life Sciences, Ludong University, Yantai 264000, Shandong, China; Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264000, Shandong, China; Shandong Breeding Environmental Control Engineering Laboratory, Yantai 264000, Shandong, China
| | - Jianlong Zhang
- School of Life Sciences, Ludong University, Yantai 264000, Shandong, China; Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264000, Shandong, China; Shandong Breeding Environmental Control Engineering Laboratory, Yantai 264000, Shandong, China
| | - Mingjuan Qu
- School of Life Sciences, Ludong University, Yantai 264000, Shandong, China; Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264000, Shandong, China; Shandong Breeding Environmental Control Engineering Laboratory, Yantai 264000, Shandong, China.
| | - Xingxiao Zhang
- School of Life Sciences, Ludong University, Yantai 264000, Shandong, China; Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264000, Shandong, China; Shandong Breeding Environmental Control Engineering Laboratory, Yantai 264000, Shandong, China.
| |
Collapse
|
2
|
Abdelaziz K, Helmy YA, Yitbarek A, Hodgins DC, Sharafeldin TA, Selim MSH. Advances in Poultry Vaccines: Leveraging Biotechnology for Improving Vaccine Development, Stability, and Delivery. Vaccines (Basel) 2024; 12:134. [PMID: 38400118 PMCID: PMC10893217 DOI: 10.3390/vaccines12020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
With the rapidly increasing demand for poultry products and the current challenges facing the poultry industry, the application of biotechnology to enhance poultry production has gained growing significance. Biotechnology encompasses all forms of technology that can be harnessed to improve poultry health and production efficiency. Notably, biotechnology-based approaches have fueled rapid advances in biological research, including (a) genetic manipulation in poultry breeding to improve the growth and egg production traits and disease resistance, (b) rapid identification of infectious agents using DNA-based approaches, (c) inclusion of natural and synthetic feed additives to poultry diets to enhance their nutritional value and maximize feed utilization by birds, and (d) production of biological products such as vaccines and various types of immunostimulants to increase the defensive activity of the immune system against pathogenic infection. Indeed, managing both existing and newly emerging infectious diseases presents a challenge for poultry production. However, recent strides in vaccine technology are demonstrating significant promise for disease prevention and control. This review focuses on the evolving applications of biotechnology aimed at enhancing vaccine immunogenicity, efficacy, stability, and delivery.
Collapse
Affiliation(s)
- Khaled Abdelaziz
- Department of Animal and Veterinary Science, College of Agriculture, Forestry and Life Sciences, Clemson University Poole Agricultural Center, Jersey Ln #129, Clemson, SC 29634, USA
- Clemson University School of Health Research (CUSHR), Clemson, SC 29634, USA
| | - Yosra A. Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA;
| | - Alexander Yitbarek
- Department of Animal & Food Sciences, University of Delaware, 531 S College Ave, Newark, DE 19716, USA;
| | - Douglas C. Hodgins
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Tamer A. Sharafeldin
- Department of Veterinary Biomedical Science, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD 57007, USA; (T.A.S.); (M.S.H.S.)
| | - Mohamed S. H. Selim
- Department of Veterinary Biomedical Science, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD 57007, USA; (T.A.S.); (M.S.H.S.)
