1
|
Zeng Y, Shen M, Liu S, Zhou X. Characterization and resistance mechanism of phage-resistant strains of Salmonella enteritidis. Poult Sci 2024; 103:103756. [PMID: 38652948 PMCID: PMC11063523 DOI: 10.1016/j.psj.2024.103756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/25/2024] [Accepted: 04/06/2024] [Indexed: 04/25/2024] Open
Abstract
In the face of the increasingly severe problem of antibiotic resistance, phage therapy is regarded as a highly potential alternative. Compared with traditional antimicrobial agents, a key research area of phage therapy is the study of phage-resistant mutant bacteria. To effectively monitor and prevent this resistance, it is crucial to conduct in-depth exploration of the mechanism behind phage resistance. In this study, a strain of Salmonella enteritidis (sm140) and the corresponding phage (Psm140) were isolated from chicken liver and sewage, respectively. Using the double-layer plate method, successfully screened out phage-resistant mutant strains. Whole-genome resequencing of 3 resistant strains found that the wbaP gene of all 3 strains had mutations at a specific position (1,118), with the base changing from G to A. This mutation causes the gene-encoded glycine to be replaced by aspartic acid. Subsequent studies found that the frequency of this gene mutation is extremely high, reaching 84%, and all mutations occur at the same position. To further explore the relationship between the wbaP gene and phage resistance, knockout strains and complement strains of the wbaP gene were constructed. The experimental results confirmed the association between the wbaP gene and phage resistance. At the same time, biological characteristics and virulence were evaluated for wild strains, resistant strains, knockout strains, and complement strains. It was found that mutations or deletions of the wbaP gene lead to a decrease in bacterial environmental adaptability and virulence. Through systematic research on the mechanism and biological characteristics of phage resistance, this study provides important references and guidance for the development of new phage therapies, promoting progress in the field of antimicrobial treatment. At the same time, the emergence of phage resistance due to wbaP gene mutations is reported for the first time in salmonella, providing a new perspective and ideas for further studying phage resistance mechanisms.
Collapse
Affiliation(s)
- Yukun Zeng
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Mangmang Shen
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Shenglong Liu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xin Zhou
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Zhang T, Nickerson R, Zhang W, Peng X, Shang Y, Zhou Y, Luo Q, Wen G, Cheng Z. The impacts of animal agriculture on One Health-Bacterial zoonosis, antimicrobial resistance, and beyond. One Health 2024; 18:100748. [PMID: 38774301 PMCID: PMC11107239 DOI: 10.1016/j.onehlt.2024.100748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/02/2024] [Indexed: 05/24/2024] Open
Abstract
The industrialization of animal agriculture has undoubtedly contributed to the improvement of human well-being by increasing the efficiency of food animal production. At the same time, it has also drastically impacted the natural environment and human society. The One Health initiative emphasizes the interdependency of the health of ecosystems, animals, and humans. In this paper, we discuss some of the most profound consequences of animal agriculture practices from a One Health perspective. More specifically, we focus on impacts to host-microbe interactions by elaborating on how modern animal agriculture affects zoonotic infections, specifically those of bacterial origin, and the concomitant emergence of antimicrobial resistance (AMR). A key question underlying these deeply interconnected issues is how to better prevent, monitor, and manage infections in animal agriculture. To address this, we outline approaches to mitigate the impacts of agricultural bacterial zoonoses and AMR, including the development of novel treatments as well as non-drug approaches comprising integrated surveillance programs and policy and education regarding agricultural practices and antimicrobial stewardship. Finally, we touch upon additional major environmental and health factors impacted by animal agriculture within the One Health context, including animal welfare, food security, food safety, and climate change. Charting how these issues are interwoven to comprise the complex web of animal agriculture's broad impacts on One Health will allow for the development of concerted, multidisciplinary interventions which are truly necessary to tackle these issues from a One Health perspective.
