1
|
Padhi A, Agarwal A, Mishra P, Gupta E, Kumar S, Katoch CDS, Saxena SK. Re-emerging Chandipura vesiculovirus: A cause of concern for global health. Virusdisease 2024; 35:385-399. [PMID: 39464728 PMCID: PMC11502618 DOI: 10.1007/s13337-024-00896-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/29/2024] Open
Abstract
Chandipura vesiculovirus (CHPV) is an emerging neurotropic virus primarily affecting children and causing acute encephalitis syndrome (AES) in India. The virus, transmitted mainly by sand flies, has led to multiple outbreaks with high mortality rates, particularly in rural and resource-limited settings. CHPV infection is characterized by rapid disease progression, with symptoms ranging from fever and seizures to coma and death, often within 24 to 48 h of onset. The current management of CHPV is limited to supportive care due to the lack of specific antiviral therapies. Diagnosis relies on laboratory methods such as RT-PCR, serology, and immunofluorescence, though these face challenges due to the rapid progression of the disease and the need for timely sample collection and analysis. Prevention strategies are focused on vector control through insecticide use and public health interventions, including community education and early detection programs. Despite some progress in understanding CHPV, significant research gaps remain, particularly in developing effective antiviral treatments and vaccines, understanding transmission dynamics, and improving diagnostic capabilities. The potential for the virus to spread globally due to factors like climate change and increased human movement underscores the need for international collaboration in surveillance and response efforts. Strengthening public health infrastructure, enhancing vector control measures, and fostering global partnerships are crucial steps toward mitigating the impact of CHPV and preventing future outbreaks. Continued research and proactive public health strategies are essential to protect vulnerable populations and control the spread of this potentially deadly virus.
Collapse
Affiliation(s)
- Abhishek Padhi
- Department of Microbiology, All India Institute of Medical Sciences, Rajkot, Gujarat India
| | - Ashwini Agarwal
- Department of Microbiology, All India Institute of Medical Sciences, Rajkot, Gujarat India
| | - Praggya Mishra
- Department of Ophthalmology, All India Institute of Medical Sciences, Rajkot, Gujarat India
| | - Ekta Gupta
- Department of Clinical Virology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Swatantra Kumar
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George’s Medical University (KGMU), Lucknow, India
| | - C. D. S. Katoch
- Department of Pulmonary Medicine, All India Institute of Medical Sciences, Rajkot, Gujarat India
| | - Shailendra K. Saxena
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George’s Medical University (KGMU), Lucknow, India
| |
Collapse
|
2
|
Tang WD, Zhu WY, Tang HL, Zhao P, Zhao LJ. Engagement of AKT and ERK signaling pathways facilitates infection of human neuronal cells with West Nile virus. J Virus Erad 2024; 10:100368. [PMID: 38601702 PMCID: PMC11004658 DOI: 10.1016/j.jve.2024.100368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
West Nile virus (WNV) is an important neurotropic virus that accounts for the emergence of human arboviral encephalitis and meningitis. The interaction of WNV with signaling pathways plays a key role in controlling WNV infection. We have investigated the roles of the AKT and ERK pathways in supporting WNV propagation and modulating the inflammatory response following WNV infection. WNV established a productive infection in neuronal cell lines originated from human and mouse. Expression of IL-11 and TNF-α was markedly up-regulated in the infected human neuronal cells, indicating elicitation of inflammation response upon WNV infection. WNV incubation rapidly activated signaling cascades of AKT (AKT-S6-4E-BP1) and ERK (MEK-ERK-p90RSK) pathways. Treatment with AKT inhibitor MK-2206 or MEK inhibitor U0126 abrogated WNV-induced AKT or ERK activation. Strong activation of AKT and ERK signaling pathways could be detectable at 24 h after WNV infection, while such activation was abolished at 48 h post infection. U0126 treatment or knockdown of ERK expression significantly increased WNV RNA levels and viral titers and efficiently decreased IL-11 production induced by WNV, suggesting the involvement of ERK pathway in WNV propagation and IL-11 induction. MK-2206 treatment enhanced WNV RNA replication accompanied with a moderate decrease in IL-11 production. These results demonstrate that engagement of AKT and ERK signaling pathways facilitates viral infection and may be implicated in WNV pathogenesis.