| |
Collapse
|
3
|
Liu X, Zou X, Zhang W, Guo X, Wang M, Lv Y, Hung T, Lu Z. No Genus-Specific Gene Is Essential for the Replication of Fowl Adenovirus 4 in Chicken LMH Cells. Microbiol Spectr 2022; 10:e0047022. [PMID: 35638786 PMCID: PMC9241798 DOI: 10.1128/spectrum.00470-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/28/2022] [Indexed: 11/20/2022] Open
Abstract
Essential genus-specific genes have not been discovered for fowl adenovirus (FAdV), which hampers the development of FAdV-based vectors and attenuated FAdV vaccines. Reverse genetics approaches were employed to construct FAdV-4 mutants carrying deletions or frameshift mutations covering the whole left and right ends of the viral genome. The results of virus rescue and plaque forming experiments illustrated that all the 22 designated ORFs (open reading frames) were dispensable for the replication of FAdV-4 in chicken hepatoma Leghorn male hepatoma (LMH) cells and primary embryo hepatocytes. RNA-seq data demonstrated that ORF28 and ORF29 were not protein-encoding genes, and suggested a promoter (RP1) and an intron in these regions, respectively. The promoter activity of RP1 was further confirmed by reporter gene expression experiments. GAM-1-deleted FAdV-4 formed small plaques, while deletion of GAM-1 together with ORF22 resulted in even smaller ones in LMH cells. Simultaneous deletion of ORF28, ORF29, and GAM-1 led to growth defect of FAdV-4. These facts implied that genus-specific genes contributed to and synergistically affected viral replication, although no single one was essential. Notably, replication of FAdV-4 mutants could be different in vitro and in vivo. XGAM1-CX19A, a GAM-1-deleted FAdV-4 that replicated efficiently in LMH cells, did not kill chicken embryos because virus propagation took place at a very low level in vivo. This work laid a solid foundation for FAdV-4 vector construction as well as vaccine development, and would benefit viral gene function study. IMPORTANCE Identification of viral essential genes is important for adenoviral vector construction. Deletion of nonessential genes enlarges cloning capacity, deletion of essential genes makes a replication-defective vector, and expression of essential genes in trans generates a virus packaging cell line. However, the genus-specific essential genes in FAdV have not been identified. We constructed adenoviral plasmid carrying deletions covering all 22 genus-specific ORFs of FAdV-4, and found that all virus mutants could be rescued and amplified in chicken LMH cells except those that had defects in key promoter activity. These genus-specific genes affected virus growth, but no single one was indispensable. Dysfunction of several genus-specific genes at the same time could make FAdV-4 vectors replication-defective. In addition, the growth of FAdV-4 mutants could be different in LMH cells and in chicken embryos, suggesting the possibility of constructing attenuated FAdV-4 vaccines.
Collapse
Affiliation(s)
- Xinglong Liu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaohui Zou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenfeng Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Laboratory Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Xiaojuan Guo
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Min Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yingtao Lv
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China
| | - Tao Hung
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhuozhuang Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Chinese Center for Disease Control and Prevention–Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Wuhan, Hubei, China
| |
Collapse
|
4
|
Griffin BD, Corredor JC, Pei Y, Nagy É. Downregulation of Cell Surface Major Histocompatibility Complex Class I Expression Is Mediated by the Left-End Transcription Unit of Fowl Adenovirus 9. Viruses 2021; 13:v13112211. [PMID: 34835017 PMCID: PMC8619926 DOI: 10.3390/v13112211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 01/16/2023] Open
Abstract
Major histocompatibility complex class I (MHC-I) molecules play a critical role in the host’s antiviral response by presenting virus-derived antigenic peptides to cytotoxic T lymphocytes (CTLs), enabling the clearance of virus-infected cells. Human adenoviruses evade CTL-mediated cell lysis, in part, by interfering directly with the MHC-I antigen presentation pathway through the expression of E3-19K, which binds both MHC-I and the transporter associated with antigen processing protein and sequestering MHC-I within the endoplasmic reticulum. Fowl adenoviruses have no homologues of E3-19K. Here, we show that representative virus isolates of the species Fowl aviadenovirus C, Fowl aviadenovirus D, and Fowl aviadenovirus E downregulate the cell surface expression of MHC-I in chicken hepatoma cells, resulting in 71%, 11%, and 14% of the baseline expression level, respectively, at 12 h post-infection. Furthermore, this work reports that FAdV-9 downregulates cell surface MHC-I through a minimum of two separate mechanisms—a lysosomal-independent mechanism that requires the presence of the fowl adenovirus early 1 (FE1) transcription unit located within the left terminal genomic region between nts 1 and 6131 and a lysosomal-dependent mechanism that does not require the presence of FE1. These results establish a new functional role for the FE1 transcription unit in immune evasion. These studies provide important new information about the immune evasion of FAdVs and will enhance our understanding of the pathogenesis of inclusion body hepatitis and advance the progress made in next-generation FAdV-based vectors.
