1
|
Mantilla-Granados JS, Castellanos JE, Velandia-Romero ML. A tangled threesome: understanding arbovirus infection in Aedes spp. and the effect of the mosquito microbiota. Front Microbiol 2024; 14:1287519. [PMID: 38235434 PMCID: PMC10792067 DOI: 10.3389/fmicb.2023.1287519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
Arboviral infections transmitted by Aedes spp. mosquitoes are a major threat to human health, particularly in tropical regions but are expanding to temperate regions. The ability of Aedes aegypti and Aedes albopictus to transmit multiple arboviruses involves a complex relationship between mosquitoes and the virus, with recent discoveries shedding light on it. Furthermore, this relationship is not solely between mosquitoes and arboviruses, but also involves the mosquito microbiome. Here, we aimed to construct a comprehensive review of the latest information about the arbovirus infection process in A. aegypti and A. albopictus, the source of mosquito microbiota, and its interaction with the arbovirus infection process, in terms of its implications for vectorial competence. First, we summarized studies showing a new mechanism for arbovirus infection at the cellular level, recently described innate immunological pathways, and the mechanism of adaptive response in mosquitoes. Second, we addressed the general sources of the Aedes mosquito microbiota (bacteria, fungi, and viruses) during their life cycle, and the geographical reports of the most common microbiota in adults mosquitoes. How the microbiota interacts directly or indirectly with arbovirus transmission, thereby modifying vectorial competence. We highlight the complexity of this tripartite relationship, influenced by intrinsic and extrinsic conditions at different geographical scales, with many gaps to fill and promising directions for developing strategies to control arbovirus transmission and to gain a better understanding of vectorial competence. The interactions between mosquitoes, arboviruses and their associated microbiota are yet to be investigated in depth.
Collapse
Affiliation(s)
- Juan S. Mantilla-Granados
- Saneamiento Ecológico, Salud y Medio Ambiente, Universidad El Bosque, Vicerrectoría de Investigaciones, Bogotá, Colombia
| | - Jaime E. Castellanos
- Grupo de Virología, Universidad El Bosque, Vicerrectoría de Investigaciones, Bogotá, Colombia
| | | |
Collapse
|
2
|
Hernandez-Valencia JC, Muñoz-Laiton P, Gómez GF, Correa MM. A Systematic Review on the Viruses of Anopheles Mosquitoes: The Potential Importance for Public Health. Trop Med Infect Dis 2023; 8:459. [PMID: 37888587 PMCID: PMC10610971 DOI: 10.3390/tropicalmed8100459] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Anopheles mosquitoes are the vectors of Plasmodium, the etiological agent of malaria. In addition, Anopheles funestus and Anopheles gambiae are the main vectors of the O'nyong-nyong virus. However, research on the viruses carried by Anopheles is scarce; thus, the possible transmission of viruses by Anopheles is still unexplored. This systematic review was carried out to identify studies that report viruses in natural populations of Anopheles or virus infection and transmission in laboratory-reared mosquitoes. The databases reviewed were EBSCO-Host, Google Scholar, Science Direct, Scopus and PubMed. After the identification and screening of candidate articles, a total of 203 original studies were included that reported on a variety of viruses detected in Anopheles natural populations. In total, 161 viruses in 54 species from 41 countries worldwide were registered. In laboratory studies, 28 viruses in 15 Anopheles species were evaluated for mosquito viral transmission capacity or viral infection. The viruses reported in Anopheles encompassed 25 viral families and included arboviruses, probable arboviruses and Insect-Specific Viruses (ISVs). Insights after performing this review include the need for (1) a better understanding of Anopheles-viral interactions, (2) characterizing the Anopheles virome-considering the public health importance of the viruses potentially transmitted by Anopheles and the significance of finding viruses with biological control activity-and (3) performing virological surveillance in natural populations of Anopheles, especially in the current context of environmental modifications that may potentiate the expansion of the Anopheles species distribution.