Collapse
Affiliation(s)
- Wan-Da Tang
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Faculty of Naval Medicine, Naval Medical University, 200433, Shanghai, China
| | - Wei-Yang Zhu
- The 16th Student Brigade, College of Basic Medicine, Naval Medical University, 200433, Shanghai, China
| | - Hai-Lin Tang
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Faculty of Naval Medicine, Naval Medical University, 200433, Shanghai, China
| | - Ping Zhao
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Faculty of Naval Medicine, Naval Medical University, 200433, Shanghai, China
| | - Lan-Juan Zhao
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Faculty of Naval Medicine, Naval Medical University, 200433, Shanghai, China
| |
Collapse
|
3
|
Thalla DG, Lautenschläger F. Extracellular vimentin: Battle between the devil and the angel. Curr Opin Cell Biol 2023; 85:102265. [PMID: 37866018 DOI: 10.1016/j.ceb.2023.102265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/31/2023] [Accepted: 09/24/2023] [Indexed: 10/24/2023]
Abstract
Vimentin, an intracellular cytoskeletal protein, can be secreted by various cells in response to conditions such as injury, stress, senescence, and cancer. Once vimentin is secreted outside of the cell, it is called extracellular vimentin. This extracellular vimentin is significantly involved in pathological conditions, particularly in the areas of viral infection, cancer, immune response, and wound healing. The effects of extracellular vimentin can be either positive or negative, for example it can enhance axonal repair but also mediates SARS-CoV-2 infection. In this review, we categorize the functional implications of extracellular vimentin based on its localization outside the cell. Specifically, we classify extracellular vimentin into two distinct forms: surface vimentin, which remains bound to the cell surface, and secreted vimentin, which refers to the free form that is completely released outside the cell. Overall, extracellular vimentin has a dual nature that encompasses both beneficial and detrimental effects on the functionality of cells, organs and whole organisms. Here, we summarize its effects in viral infection, cancer, immune response and wound healing. We find that surface vimentin is often associated with negative consequences, whereas secreted vimentin manifests predominantly with positive influences. We found that the observed effects of extracellular vimentin strongly depend on the specific circumstances under which its expression occurs in cells.
Collapse
Affiliation(s)
| | - Franziska Lautenschläger
- Experimental Physics, Saarland University, Saarbrücken, Germany; Centre for Biophysics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
4
|
Parvanian S, Coelho-Rato LS, Eriksson JE, Patteson AE. The molecular biophysics of extracellular vimentin and its role in pathogen-host interactions. Curr Opin Cell Biol 2023; 85:102233. [PMID: 37677998 PMCID: PMC10841047 DOI: 10.1016/j.ceb.2023.102233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023]
Abstract
Vimentin, an intermediate filament protein typically located in the cytoplasm of mesenchymal cells, can also be secreted as an extracellular protein. The organization of extracellular vimentin strongly determines its functions in physiological and pathological conditions, making it a promising target for future therapeutic interventions. The extracellular form of vimentin has been found to play a role in the interaction between host cells and pathogens. In this review, we first discuss the molecular biophysics of extracellular vimentin, including its structure, secretion, and adhesion properties. We then provide a general overview of the role of extracellular vimentin in mediating pathogen-host interactions, with a focus on its interactions with viruses and bacteria. We also discuss the implications of these findings for the development of new therapeutic strategies for combating infectious diseases.
