1
|
Yang F, Zhou J, Huang H, Cai S, Zhang Y, Wen F, Zhao M, Zhang K, Qin L. Isolation of a more aggressive GVI-1 genotype strain HX of the avian infectious bronchitis virus. Poult Sci 2024; 103:104285. [PMID: 39326178 PMCID: PMC11459636 DOI: 10.1016/j.psj.2024.104285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
The avian infectious bronchitis virus (IBV) poses a significant economic threat to the global poultry industry. Although in recent years, the GVI-1 lineage of IBV has proliferated throughout China, there is still a lack of comprehensive studies regarding the pathogenicity of this lineage, particularly with respect to infections of the digestive tract and the antigenic characteristics of the S1 gene. In this study, we investigated the effects of infecting 14-day-old chicks with the HX strain of the GVI-1 lineage over a 14-d period postinfection. Assessment of the pathogenicity of the HX strain included clinical observations; monitoring of body weight, organ viral load, viral shedding, and gross anatomy; histopathological analysis, and bioinformatics-based antigenic characterization of the S1 protein. The findings revealed that compared with previously reported GVI-1 lineage strains, the HX strain is characterized by greater virulence, with infection leading to approximately 26% mortality and extensive severe organ damage, including that of the proventriculus and kidneys. Moreover, at 14 d postinfection, 80% of oral swabs and 100% of cloacal swabs from chickens infected with the HX strain tested positive, indicating a prolonged period of viral shedding relative to that previously reported for GVI-1 lineage strains. Bioinformatic analysis of B-cell epitopes on the S1 protein revealed 7 potential antigenic epitopes. Collectively, our findings in this study provide clear evidence to indicate that compared previously reported GVI-1 lineage strains, chicks infected with the IBV GVI-1 lineage strain HX are characterized by heightened rates of mortality, more pronounced organ damage, and an extended period of viral shedding. This comprehensive characterization highlights the pathogenic potential of the GVI-1 lineage and its capacity to induce severe kidney and proventriculus damage, thereby emphasizing the imperative of early initiated preventive measures. Furthermore, on the basis of our analysis of the antigenic properties of the S1 protein, we have identified 7 potential linear B-cell epitopes, which will provide valuable insights for the development of epitope-based vaccines.
Collapse
Affiliation(s)
- Fan Yang
- School of Animal Science and Technology, Foshan University, Foshan 528231, China
| | - Jun Zhou
- School of Animal Science and Technology, Foshan University, Foshan 528231, China
| | - Hongbin Huang
- School of Animal Science and Technology, Foshan University, Foshan 528231, China
| | - Shikai Cai
- School of Animal Science and Technology, Foshan University, Foshan 528231, China
| | - Yun Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510000, China
| | - Feng Wen
- School of Animal Science and Technology, Foshan University, Foshan 528231, China
| | - Mengmeng Zhao
- School of Animal Science and Technology, Foshan University, Foshan 528231, China
| | - Keshan Zhang
- School of Animal Science and Technology, Foshan University, Foshan 528231, China
| | - Limei Qin
- School of Animal Science and Technology, Foshan University, Foshan 528231, China.