Collapse
Affiliation(s)
| | | | | | - Éva Nagy
- Correspondence: ; Tel.: +1-519-824-4120
| |
Collapse
|
5
|
Pei Y, Krell PJ, Susta L, Nagy É. Characterization of a fowl adenovirus 9 (FAdV-9) early promoter and its application in generating dual expression FAdV-9s. J Virol Methods 2021; 294:114172. [PMID: 33915232 DOI: 10.1016/j.jviromet.2021.114172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/18/2022]
Abstract
The CMV immediate early promoter from the EGFP expression plasmid pEGFP-N1 was replaced with the very left end of the fowl adenovirus 9 (FAdV-9) genome (ntds 73-574) to demonstrate and delineate the promoter function of this sequence. Expression of an EGFP ORF which replaced ORF1 and ORF2 demonstrated that the native promoter can drive down stream foreign gene expression. Replacement of ORF1 and ORF2 with a bicistronic cassette, incorporating a 493 bp IRES from an Ontario strain of avian encephalomyelitis virus (AEV) separating an EGFP ORF and mCherry ORF allowed for expression of both ORFs from a recombinant FAdV. These results provide an additional platform for multivalent vaccines development based on a native FAdV-9 promoter and an avian virus IRES.
Collapse
Affiliation(s)
- Yanlong Pei
- Departments of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Peter J Krell
- Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Leonardo Susta
- Departments of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Éva Nagy
- Departments of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
6
|
Yan B, Zou X, Liu X, Zhao J, Zhang W, Guo X, Wang M, Lv Y, Lu Z. User-Friendly Reverse Genetics System for Modification of the Right End of Fowl Adenovirus 4 Genome. Viruses 2020; 12:E301. [PMID: 32168853 PMCID: PMC7150739 DOI: 10.3390/v12030301] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/29/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
A novel fowl adenovirus 4 (FAdV-4) has caused significant economic losses to the poultry industry in China since 2015. We established an easy-to-use reverse genetics system for modification of the whole right and partial left ends of the novel FAdV-4 genome, which worked through cell-free reactions of restriction digestion and Gibson assembly. Three recombinant viruses were constructed to test the assumption that species-specific viral genes of ORF4 and ORF19A might be responsible for the enhanced virulence: viral genes of ORF1, ORF1b and ORF2 were replaced with GFP to generate FAdV4-GFP, ORF4 was replaced with mCherry in FAdV4-GFP to generate FAdV4-GX4C, and ORF19A was deleted in FAdV4-GFP to generate FAdV4-CX19A. Deletion of ORF4 made FAdV4-GX4C form smaller plaques while ORF19A deletion made FAdV4-CX19A form larger ones on chicken LMH cells. Coding sequence (CDS) replacement with reporter mCherry demonstrated that ORF4 had a weak promoter. Survival analysis showed that FAdV4-CX19A-infected chicken embryos survived one more day than FAdV4-GFP- or FAdV4-GX4C-infected ones. The results illustrated that ORF4 and ORF19A were non-essential genes for FAdV-4 replication although deletion of either gene influenced virus growth. This work would help function study of genes on the right end of FAdV-4 genome and facilitate development of attenuated vaccines.
Collapse
Affiliation(s)
- Bingyu Yan
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (B.Y.); (X.L.)
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.Z.); (J.Z.); (W.Z.); (X.G.); (M.W.)
| | - Xiaohui Zou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.Z.); (J.Z.); (W.Z.); (X.G.); (M.W.)
| | - Xinglong Liu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (B.Y.); (X.L.)
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.Z.); (J.Z.); (W.Z.); (X.G.); (M.W.)
| | - Jiaming Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.Z.); (J.Z.); (W.Z.); (X.G.); (M.W.)
- Department of Laboratory Medicine, School of Public Health and Management, Weifang Medical University, Weifang 261053, China
| | - Wenfeng Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.Z.); (J.Z.); (W.Z.); (X.G.); (M.W.)
- Department of Laboratory Medicine, School of Public Health and Management, Weifang Medical University, Weifang 261053, China
| | - Xiaojuan Guo
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.Z.); (J.Z.); (W.Z.); (X.G.); (M.W.)
| | - Min Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.Z.); (J.Z.); (W.Z.); (X.G.); (M.W.)
| | - Yingtao Lv
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (B.Y.); (X.L.)
| | - Zhuozhuang Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.Z.); (J.Z.); (W.Z.); (X.G.); (M.W.)
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Chinese Center for Disease Control and Prevention-Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Wuhan 430071, China
| |
Collapse
|