Collapse
Affiliation(s)
- Tengfei Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Rhea Nickerson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Wenting Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xitian Peng
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan 430064, Hubei, China
- Ministry of Agriculture and Rural Affairs Laboratory of Quality and Safe Risk Assessment for Agro-products (Wuhan), Wuhan 430064, Hubei, China
| | - Yu Shang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Youxiang Zhou
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan 430064, Hubei, China
- Ministry of Agriculture and Rural Affairs Laboratory of Quality and Safe Risk Assessment for Agro-products (Wuhan), Wuhan 430064, Hubei, China
| | - Qingping Luo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Guoyuan Wen
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
3
|
Martinez-Soto CE, McClelland M, Kropinski AM, Lin JT, Khursigara CM, Anany H. Multireceptor phage cocktail against Salmonella enterica to circumvent phage resistance. MICROLIFE 2024; 5:uqae003. [PMID: 38545601 PMCID: PMC10972627 DOI: 10.1093/femsml/uqae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
Non-Typhoidal Salmonella (NTS) is one of the most common food-borne pathogens worldwide, with poultry products being the major vehicle for pathogenesis in humans. The use of bacteriophage (phage) cocktails has recently emerged as a novel approach to enhancing food safety. Here, a multireceptor Salmonella phage cocktail of five phages was developed and characterized. The cocktail targets four receptors: O-antigen, BtuB, OmpC, and rough Salmonella strains. Structural analysis indicated that all five phages belong to unique families or subfamilies. Genome analysis of four of the phages showed they were devoid of known virulence or antimicrobial resistance factors, indicating enhanced safety. The phage cocktail broad antimicrobial spectrum against Salmonella, significantly inhibiting the growth of all 66 strains from 20 serovars tested in vitro. The average bacteriophage insensitive mutant (BIM) frequency against the cocktail was 6.22 × 10-6 in S. Enteritidis, significantly lower than that of each of the individual phages. The phage cocktail reduced the load of Salmonella in inoculated chicken skin by 3.5 log10 CFU/cm2 after 48 h at 25°C and 15°C, and 2.5 log10 CFU/cm2 at 4°C. A genome-wide transduction assay was used to investigate the transduction efficiency of the selected phage in the cocktail. Only one of the four phages tested could transduce the kanamycin resistance cassette at a low frequency comparable to that of phage P22. Overall, the results support the potential of cocktails of phage that each target different host receptors to achieve complementary infection and reduce the emergence of phage resistance during biocontrol applications.
Collapse
Affiliation(s)
- Carlos E Martinez-Soto
- Guelph Research and Development Centre, Agriculture and Agri-Food
Canada, 93 Stone Rd W, N1G 5C9, Guelph, Ontario,
Canada
- Department of Molecular and Cellular Biology, College of Biological
Science, University of Guelph, 50 Stone Rd E, N1G 2W1,
Guelph, Ontario, Canada
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, School of Medicine,
University of California, Irvine, 811 Health Sciences Road,
CA 92614, United States
| | - Andrew M Kropinski
- Department of Pathobiology, Ontario Veterinary College, University of
Guelph, Guelph, 419 Gordon St, Guelph, ON N1G
2W1, Canada
| | - Janet T Lin
- Guelph Research and Development Centre, Agriculture and Agri-Food
Canada, 93 Stone Rd W, N1G 5C9, Guelph, Ontario,
Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, College of Biological
Science, University of Guelph, 50 Stone Rd E, N1G 2W1,
Guelph, Ontario, Canada
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food
Canada, 93 Stone Rd W, N1G 5C9, Guelph, Ontario,
Canada
- Department of Molecular and Cellular Biology, College of Biological
Science, University of Guelph, 50 Stone Rd E, N1G 2W1,
Guelph, Ontario, Canada
| |
Collapse
|
4
|
Pelyuntha W, Ngasaman R, Yingkajorn M, Chukiatsiri K, Guyonnet V, Vongkamjan K. Phage cocktail administration to reduce Salmonella load in broilers. Res Vet Sci 2024; 169:105163. [PMID: 38295630 DOI: 10.1016/j.rvsc.2024.105163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