| |
Collapse
|
2
|
Chen H, Shi W, Feng S, Yuan L, Jin M, Liang S, Wang X, Si H, Li G, Ou C. A novel highly virulent nephropathogenic QX-like infectious bronchitis virus originating from recombination of GI-13 and GI-19 genotype strains in China. Poult Sci 2024; 103:103881. [PMID: 38865766 PMCID: PMC11223121 DOI: 10.1016/j.psj.2024.103881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024] Open
Abstract
Infectious bronchitis virus (IBV) is one of the most widely spread RNA viruses, causing respiratory, renal, and intestinal damage, as well as decreased reproductive performance in hens, leading to significant economic losses in the poultry industry. In this study, a new IBV strain designated as CK/CH/GX/LA/071423 was successfully isolated from the 60-day-old Three-Yellow chicken vaccinated with H120 and QXL87 vaccines. The complete genome sequence analysis revealed that the CK/CH/GX/LA/071423 strain shared a high similarity of 96.7% with the YX10 strain belonging to the GI-19 genotype. Genetic evolution analysis based on the IBV S1 gene showed that the CK/CH/GX/LA/071423 isolate belonged to the GI-19 genotype. Recombination analysis of the virus genome using RDP and Simplot software indicated that CK/CH/GX/LA/071423 was derived from recombination events between the YX10 and 4/91 vaccine strains, which was supported by phylogenetic analysis using gene sequences from the 3 regions. Furthermore, the S1 protein tertiary structure differences were observed between the CK/CH/GX/LA/071423 and the QXL87 and H120 vaccine strains. Pathogenicity studies revealed that the CK/CH/GX/LA/071423 caused death and led to pale and enlarged kidneys with abundant urate deposits, indicative of a nephropathogenic IBV strain. High virus titers were detected in the trachea, kidneys, and cecal tonsils, demonstrating broad tissue tropism. Throughout the experimental period, the virus positive rate in throat swabs of the infected group reached to 100%. These findings highlight the continued predominance of the QX genotype IBV in Guangxi of China and the ongoing evolution of different genotypes through genetic recombination, raising concerns about the efficacy of current IBV vaccines in providing effective protection to poultry.
Collapse
Affiliation(s)
- Hao Chen
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Wen Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Shufeng Feng
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Liuyang Yuan
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Mengyun Jin
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Si Liang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Xiaohan Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, PR China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, PR China
| | - Gonghe Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Changbo Ou
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, PR China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, PR China.
| |
Collapse
|
3
|
Zhao J, Zhao Y, Zhang G. Key Aspects of Coronavirus Avian Infectious Bronchitis Virus. Pathogens 2023; 12:pathogens12050698. [PMID: 37242368 DOI: 10.3390/pathogens12050698] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Infectious bronchitis virus (IBV) is an enveloped and positive-sense single-stranded RNA virus. IBV was the first coronavirus to be discovered and predominantly causes respiratory disease in commercial poultry worldwide. This review summarizes several important aspects of IBV, including epidemiology, genetic diversity, antigenic diversity, and multiple system disease caused by IBV as well as vaccination and antiviral strategies. Understanding these areas will provide insight into the mechanism of pathogenicity and immunoprotection of IBV and may improve prevention and control strategies for the disease.
Collapse
Affiliation(s)
- Jing Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ye Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Yan W, Yang Q, Huang S, Liu S, Wang K, Tang Y, Lei C, Wang H, Yang X. Insights on genetic characterization and pathogenesis of a GI-19 (QX-like) infectious bronchitis virus isolated in China. Poult Sci 2023; 102:102719. [PMID: 37156078 DOI: 10.1016/j.psj.2023.102719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/29/2023] [Accepted: 04/09/2023] [Indexed: 05/10/2023] Open
Abstract
Infectious bronchitis virus (IBV) causes respiratory diseases in chickens, incurring great losses to the poultry industry worldwide. In this study, we isolated an IBV strain, designated as AH-2020, from the chickens vaccinated with H120 and 4/91 in Anhui, China. The sequence homology analysis based on the S1 gene revealed that AH-2020 shares low similarities with the 3 vaccine strains, namely, H120, LDT3-A, and 4/91 (78.19, 80.84, and 81.6%, respectively). Phylogenetic analysis based on the S1 gene revealed that AH-2020 clustered with the GI-19 type. Furthermore, protein modeling revealed that the mutations in the amino acids in AH-2020 were mainly located in the N-terminal domain of S1 (S1-NTD), and the pattern of deletion and insertion mutations in the S1 protein may have influenced the structural changes on the surface of S1. Further, approximately 7-day-old SPF chickens were inoculated with AH-2020 at 106.0 EID50. These chickens exhibited clinical signs of the infection such as listlessness, huddling, and head-shaking, accompanied by depression and 40% mortality. Serum antibody test demonstrated that in response to the AH-2020 infection, the antibody level increased the fastest at 7 dpi, with virus shedding rate of cloaca being 100% at 14 dpi. The viral titer in various tissues was detected using hematoxylin and eosin staining and immunohistochemistry, which revealed that AH-2020 infection can damage the kidney, trachea, lung, cecal tonsil, and bursa of Fabricius. Our study provided evidence that the GI-19-type IBV is undergoing more complex mutations, and effective measures are urgently needed to prevent the spread of these variant strains.