Collapse
Affiliation(s)
- Sepideh Parvanian
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520, Turku, Finland; Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Leila S Coelho-Rato
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520, Turku, Finland
| | - John E Eriksson
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520, Turku, Finland; Euro-Bioimaging ERIC, 20520, Turku, Finland
| | - Alison E Patteson
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
5
|
Lu X, Liu K, Chen Y, Gao R, Hu Z, Hu J, Gu M, Hu S, Ding C, Jiao X, Wang X, Liu X, Liu X. Cellular vimentin regulates the infectivity of Newcastle disease virus through targeting of the HN protein. Vet Res 2023; 54:92. [PMID: 37848995 PMCID: PMC10580610 DOI: 10.1186/s13567-023-01230-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023] Open
Abstract
The haemagglutinin-neuraminidase (HN) protein plays a crucial role in the infectivity and virulence of Newcastle disease virus (NDV). In a previous study, the mutant HN protein was identified as a crucial virulence factor for the velogenic variant NDV strain JS/7/05/Ch, which evolved from the prototypic vaccine strain Mukteswar. Furthermore, macrophages are the main susceptible target cells of NDV. However, the possible involvement of cellular molecules in viral infectivity remains unclear. Herein, we elucidate the crucial role of vimentin, an intermediate filament protein, in regulating NDV infectivity through targeting of the HN protein. Using LC‒MS/MS mass spectrometry and coimmunoprecipitation assays, we identified vimentin as a host protein that differentially interacted with prototypic and mutant HN proteins. Further analysis revealed that the variant NDV strain induced more significant rearrangement of vimentin fibres compared to the prototypic NDV strain and showed an interdependence between vimentin rearrangement and virus replication. Notably, these mutual influences were pronounced in HD11 chicken macrophages. Moreover, vimentin was required for multiple infection processes of the variant NDV strain in HD11 cells, including viral internalization, fusion, and release, while it was not necessary for those of the prototypic NDV strain. Collectively, these findings underscore the pivotal role of vimentin in NDV infection through targeting of the HN protein, providing novel targets for antiviral treatment strategies for NDV.
Collapse
Affiliation(s)
- Xiaolong Lu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, China
| | - Kaituo Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, China
| | - Yu Chen
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, China
| | - Ruyi Gao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, China
| | - Zenglei Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Chan Ding
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, 200000, China
| | - Xinan Jiao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, 200000, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
6
|
Kitaura S, Tobiume M, Kawahara M, Satoh M, Kato H, Nakayama N, Nakajima N, Komeno T, Furuta Y, Suzuki T, Moriya K, Saijo M, Ebihara H, Ito-Takayama M. Evaluation of a novel severe combined immunodeficiency mouse model for antiviral drug evaluation against Chandipura virus infection. Antiviral Res 2023; 213:105582. [PMID: 36948302 DOI: 10.1016/j.antiviral.2023.105582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/24/2023]
Abstract
Chandipura virus (CHPV) is a negative-sense single-stranded RNA virus known to cause fatal encephalitis outbreaks in the Indian subcontinent. The virus displays tropism towards the pediatric population and holds significant public health concerns. Currently, there is no specific, effective therapy for CHPV encephalitis. In this study, we evaluated a novel C.B-17 severe combined immunodeficiency (SCID) mouse model which can be used for pre-clinical antiviral evaluation. Inoculation of CHPV developed a lethal infection in our model. Plaque assay and immunohistochemistry detected increased viral loads and antigens in various organs, including the brain, spinal cord, adrenal glands, and whole blood. We further conducted a proof-of-concept evaluation of favipiravir in the SCID mouse model. Favipiravir treatment improved survival with pre-symptomatic (days 5-14) and post-symptomatic (days 9-18) treatment. Reduced viral loads were observed in whole blood, kidney/adrenal gland, and brain tissue with favipiravir treatment. The findings in this study demonstrate the utility of SCID mouse for in vivo drug efficacy evaluation and the potential efficacy of favipiravir against CHPV infection.