Salmonella is a serious foodborne pathogen that can cause gastrointestinal disease through the consumption of contaminated foods; including poultry meat. Salmonella is commonly present in the intestinal tract of poultry and farm environments, posing a potential risk of contamination during the processing of poultry meat. This study was a continuation in evaluating the effects of our previously developed phage cocktail targeting Salmonella at large-scale trials in commercial broiler farms, in which this cocktail considerably lowered Salmonella colonization in the gut of broilers. The phage cocktail given to broilers showed resistance to temperatures of up to 65 °C (> 60% survivability), pH ranging from 2 to 12 (> 96% survivability), 0.5 to 15% (w/v) NaCl (> 98% survivability), chlorine up to 0.5% (v/v) (53% survivability), and chlorine neutralizer (100% survivability). In the animal challenge study, phage treatments, designed as "prevention" and "exclusion" programs, could control Salmonella on day 20 and 32 of the experiment, respectively; as indicated by the absence of Salmonella detection in cloacal swabs from broilers (0% prevalence). In the commercial-scale trial I, Salmonella was not detected in the phage-treated group from cloacal swabs, boot cover swabs, and bedding material samples after 16 days (0% prevalence) of phage administration. In the commercial-scale trial II, phage treatment extended the Salmonella control period in broilers during a 40-day growout period. In summary, a phage cocktail demonstrated high efficiency in controlling various serovars of Salmonella historically linked to contamination on these broiler farms. Phage cocktail application offers an effective, alternative to enhance food safety within the poultry value chain, protecting consumers and as well as the economic sustainability of the poultry sector.
Collapse
Affiliation(s)
- Wattana Pelyuntha
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Ruttayaporn Ngasaman
- Faculty of Veterinary Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Mingkwan Yingkajorn
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Kridda Chukiatsiri
- Faculty of Animal Science and Technology, Maejo University, Nongharn, Sansai, Chiang Mai 50290, Thailand
| | | | - Kitiya Vongkamjan
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand.
| |
Collapse
|
5
|
Xiang N, Wong CW, Guo X, Wang S. Infectivity responses of Salmonella enterica to bacteriophages on maize seeds and maize sprouts. Curr Res Food Sci 2024; 8:100708. [PMID: 38444730 PMCID: PMC10912052 DOI: 10.1016/j.crfs.2024.100708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Salmonella enterica (S. enterica) is a major foodborne pathogen leading to a large number of outbreaks and bringing food safety concerns to sprouts. The control of S. enterica on maize sprouts is important because raw maize sprouts have been gaining attention as a novel superfood. Compared to conventional chemical methods, the applications of bacteriophages are regarded as natural and organic. This study investigated the effects of a 2 h phage cocktail (SF1 and SI1, MOI 1000) soaking on reducing the populations of three Salmonella enterica strains: S. Enteritidis S5-483, S. Typhimurium S5-536, and S. Agona PARC5 on maize seeds and during the storage of maize sprouts. The results showed that the phage cocktail treatment effectively reduced populations of S. enterica strains by 1-3 log CFU/g on maize seeds and decreased population of S. Agona PACR5 by 1.16 log CFU/g on maize sprouts from 7.55 log CFU/g at day 0 of the storage period. On the other hand, the upregulations of flagella gene pefA by 1.5-folds and membrane gene lpxA by 23-folds in S. Typhimurium S5-536 indicated a differential response to the phage cocktail treatment. Conversely, stress response genes ompR, rpoS, and recA, as well as the DNA repair gene yafD, were downregulated in S. Agona PARC5. This work shows the use of bacteriophages could contribute as a part of hurdle effect to reduce S. enterica populations and is beneficial to develop strategies for controlling foodborne pathogens in the production and storage of maize sprouts.