Collapse
Affiliation(s)
- Wenjun Yan
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Qingcheng Yang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Siyu Huang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Song Liu
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Kailu Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Yizhi Tang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Cangwei Lei
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Hongning Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Xin Yang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
5
|
Tang X, Qi J, Sun L, Zhao J, Zhang G, Zhao Y. Pathological effect of different avian infectious bronchitis virus strains on the bursa of Fabricius of chickens. Avian Pathol 2022; 51:339-348. [PMID: 35404721 DOI: 10.1080/03079457.2022.2063710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Infectious bronchitis is an acute and highly contagious disease caused by avian infectious bronchitis virus (IBV). As well as the typical clinical respiratory symptoms, such as dyspnoea and tracheal rales, QX genotype strains can also cause damage to the urinary system and reproductive system. Our previous studies found that chickens infected with QX-type IBV also displayed damage to the bursa of Fabricius. To investigate the effects of different genotypes of IBV on the bursa of Fabricius, we challenged one-week-old SPF chickens with Mass, QX and TW genotype IBV strains and compared the clinical symptoms, gross lesions, histopathological damage, viral loads and expression levels of inflammatory cytokines (IL-6, IL-8, IL-1ß, IFN-α, ß, γ and TNF-α). The results showed that all three strains caused tissue damage, while significant temporal variations in the viral loads of the different infected groups were detected. IBV infection seriously interfered with the natural immune response mediated by inflammatory cytokines (IFN-α, IFN-ß, IL-6 and IFN-γ) in chickens. Our results suggested that IBV has potential immunological implications for chickens that may lead to poor production efficiency.
Collapse
Affiliation(s)
- Xinyan Tang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jingyi Qi
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lu Sun
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Guozhong Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ye Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
M Najimudeen S, Barboza-Solis C, Ali A, Buharideen SM, M Isham I, Hassan MSH, Ojkic D, Van Marle G, Cork SC, van der Meer F, Boulianne M, Abdul-Careem MF. Pathogenesis and host responses in lungs and kidneys following Canadian 4/91 infectious bronchitis virus (IBV) infection in chickens. Virology 2021; 566:75-88. [PMID: 34890893 DOI: 10.1016/j.virol.2021.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023]
Abstract
The infectious bronchitis virus (IBV) 4/91 was one of the common IBV variants isolated in Eastern Canada between 2013 and 2017 from chicken flocks showing severe respiratory and production problems. We designed an in vivo experiment, using specific pathogen free (SPF) chickens, to study the pathogenesis of, and host response to, Canadian (CAN) 4/91 IBV infection. At one week of age, the chickens were infected with 4/91 IBV/Ck/Can/17-038913 isolate. Swab samples were collected at predetermined time points. Five birds from the infected and the control groups were euthanized at 3, 7- and 10-days post-infection (dpi) to collect lung and kidney tissues. The results indicate IBV replication in these tissues at all three time points with prominent histological lesions, significant immune cell recruitment and up regulation of proinflammatory mediators. Overall, our findings add to the understanding of the pathogenesis of 4/91 infection and the subsequent host responses in the lungs and kidneys following experimental infection.