Collapse
Affiliation(s)
- Juan C. Hernandez-Valencia
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia; (J.C.H.-V.); (P.M.-L.); (G.F.G.)
| | - Paola Muñoz-Laiton
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia; (J.C.H.-V.); (P.M.-L.); (G.F.G.)
| | - Giovan F. Gómez
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia; (J.C.H.-V.); (P.M.-L.); (G.F.G.)
- Dirección Académica, Escuela de Pregrados, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia
| | - Margarita M. Correa
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia; (J.C.H.-V.); (P.M.-L.); (G.F.G.)
| |
Collapse
|
3
|
Hermanns K, Marklewitz M, Zirkel F, Kopp A, Kramer-Schadt S, Junglen S. Mosquito community composition shapes virus prevalence patterns along anthropogenic disturbance gradients. eLife 2023; 12:e66550. [PMID: 37702388 PMCID: PMC10547478 DOI: 10.7554/elife.66550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/12/2023] [Indexed: 09/14/2023] Open
Abstract
Previously unknown pathogens often emerge from primary ecosystems, but there is little knowledge on the mechanisms of emergence. Most studies analyzing the influence of land-use change on pathogen emergence focus on a single host-pathogen system and often observe contradictory effects. Here, we studied virus diversity and prevalence patterns in natural and disturbed ecosystems using a multi-host and multi-taxa approach. Mosquitoes sampled along a disturbance gradient in Côte d'Ivoire were tested by generic RT-PCR assays established for all major arbovirus and insect-specific virus taxa including novel viruses previously discovered in these samples based on cell culture isolates enabling an unbiased and comprehensive approach. The taxonomic composition of detected viruses was characterized and viral infection rates according to habitat and host were analyzed. We detected 331 viral sequences pertaining to 34 novel and 15 previously identified viruses of the families Flavi-, Rhabdo-, Reo-, Toga-, Mesoni- and Iflaviridae and the order Bunyavirales. Highest host and virus diversity was observed in pristine and intermediately disturbed habitats. The majority of the 49 viruses was detected with low prevalence. However, nine viruses were found frequently across different habitats of which five viruses increased in prevalence towards disturbed habitats, in congruence with the dilution effect hypothesis. These viruses were mainly associated with one specific mosquito species (Culex nebulosus), which increased in relative abundance from pristine (3%) to disturbed habitats (38%). Interestingly, the observed increased prevalence of these five viruses in disturbed habitats was not caused by higher host infection rates but by increased host abundance, an effect tentatively named abundance effect. Our data show that host species composition is critical for virus abundance. Environmental changes that lead to an uneven host community composition and to more individuals of a single species are a key driver of virus emergence.
Collapse
Affiliation(s)
- Kyra Hermanns
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universtiy Berlin, and Berlin Institute of HealthBerlinGermany
| | - Marco Marklewitz
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universtiy Berlin, and Berlin Institute of HealthBerlinGermany
| | - Florian Zirkel
- Institute of Virology, University of Bonn Medical CentreBerlinGermany
| | - Anne Kopp
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universtiy Berlin, and Berlin Institute of HealthBerlinGermany
| | - Stephanie Kramer-Schadt
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife ResearchBerlinGermany
- Institute of Ecology, Technische Universität BerlinBerlinGermany
| | - Sandra Junglen
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universtiy Berlin, and Berlin Institute of HealthBerlinGermany
| |
Collapse
|
4
|
Agboli E, Zahouli JBZ, Badolo A, Jöst H. Mosquito-Associated Viruses and Their Related Mosquitoes in West Africa. Viruses 2021; 13:v13050891. [PMID: 34065928 PMCID: PMC8151702 DOI: 10.3390/v13050891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Mosquito-associated viruses (MAVs), including mosquito-specific viruses (MSVs) and mosquito-borne (arbo)viruses (MBVs), are an increasing public, veterinary, and global health concern, and West Africa is projected to be the next front for arboviral diseases. As in-depth knowledge of the ecologies of both western African MAVs and related mosquitoes is still limited, we review available and comprehensive data on their diversity, abundance, and distribution. Data on MAVs’ occurrence and related mosquitoes were extracted from peer-reviewed publications. Data on MSVs, and mosquito and vertebrate host ranges are sparse. However, more data are available on MBVs (i.e., dengue, yellow fever, chikungunya, Zika, and Rift Valley fever viruses), detected in wild and domestic animals, and humans, with infections more concentrated in urban areas and areas affected by strong anthropogenic changes. Aedes aegypti, Culex quinquefasciatus, and Aedes albopictus are incriminated as key arbovirus vectors. These findings outline MAV, related mosquitoes, key knowledge gaps, and future research areas. Additionally, these data highlight the need to increase our understanding of MAVs and their impact on host mosquito ecology, to improve our knowledge of arbovirus transmission, and to develop specific strategies and capacities for arboviral disease surveillance, diagnostic, prevention, control, and outbreak responses in West Africa.