Collapse
Affiliation(s)
- Nan Xiang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
- Food, Nutrition and Health, University of British Columbia, 120-2205 East Mall, Vancouver, BC, V6R 1Z4, Canada
| | - Catherine W.Y. Wong
- Food, Nutrition and Health, University of British Columbia, 120-2205 East Mall, Vancouver, BC, V6R 1Z4, Canada
| | - Xinbo Guo
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
| | - Siyun Wang
- Food, Nutrition and Health, University of British Columbia, 120-2205 East Mall, Vancouver, BC, V6R 1Z4, Canada
| |
Collapse
|
6
|
Hernández Villamizar S, Chica Cárdenas LA, Morales Mancera LT, Vives Florez MJ. Anaerobiosis, a neglected factor in phage-bacteria interactions. Appl Environ Microbiol 2023; 89:e0149123. [PMID: 37966212 PMCID: PMC10734468 DOI: 10.1128/aem.01491-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE Many parameters affect phage-bacteria interaction. Some of these parameters depend on the environment in which the bacteria are present. Anaerobiosis effect on phage infection in facultative anaerobic bacteria has not yet been studied. The absence of oxygen triggers metabolic changes in facultative bacteria and this affects phage infection and viral life cycle. Understanding how an anaerobic environment can alter the behavior of phages during infection is relevant for the phage therapy success.
Collapse
|
7
|
Umarje SC, Banerjee SK. Non-traditional approaches for control of antibiotic resistance. Expert Opin Biol Ther 2023; 23:1113-1135. [PMID: 38007617 DOI: 10.1080/14712598.2023.2279644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/01/2023] [Indexed: 11/27/2023]
Abstract
INTRODUCTION The drying up of antibiotic pipeline has necessitated the development of alternative therapeutic strategies to control the problem of antimicrobial resistance (AMR) that is expected to kill 10-million people annually by 2050. Newer therapeutic approaches address the shortcomings of traditional small-molecule antibiotics - the lack of specificity, evolvability, and susceptibility to mutation-based resistance. These 'non-traditional' molecules are biologicals having a complex structure and mode(s) of action that makes them resilient to resistance. AREAS COVERED This review aims to provide information about the non-traditional drug development approaches to tackle the problem of antimicrobial resistance, from the pre-antibiotic era to the latest developments. We have covered the molecules under development in the clinic with literature sourced from reviewed scholarly articles, official company websites involved in innovation of concerned therapeutics, press releases from the regulatory bodies, and clinical trial databases. EXPERT OPINION Formal introduction of non-traditional therapies in general practice can be quick and feasible only if supported with companion diagnostics and used in conjunction with established therapies. Owing to relatively higher development costs, non-traditional therapeutics require more funding as well as well as clarity in regulatory and clinical path. We are hopeful these issues are adequately addressed before AMR develops into a pandemic.
Collapse
Affiliation(s)
- Siddharth C Umarje
- Department of Proteomics, AbGenics Life Sciences Pvt. Ltd., Pune, India
- AbGenics Life Sciences Pvt. Ltd., Pune, India
| | | |
Collapse
|
8
|
Stanton CR, Batinovic S, Petrovski S. Burkholderia contaminans Bacteriophage CSP3 Requires O-Antigen Polysaccharides for Infection. Microbiol Spectr 2023; 11:e0533222. [PMID: 37199610 PMCID: PMC10269572 DOI: 10.1128/spectrum.05332-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/20/2023] [Indexed: 05/19/2023] Open
Abstract
The Burkholderia cepacia complex is a group of opportunistic pathogens that cause both severe acute and chronic respiratory infections. Due to their large genomes containing multiple intrinsic and acquired antimicrobial resistance mechanisms, treatment is often difficult and prolonged. One alternative to traditional antibiotics for treatment of bacterial infections is bacteriophages. Therefore, the characterization of bacteriophages infective for the Burkholderia cepacia complex is critical to determine their suitability for any future use. Here, we describe the isolation and characterization of novel phage, CSP3, infective against a clinical isolate of Burkholderia contaminans. CSP3 is a new member of the Lessievirus genus that targets various Burkholderia cepacia complex organisms. Single nucleotide polymorphism (SNP) analysis of CSP3-resistant B. contaminans showed that mutations to the O-antigen ligase gene, waaL, consequently inhibited CSP3 infection. This mutant phenotype is predicted to result in the loss of cell surface O-antigen, contrary to a related phage that requires the inner core of the lipopolysaccharide for infection. Additionally, liquid infection assays showed that CSP3 provides suppression of B. contaminans growth for up to 14 h. Despite the inclusion of genes that are typical of the phage lysogenic life cycle, we saw no evidence of CSP3's ability to lysogenize. Continuation of phage isolation and characterization is crucial in developing large and diverse phage banks for global usage in cases of antibiotic-resistant bacterial infections. IMPORTANCE Amid the global antibiotic resistance crisis, novel antimicrobials are needed to treat problematic bacterial infections, including those from the Burkholderia cepacia complex. One such alternative is the use of bacteriophages; however, a lot is still unknown about their biology. Bacteriophage characterization studies are of high importance for building phage banks, as future work in developing treatments such as phage cocktails should require well-characterized phages. Here, we report the isolation and characterization of a novel Burkholderia contaminans phage that requires the O-antigen for infection, a distinct phenotype seen among other related phages. Our findings presented in this article expand on the ever-evolving phage biology field, uncovering unique phage-host relationships and mechanisms of infection.