Collapse
Affiliation(s)
- Shahnas M Najimudeen
- Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Catalina Barboza-Solis
- Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Ahmed Ali
- Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada; Department of Pathology, Beni-Suef University, Beni Suef, 62521, Egypt
| | - Sabrina M Buharideen
- Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Ishara M Isham
- Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Mohamed S H Hassan
- Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada; Department of Poultry Diseases, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Davor Ojkic
- Animal Health Laboratory, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Guido Van Marle
- Cumming School of Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Susan C Cork
- Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Frank van der Meer
- Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Martine Boulianne
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montréal, Montreal, Quebec, Canada
| | - Mohamed Faizal Abdul-Careem
- Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
7
|
Sun L, Tang X, Qi J, Zhang C, Zhao J, Zhang G, Zhao Y. Two newly isolated GVI lineage infectious bronchitis viruses in China show unique molecular and pathogenicity characteristics. INFECTION GENETICS AND EVOLUTION 2021; 94:105006. [PMID: 34293479 DOI: 10.1016/j.meegid.2021.105006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/29/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
During 2016 to 2020, GVI-1 type infectious bronchitis virus (IBV) strains were sporadically reported across China, indicating a new epidemic trend of the virus. Here we investigated the molecular characteristics and pathogenicity of two newly isolated GVI-1 type IBV virus strains (CK/CH/TJ1904 and CK/CH/NP2011) from infected chicken farms in China. Genetic evolution analysis of the S1 gene showed the highest homology with the GVI-1 representative strain, TC07-2. Phylogenetic analysis and recombination analysis of the virus genomes indicated that newly isolated strains in China may be independently derived from recombination events that occurred between GI-19 and GI-22 strains and early GVI-1 viruses. Interestingly, unlike the deduced parental GI-19 or GI-22 strains, CK/CH/TJ1904 and CK/CH/NP2011 showed affinity for the trachea rather than the kidney and were less pathogenic. This difference may be because of recombination events that occurred during the long co-existence of the GVI-1 viruses with prevalent GI-19 and GI-22 strains. Considering the new trend, it is very important to permanently monitor circulating strains and to develop new vaccines to counteract emerging new-type IBVs.
Collapse
Affiliation(s)
- Lu Sun
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xinyan Tang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jingyi Qi
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Chunyan Zhang
- Heilongjiang Hegang Center for Animal Disease Control and Prevention, Hegang 154106, China
| | - Jing Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Guozhong Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Ye Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Zhang X, Chen T, Chen S, Nie Y, Xie Z, Feng K, Zhang H, Xie Q. The Efficacy of a Live Attenuated TW I-Type Infectious Bronchitis Virus Vaccine Candidate. Virol Sin 2021; 36:1431-1442. [PMID: 34251605 PMCID: PMC8273854 DOI: 10.1007/s12250-021-00419-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
Infectious bronchitis (IB) is a highly contagious avian disease caused by infection with infectious bronchitis virus (IBV), which seriously affects the development of the global poultry industry. The distribution of TW I-type IBV in China has increased in recent years, becoming a widespread genotype. We previously isolated a TW I-type IBV strain termed CK/CH/GD/GZ14 in 2014, but its pathogenicity and possibility for vaccine development were not explored. Therefore, this research aimed to develop a live-attenuated virus vaccine based on the CK/CH/GD/GZ14 strain. The wild type IBV CK/CH/GD/GZ14 strain was serially passaged in SPF embryos for 145 generations. The morbidity and mortality rate of wild-type strain in 14 day-old chickens is 100% and 80% respectively, while the morbidity rate in the attenuated strain was 20% in the 95th and 105th generations and there was no death. Histopathological observations showed that the pathogenicity of the 95th and 105th generations in chickens was significantly weakened. Further challenge experiments confirmed that the attenuated CK/CH/GD/GZ14 strain in the 95th and 105th generations could resist CK/CH/GD/GZ14 (5th generation) infection and the protection rate was 80%. Tracheal cilia stagnation, virus shedding, and viral load experiments confirmed that the 95th and 105th generations provide good immune protection in chickens, and the immunogenicity of the 105th generation is better than that of the 95th generation. These data suggest that the attenuated CK/CH/GD/GZ14 strain in the 105th generation may be applied as a vaccine candidate against TW I-type IBV.