Collapse
Affiliation(s)
- Satoshi Kitaura
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan; Department of Internal Medicine, The University of Tokyo, Graduate School of Medicine, Tokyo, Japan
| | - Minoru Tobiume
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Madoka Kawahara
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masaaki Satoh
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hirofumi Kato
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noriko Nakayama
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kyoji Moriya
- Department of Infectious Diseases, The University of Tokyo Hospital, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Ebihara
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Mutsuyo Ito-Takayama
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
7
|
Vimentin: Regulation and pathogenesis. Biochimie 2022; 197:96-112. [DOI: 10.1016/j.biochi.2022.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/11/2022] [Accepted: 02/09/2022] [Indexed: 12/18/2022]
|
8
|
Korolowicz KE, Suresh M, Li B, Huang X, Yon C, Kallakury BV, Lee KP, Park S, Kim YW, Menne S. Combination Treatment with the Vimentin-Targeting Antibody hzVSF and Tenofovir Suppresses Woodchuck Hepatitis Virus Infection in Woodchucks. Cells 2021; 10:2321. [PMID: 34571970 PMCID: PMC8466705 DOI: 10.3390/cells10092321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
Current treatment options for patients infected with hepatitis B virus (HBV) are suboptimal, because the approved drugs rarely induce cure due to the persistence of the viral DNA genome in the nucleus of infected hepatocytes, and are associated with either severe side effects (pegylated interferon-alpha) or require life-long administration (nucleos(t)ide analogs). We report here the evaluation of the safety and therapeutic efficacy of a novel, humanized antibody (hzVSF) in the woodchuck model of HBV infection. hzVSF has been shown to act as a viral entry inhibitor, most likely by suppressing vimentin-mediated endocytosis of virions. Targeting the increased vimentin expression on liver cells by hzVSF after infection with HBV or woodchuck hepatitis virus (WHV) was demonstrated initially. Thereafter, hzVSF safety was assessed in eight woodchucks naïve for WHV infection. Antiviral efficacy of hzVSF was evaluated subsequently in 24 chronic WHV carrier woodchucks by monotreatment with three ascending doses and in combination with tenofovir alafenamide fumarate (TAF). Consistent with the proposed blocking of WHV reinfection, intravenous hzVSF administration for 12 weeks resulted in a modest but transient reduction of viral replication and associated liver inflammation. In combination with oral TAF dosing, the antiviral effect of hzVSF was enhanced and sustained in half of the woodchucks with an antibody response to viral proteins. Thus, hzVSF safely but modestly alters chronic WHV infection in woodchucks; however, as a combination partner to TAF, its antiviral efficacy is markedly increased. The results of this preclinical study support future evaluation of this novel anti-HBV drug in patients.
Collapse
Affiliation(s)
- Kyle E. Korolowicz
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.)
| | - Manasa Suresh
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.)
| | - Bin Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.)
| | - Xu Huang
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.)
| | - Changsuek Yon
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.)
| | - Bhaskar V. Kallakury
- Department of Pathology, Georgetown University Medical Center, Washington, DC 20057, USA;
| | - Kyoung-pil Lee
- ImmuneMed, Inc., Chuncheon BioTown, Soyanggang ro 32, Chuncheon-si 24232, Gangwon-do, Korea; (K.-p.L.); (S.P.); (Y.-W.K.)
| | - Sungman Park
- ImmuneMed, Inc., Chuncheon BioTown, Soyanggang ro 32, Chuncheon-si 24232, Gangwon-do, Korea; (K.-p.L.); (S.P.); (Y.-W.K.)
| | - Yoon-Won Kim
- ImmuneMed, Inc., Chuncheon BioTown, Soyanggang ro 32, Chuncheon-si 24232, Gangwon-do, Korea; (K.-p.L.); (S.P.); (Y.-W.K.)
| | - Stephan Menne
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.)
| |
Collapse
|
9
|
Sonawane KD, Barale SS, Dhanavade MJ, Waghmare SR, Nadaf NH, Kamble SA, Mohammed AA, Makandar AM, Fandilolu PM, Dound AS, Naik NM, More VB. Structural insights and inhibition mechanism of TMPRSS2 by experimentally known inhibitors Camostat mesylate, Nafamostat and Bromhexine hydrochloride to control SARS-coronavirus-2: A molecular modeling approach. INFORMATICS IN MEDICINE UNLOCKED 2021; 24:100597. [PMID: 34075338 PMCID: PMC8152215 DOI: 10.1016/j.imu.2021.100597] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has been responsible for the cause of global pandemic Covid-19 and to date, there is no effective treatment available. The spike ‘S’ protein of SARS-CoV-2 and ACE2 of the host cell are being targeted to design new drugs to control Covid-19. Similarly, a transmembrane serine protease, TMPRSS2 of the host cell plays a significant role in the proteolytic cleavage of viral ‘S’ protein helpful for the priming of ACE2 receptors and viral entry into human cells. However, three-dimensional structural information and the inhibition mechanism of TMPRSS2 is yet to be explored experimentally. Hence, we have used a molecular dynamics (MD) simulated homology model of TMPRSS2 to study the inhibition mechanism of experimentally known inhibitors Camostat mesylate, Nafamostat and Bromhexine hydrochloride (BHH) using molecular modeling techniques. Prior to docking, all three inhibitors were geometry optimized by semi-empirical quantum chemical RM1 method. Molecular docking analysis revealed that Camostat mesylate and its structural analogue Nafamostat interact strongly with residues His296 and Ser441 present in the catalytic triad of TMPRSS2, whereas BHH binds with Ala386 along with other residues. Comparative molecular dynamics simulations revealed the stable behavior of all the docked complexes. MM-PBSA calculations also revealed the stronger binding of Camostat mesylate to TMPRSS2 active site residues as compared to Nafamostat and BHH. Thus, this structural information could be useful to understand the mechanistic approach of TMPRSS2 inhibition, which may be helpful to design new lead compounds to prevent the entry of SARS-Coronavirus 2 in human cells.