Collapse
Affiliation(s)
- Cassandra R. Stanton
- Department of Microbiology, Anatomy, Physiology & Pharmacology, La Trobe University, Bundoora, Australia
| | - Steven Batinovic
- Department of Microbiology, Anatomy, Physiology & Pharmacology, La Trobe University, Bundoora, Australia
- Division of Materials Science and Chemical Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
| | - Steve Petrovski
- Department of Microbiology, Anatomy, Physiology & Pharmacology, La Trobe University, Bundoora, Australia
| |
Collapse
|
9
|
Pelyuntha W, Sanguankiat A, Kovitvadhi A, Vongkamjan K. Broad lytic spectrum of novel Salmonella phages on ciprofloxacin-resistant Salmonella contaminated in the broiler production chain. Vet World 2022; 15:2039-2045. [PMID: 36313854 PMCID: PMC9615508 DOI: 10.14202/vetworld.2022.2039-2045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Ciprofloxacin (CIP) is recommended for salmonellosis treatment as the drug of choice; however, overuse of this drug can cause drug resistance issues and failure to treat diseases. Phage therapy is an alternative approach for combatting CIP-resistant infection. This study aimed to estimate the prevalence of CIP-resistant Salmonella isolated from the broiler production chain and evaluated the lytic ability of novel Salmonella phages isolated from water samples. Materials and Methods: Samples were obtained from the broiler production chain and used for Salmonella isolation. serovar and CIP resistance of each isolate were characterized through latex agglutination and agar disk diffusion test, respectively. Water samples from different sources were acquired for phage isolation. The lytic activity of novel-isolated phages was also examined. Results: In this study, 51 Salmonella isolates were recovered from the broiler production chain (two commercial farms, one free-range farm, two slaughterhouses, and three stalls from the wet market). Kentucky was the major serovar characterized (16), followed by Typhimurium (9), Agona (5), Corvalis (5), Schwarzengrund (5), Singapore (3), Weltevreden (3), Mbandaka (2), Give (2), and Albany (1). The serovars that exhibited CIP resistance were 14/16 isolates of serovar Kentucky (87.5%) and one isolate of serovar Give (50%), whereas eight other serovars were susceptible to this drug. Overall, the prevalence of CIP-resistant Salmonella recovered from the sources included in this study was 29.4%. This study identified 11 Salmonella phages isolated from wastewater samples derived from broiler farms, wastewater treatment stations, and natural reservoirs. Our phages showed the total percentage of lysis ability ranging from 33.3% to 93.3% against CIP-resistant isolates. However, only one bacterial isolate, namely 210SL, recovered from the food contact surface of a wet market stall and was resistant to all phages. Conclusion: Diverse serovars of Salmonella were recovered in the broiler production chain in this study, while the isolates presenting CIP-resistant Salmonella were as high as 29.4%. Overall, Salmonella phages showed high lysis ability against these CIP-resistant Salmonella isolates, suggesting the potential application of phage-based treatments or biocontrol in the broiler production chain.