Collapse
Affiliation(s)
- Eric Agboli
- Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany;
- Department of Epidemiology and Biostatistics, School of Public Health, University of Health and Allied Sciences, Ho PMB 31, Ghana
| | - Julien B. Z. Zahouli
- Centre d’Entomologie Médicale et Vétérinaire, Université Alassane Ouattara, Bouake, 27 BP 529 Abidjan 27, Cote D’Ivoire;
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Département de Recherche et Développement, 01 BP 1303 Abidjan 01, Cote D’Ivoire
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland
| | - Athanase Badolo
- Laboratory of Fundamental and Applied Entomology, Universitée Joseph Ki-Zerbo, Ouagadougou 03 BP 7021, Burkina Faso;
| | - Hanna Jöst
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany
- Correspondence:
| |
Collapse
|
5
|
Genetic, Morphological and Antigenic Relationships between Mesonivirus Isolates from Australian Mosquitoes and Evidence for Their Horizontal Transmission. Viruses 2020; 12:v12101159. [PMID: 33066222 PMCID: PMC7602028 DOI: 10.3390/v12101159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 12/26/2022] Open
Abstract
The Mesoniviridae are a newly assigned family of viruses in the order Nidovirales. Unlike other nidoviruses, which include the Coronaviridae, mesoniviruses are restricted to mosquito hosts and do not infect vertebrate cells. To date there is little information on the morphological and antigenic characteristics of this new group of viruses and a dearth of mesonivirus-specific research tools. In this study we determined the genetic relationships of recent Australian isolates of Alphamesonivirus 4 (Casuarina virus—CASV) and Alphamesonivirus 1 (Nam Dinh virus—NDiV), obtained from multiple mosquito species. Australian isolates of NDiV showed high-level similarity to the prototype NDiV isolate from Vietnam (99% nucleotide (nt) and amino acid (aa) identity). Isolates of CASV from Central Queensland were genetically very similar to the prototype virus from Darwin (95–96% nt and 91–92% aa identity). Electron microscopy studies demonstrated that virion diameter (≈80 nm) and spike length (≈10 nm) were similar for both viruses. Monoclonal antibodies specific to CASV and NDiV revealed a close antigenic relationship between the two viruses with 13/34 mAbs recognising both viruses. We also detected NDiV RNA on honey-soaked nucleic acid preservation cards fed on by wild mosquitoes supporting a possible mechanism of horizontal transmission between insects in nature.