Collapse
Affiliation(s)
- Xinheng Zhang
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, China
| | - Tong Chen
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, China
| | - Sheng Chen
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Yu Nie
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Zi Xie
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Keyu Feng
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Huanmin Zhang
- United States Department of Agriculture, Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI, 48823, USA
| | - Qingmei Xie
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China. .,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, China.
| |
Collapse
|
9
|
Towards Improved Use of Vaccination in the Control of Infectious Bronchitis and Newcastle Disease in Poultry: Understanding the Immunological Mechanisms. Vaccines (Basel) 2021; 9:vaccines9010020. [PMID: 33406695 PMCID: PMC7823560 DOI: 10.3390/vaccines9010020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
Infectious bronchitis (IB) and Newcastle disease (ND) are two important diseases of poultry and have remained a threat to the development of the poultry industry in many parts of the world. The immunology of avian has been well studied and numerous vaccines have been developed against the two viruses. Most of these vaccines are either inactivated vaccines or live attenuated vaccines. Inactivated vaccines induce weak cellular immune responses and require priming with live or other types of vaccines. Advanced technology has been used to produce several types of vaccines that can initiate prime immune responses. However, as a result of rapid genetic variations, the control of these two viral infections through vaccination has remained a challenge. Using various strategies such as combination of live attenuated and inactivated vaccines, development of IB/ND vaccines, use of DNA vaccines and transgenic plant vaccines, the problem is being surmounted. It is hoped that with increasing understanding of the immunological mechanisms in birds that are used in fighting these viruses, a more successful control of the diseases will be achieved. This will go a long way in contributing to global food security and the economic development of many developing countries, given the role of poultry in the attainment of these goals.
Collapse
|
10
|
Chen L, Xiang B, Hong Y, Li Q, Du H, Lin Q, Liao M, Ren T, Xu C. Phylogenetic analysis of infectious bronchitis virus circulating in southern China in 2016-2017 and evaluation of an attenuated strain as a vaccine candidate. Arch Virol 2021; 166:73-81. [PMID: 33067648 PMCID: PMC7566581 DOI: 10.1007/s00705-020-04851-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 09/05/2020] [Indexed: 12/13/2022]
Abstract
Avian infectious bronchitis (IB) is a highly contagious viral respiratory disease, caused by infectious bronchitis virus (IBV), that poses an important economic threat to the poultry industry. In recent years, genotypes GI-7, GI-13, and GI-19 have been the most prevalent IBV strains in China. However, in this study, we found that most IBV strains from southern China in 2016-2017 belonged to genotype GVI-1. This genotype, for which there is no vaccine, has been reported sporadically in the region. The GDTS13 strain, which caused severe IB outbreaks on the farms where it was isolated, was evaluated as a candidate vaccine strain. GDTS13 was serially passaged in specific-pathogen-free embryonated chicken eggs for 100 generations to produce GDTS13-F100. Safety testing indicated that GDTS13-F100 had no pathogenic effect on chickens. Additionally, GDTS13-F100 showed an excellent protective effect against GDTS13, with no clinical signs or virus shedding observed in immunized chickens challenged with the parent strain. These findings indicate that GVI-1 has become the most prevalent IBV genotype in southern China and that GDTS13-F100 may serve as an attenuated vaccine to protect against infection with this genotype.
Collapse
Affiliation(s)
- Libin Chen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, People's Republic of China
| | - Bin Xiang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, People's Republic of China
| | - Yanfen Hong
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, People's Republic of China
| | - Qian Li
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, People's Republic of China
| | - Haoyun Du
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, People's Republic of China
| | - Qiuyan Lin
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, People's Republic of China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, People's Republic of China
| | - Tao Ren
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, People's Republic of China.
| | - Chenggang Xu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|