Collapse
Affiliation(s)
- Wattana Pelyuntha
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
| | - Arsooth Sanguankiat
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| | - Attawit Kovitvadhi
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Kitiya Vongkamjan
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
10
|
Phage resistance-mediated trade-offs with antibiotic resistance in Salmonella Typhimurium. Microb Pathog 2022; 171:105732. [PMID: 36002113 DOI: 10.1016/j.micpath.2022.105732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/20/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022]
Abstract
This study was designed to evaluate the trade-offs between phage resistance and antibiotic resistance of Salmonella Typhimurium (STKCCM) exposed to bacteriophage PBST10 and antibiotics (ampicillin and ciprofloxacin). STKCCM was serially exposed to control (no PBST10/antibiotic added), phage alone, ampicillin alone, ampicillin with phage, ciprofloxacin alone, and ciprofloxacin with phage for 8 days at 37 °C. The treated cells were used to evaluate the antibiotic susceptibility, β-lactamase activity, relative fitness, gene expression, and phage-resistance frequency. The antibiotic susceptibility of STKCCM to ampicillin was increased in the presence of phages. The β-lactamase activity was significantly increased in the phage alone and ampicillin with phage. The combination treatments of phages and antibiotics resulted in a greater fitness cost. The efflux pump-associated tolC was suppressed in STKCCM exposed to phage alone. The highest phage-resistance frequencies were observed at phage alone, followed by ampicillin with phage and ciprofloxacin with phage. The tolC-suppressed cells showed the enhanced antibiotic susceptibility. This study provides useful information for designing effective phage-antibiotic combination treatments. The evolutionary trade-offs of phage-resistant bacteria with antibiotic resistance might be good targets for controlling antibiotic-resistant bacteria.
Collapse
|
11
|
Pelyuntha W, Vongkamjan K. Combined effects of Salmonella phage cocktail and organic acid for controlling Salmonella Enteritidis in chicken meat. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Martinez-Soto CE, Cucić S, Lin JT, Kirst S, Mahmoud ES, Khursigara CM, Anany H. PHIDA: A High Throughput Turbidimetric Data Analytic Tool to Compare Host Range Profiles of Bacteriophages Isolated Using Different Enrichment Methods. Viruses 2021; 13:2120. [PMID: 34834927 PMCID: PMC8623551 DOI: 10.3390/v13112120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023] Open
Abstract
Bacteriophages are viruses that infect bacteria and are present in niches where bacteria thrive. In recent years, the suggested application areas of lytic bacteriophage have been expanded to include therapy, biocontrol, detection, sanitation, and remediation. However, phage application is constrained by the phage's host range-the range of bacterial hosts sensitive to the phage and the degree of infection. Even though phage isolation and enrichment techniques are straightforward protocols, the correlation between the enrichment technique and host range profile has not been evaluated. Agar-based methods such as spotting assay and efficiency of plaquing (EOP) are the most used methods to determine the phage host range. These methods, aside from being labor intensive, can lead to subjective and incomplete results as they rely on qualitative observations of the lysis/plaques, do not reflect the lytic activity in liquid culture, and can overestimate the host range. In this study, phages against three bacterial genera were isolated using three different enrichment methods. Host range profiles of the isolated phages were quantitatively determined using a high throughput turbidimetric protocol and the data were analyzed with an accessible analytic tool "PHIDA". Using this tool, the host ranges of 9 Listeria, 14 Salmonella, and 20 Pseudomonas phages isolated with different enrichment methods were quantitatively compared. A high variability in the host range index (HRi) ranging from 0.86-0.63, 0.07-0.24, and 0.00-0.67 for Listeria, Salmonella, and Pseudomonas phages, respectively, was observed. Overall, no direct correlation was found between the phage host range breadth and the enrichment method in any of the three target bacterial genera. The high throughput method and analytics tool developed in this study can be easily adapted to any phage study and can provide a consensus for phage host range determination.
Collapse
Affiliation(s)
- Carlos E. Martinez-Soto
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (C.E.M.-S.); (S.C.); (J.T.L.); (S.K.); (C.M.K.)
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Stevan Cucić
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (C.E.M.-S.); (S.C.); (J.T.L.); (S.K.); (C.M.K.)