Collapse
|
6
|
Elrefaey AME, Abdelnabi R, Rosales Rosas AL, Wang L, Basu S, Delang L. Understanding the Mechanisms Underlying Host Restriction of Insect-Specific Viruses. Viruses 2020; 12:E964. [PMID: 32878245 PMCID: PMC7552076 DOI: 10.3390/v12090964] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Arthropod-borne viruses contribute significantly to global mortality and morbidity in humans and animals. These viruses are mainly transmitted between susceptible vertebrate hosts by hematophagous arthropod vectors, especially mosquitoes. Recently, there has been substantial attention for a novel group of viruses, referred to as insect-specific viruses (ISVs) which are exclusively maintained in mosquito populations. Recent discoveries of novel insect-specific viruses over the past years generated a great interest not only in their potential use as vaccine and diagnostic platforms but also as novel biological control agents due to their ability to modulate arbovirus transmission. While arboviruses infect both vertebrate and invertebrate hosts, the replication of insect-specific viruses is restricted in vertebrates at multiple stages of virus replication. The vertebrate restriction factors include the genetic elements of ISVs (structural and non-structural genes and the untranslated terminal regions), vertebrate host factors (agonists and antagonists), and the temperature-dependent microenvironment. A better understanding of these bottlenecks is thus warranted. In this review, we explore these factors and the complex interplay between ISVs and their hosts contributing to this host restriction phenomenon.
Collapse
Affiliation(s)
| | - Rana Abdelnabi
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Ana Lucia Rosales Rosas
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Lanjiao Wang
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Sanjay Basu
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK;
| | - Leen Delang
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| |
Collapse
|
7
|
Gaye A, Diagne MM, Ndiaye EH, Dior Ndione MH, Faye M, Talla C, Fall G, Ba Y, Diallo D, Dia I, Handschumacher P, Faye O, Sall AA, Diallo M. Vector competence of anthropophilic mosquitoes for a new mesonivirus in Senegal. Emerg Microbes Infect 2020; 9:496-504. [PMID: 32106784 PMCID: PMC7054948 DOI: 10.1080/22221751.2020.1730710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mesoniviruses (MESOVs) belong to the newly described Mesoniviridae family (Order: Nidovirales). They have never been reported in Senegal until recently during a study in arbovirus emergence with the detection of a new species of MESOV named Dianke virus (DKV) from common mosquitoes from eastern Senegal. Actually, their vector competence for this newly described DKV is unknown. We, therefore, estimated the vector competence of Culex tritaeniorhynchus, Culex quinquefasciatus, Aedes aegypti, and Anopheles gambiae mosquitoes collected in Senegal for DKV using oral infection. Whole bodies, legs/wings, and saliva samples were tested for DKV by RT–PCR to estimate infection, dissemination, and transmission rates. The infectivity of virus particles in the saliva was confirmed by infecting C6/36 cells. Virus transmission rates were up to 95.45% in Culex tritaeniorhynchus, 28% in Cx. quinquefasciatus and 9.09% in Aedes aegypti. Viral particles in the saliva were confirmed infectious by C6/36 cell culture. An. gambiae was able to disseminate DKV only at 20 days post-infection. This study shows that Culex mosquitoes are more competent than Ae. aegypti for DKV, while Anopheles gambiae is not likely a competent vector.
Collapse
Affiliation(s)
- Alioune Gaye
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Moussa Moïse Diagne
- Pole de virologie, Unité des Arbovirus et virus de Fièvres Hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | - El Hadji Ndiaye
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Marie Henriette Dior Ndione
- Pole de virologie, Unité des Arbovirus et virus de Fièvres Hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal.,Université Cheikh Anta Diop de Dakar, Dakar, Sénégal
| | - Martin Faye
- Pole de virologie, Unité des Arbovirus et virus de Fièvres Hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Cheikh Talla
- Epidemiology of infectious diseases unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Gamou Fall
- Pole de virologie, Unité des Arbovirus et virus de Fièvres Hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Yamar Ba
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Diawo Diallo
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Ibrahima Dia
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Pascal Handschumacher
- Aix Marseille Univ, INSERM, IRD, UMR SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, Marseille, France
| | - Ousmane Faye
- Pole de virologie, Unité des Arbovirus et virus de Fièvres Hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Amadou Alpha Sall
- Pole de virologie, Unité des Arbovirus et virus de Fièvres Hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Mawlouth Diallo
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| |
Collapse
|