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Janet T. Lin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (C.E.M.-S.); (S.C.); (J.T.L.); (S.K.); (C.M.K.)
| | - Sarah Kirst
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (C.E.M.-S.); (S.C.); (J.T.L.); (S.K.); (C.M.K.)
| | - El Sayed Mahmoud
- Faculty of Applied Science and Technology, The Sheridan College Institute of Technology and Advanced Learning, Oakville, ON L6H 2L1, Canada;
| | - Cezar M. Khursigara
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (C.E.M.-S.); (S.C.); (J.T.L.); (S.K.); (C.M.K.)
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (C.E.M.-S.); (S.C.); (J.T.L.); (S.K.); (C.M.K.)
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
13
|
Mohammed M, Orzechowska B. Characterisation of Phage Susceptibility Variation in Salmonellaenterica Serovar Typhimurium DT104 and DT104b. Microorganisms 2021; 9:865. [PMID: 33920555 PMCID: PMC8073726 DOI: 10.3390/microorganisms9040865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
The surge in mortality and morbidity rates caused by multidrug-resistant (MDR) bacteria prompted a renewal of interest in bacteriophages (phages) as clinical therapeutics and natural biocontrol agents. Nevertheless, bacteria and phages are continually under the pressure of the evolutionary phage-host arms race for survival, which is mediated by co-evolving resistance mechanisms. In Anderson phage typing scheme of Salmonella Typhimurium, the epidemiologically related definitive phage types, DT104 and DT104b, display significantly different phage susceptibility profiles. This study aimed to characterise phage resistance mechanisms and genomic differences that may be responsible for the divergent phage reaction patterns in S. Typhimurium DT104 and DT104b using whole genome sequencing (WGS). The analysis of intact prophages, restriction-modification systems (RMS), plasmids and clustered regularly interspaced short palindromic repeats (CRISPRs), as well as CRISPR-associated proteins, revealed no unique genetic determinants that might explain the variation in phage susceptibility among the two phage types. Moreover, analysis of genes coding for potential phage receptors revealed no differences among DT104 and DT104b strains. However, the findings propose the need for experimental assessment of phage-specific receptors on the bacterial cell surface and analysis of bacterial transcriptome using RNA sequencing which will explain the differences in bacterial susceptibility to phages. Using Anderson phage typing scheme of Salmonella Typhimurium for the study of bacteria-phage interaction will help improving our understanding of host-phage interactions which will ultimately lead to the development of phage-based technologies, enabling effective infection control.
Collapse
Affiliation(s)
- Manal Mohammed
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, Fitzrovia, London W1W 6XH, UK;
| | | |
Collapse
|
14
|
Mangalea MR, Duerkop BA. Fitness Trade-Offs Resulting from Bacteriophage Resistance Potentiate Synergistic Antibacterial Strategies. Infect Immun 2020; 88:e00926-19. [PMID: 32094257 PMCID: PMC7309606 DOI: 10.1128/iai.00926-19] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bacteria that cause life-threatening infections in humans are becoming increasingly difficult to treat. In some instances, this is due to intrinsic and acquired antibiotic resistance, indicating that new therapeutic approaches are needed to combat bacterial pathogens. There is renewed interest in utilizing viruses of bacteria known as bacteriophages (phages) as potential antibacterial therapeutics. However, critics suggest that similar to antibiotics, the development of phage-resistant bacteria will halt clinical phage therapy. Although the emergence of phage-resistant bacteria is likely inevitable, there is a growing body of literature showing that phage selective pressure promotes mutations in bacteria that allow them to subvert phage infection, but with a cost to their fitness. Such fitness trade-offs include reduced virulence, resensitization to antibiotics, and colonization defects. Resistance to phage nucleic acid entry, primarily via cell surface modifications, compromises bacterial fitness during antibiotic and host immune system pressure. In this minireview, we explore the mechanisms behind phage resistance in bacterial pathogens and the physiological consequences of acquiring phage resistance phenotypes. With this knowledge, it may be possible to use phages to alter bacterial populations, making them more tractable to current therapeutic strategies.
Collapse
Affiliation(s)
- Mihnea R Mangalea
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Breck A Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
15
|
Wang C, Hang H, Zhou S, Niu YD, Du H, Stanford K, McAllister TA. Bacteriophage biocontrol of Shiga toxigenic Escherichia coli (STEC) O145 biofilms on stainless steel reduces the contamination of beef. Food Microbiol 2020; 92:103572. [PMID: 32950157 DOI: 10.1016/j.fm.2020.103572] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/01/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022]
Abstract
Shiga toxigenic Escherichia coli (STEC) can form biofilms and frequently cause serious foodborne illnesses. A strain of STEC O145:H25 (EC19990166) known to be a strong biofilm former was used to evaluate the efficacy of bacteriophage AZO145A against biofilms formed on stainless steel (SS) coupons. Exposure of STEC O145:H25 to phage AZO145A (1010 PFU/mL) for 2 h resulted in a 4.0 log10 reduction (P < 0.01) of planktonic cells grown in M9 broth at 24 °C for 24 h, while reductions were 2.0 log10 CFU/mL if these cells were grown for 48 h or 72 h prior to phage treatment. STEC O145 biofilms formed on SS coupons for 24, 48 and 72 h were reduced (P < 0.01) 2.9, 1.9 and 1.9 log10 CFU/coupon by phages. STEC O145 cells in biofilms were readily transferred from the surface of the SS coupon to beef (3.6 log10 CFU/coupon) even with as little as 10 s of contact with the meat surface. However, transfer of STEC O145 cells from biofilms that formed on SS coupons for 48 h to beef was reduced (P < 0.01) by 3.1 log10 CFU by phage (2 × 1010 PFU/mL) at 24 °C. Scanning electron microscopy revealed that bacterial cells within indentations on the surface of SS coupons were reduced by phage. These results suggest that bacteriophage AZO145A could be effective in reducing the viability of biofilm-adherent STEC O145 on stainless steel in food industry environments.
Collapse
Affiliation(s)
- Changbao Wang
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu, Anhui, 241002, PR China; Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
| | - Hua Hang
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu, Anhui, 241002, PR China
| | - Shoubiao Zhou
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu, Anhui, 241002, PR China.
| | - Yan D Niu
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Hechao Du
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada; Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Kim Stanford
- Alberta Agriculture and Forestry, Lethbridge, AB, T1J 4V6, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada.
| |
Collapse
|
16
|
Wang CH, Hsieh YH, Powers ZM, Kao CY. Defeating Antibiotic-Resistant Bacteria: Exploring Alternative Therapies for a Post-Antibiotic Era. Int J Mol Sci 2020; 21:E1061. [PMID: 32033477 PMCID: PMC7037027 DOI: 10.3390/ijms21031061] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Antibiotics are one of the greatest medical advances of the 20th century, however, they are quickly becoming useless due to antibiotic resistance that has been augmented by poor antibiotic stewardship and a void in novel antibiotic discovery. Few novel classes of antibiotics have been discovered since 1960, and the pipeline of antibiotics under development is limited. We therefore are heading for a post-antibiotic era in which common infections become untreatable and once again deadly. There is thus an emergent need for both novel classes of antibiotics and novel approaches to treatment, including the repurposing of existing drugs or preclinical compounds and expanded implementation of combination therapies. In this review, we highlight to utilize alternative drug targets/therapies such as combinational therapy, anti-regulator, anti-signal transduction, anti-virulence, anti-toxin, engineered bacteriophages, and microbiome, to defeat antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Chih-Hung Wang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Zachary M. Powers
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Cheng-Yen Kao
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei 11221, Taiwan
| |
Collapse
|
17
|
Effect of time of therapy with wild-type lytic bacteriophages on the reduction of Salmonella Enteritidis in broiler chickens. Vet Microbiol 2020; 240:108527. [DOI: 10.1016/j.vetmic.2019.108527] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/21/2019] [Accepted: 11/24/2019] [Indexed: 12/30/2022]
|