Collapse
Affiliation(s)
- Kailas D Sonawane
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Vidyanagar, Kolhapur, 416004, Maharashtra, India.,Department of Microbiology, Shivaji University, Vidyanagar, Kolhapur, 416004, Maharashtra, India
| | - Sagar S Barale
- Department of Microbiology, Shivaji University, Vidyanagar, Kolhapur, 416004, Maharashtra, India
| | - Maruti J Dhanavade
- Department of Microbiology, Bharati Vidyapeeth's, Dr. Patangrao Kadam Mahavidyalaya, Sangali, Maharashtra, India
| | - Shailesh R Waghmare
- Department of Microbiology, Shivaji University, Vidyanagar, Kolhapur, 416004, Maharashtra, India
| | - Naiem H Nadaf
- Department of Microbiology, Shivaji University, Vidyanagar, Kolhapur, 416004, Maharashtra, India
| | - Subodh A Kamble
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Vidyanagar, Kolhapur, 416004, Maharashtra, India
| | - Ali Abdulmawjood Mohammed
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Vidyanagar, Kolhapur, 416004, Maharashtra, India
| | - Asiya M Makandar
- Department of Microbiology, Shivaji University, Vidyanagar, Kolhapur, 416004, Maharashtra, India
| | - Prayagraj M Fandilolu
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Vidyanagar, Kolhapur, 416004, Maharashtra, India
| | - Ambika S Dound
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Vidyanagar, Kolhapur, 416004, Maharashtra, India
| | - Nitin M Naik
- Department of Microbiology, Shivaji University, Vidyanagar, Kolhapur, 416004, Maharashtra, India
| | - Vikramsinh B More
- Department of Microbiology, Shivaji University, Vidyanagar, Kolhapur, 416004, Maharashtra, India
| |
Collapse
|
10
|
Zhang Y, Wen Z, Shi X, Liu YJ, Eriksson JE, Jiu Y. The diverse roles and dynamic rearrangement of vimentin during viral infection. J Cell Sci 2020; 134:134/5/jcs250597. [PMID: 33154171 DOI: 10.1242/jcs.250597] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epidemics caused by viral infections pose a significant global threat. Cytoskeletal vimentin is a major intermediate filament (IF) protein, and is involved in numerous functions, including cell signaling, epithelial-mesenchymal transition, intracellular organization and cell migration. Vimentin has important roles for the life cycle of particular viruses; it can act as a co-receptor to enable effective virus invasion and guide efficient transport of the virus to the replication site. Furthermore, vimentin has been shown to rearrange into cage-like structures that facilitate virus replication, and to recruit viral components to the location of assembly and egress. Surprisingly, vimentin can also inhibit virus entry or egress, as well as participate in host-cell defense. Although vimentin can facilitate viral infection, how this function is regulated is still poorly understood. In particular, information is lacking on its interaction sites, regulation of expression, post-translational modifications and cooperation with other host factors. This Review recapitulates the different functions of vimentin in the virus life cycle and discusses how they influence host-cell tropism, virulence of the pathogens and the consequent pathological outcomes. These insights into vimentin-virus interactions emphasize the importance of cytoskeletal functions in viral cell biology and their potential for the identification of novel antiviral targets.
Collapse
Affiliation(s)
- Yue Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Zeyu Wen
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Xuemeng Shi
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan-Jun Liu
- Shanghai Institute of Cardiovascular Diseases, and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku FI-20520, Finland .,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FI-20520, Finland
| | - Yaming Jiu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China .,University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| |
Collapse
|
11
|
Patteson AE, Vahabikashi A, Goldman RD, Janmey PA. Mechanical and Non-Mechanical Functions of Filamentous and Non-Filamentous Vimentin. Bioessays 2020; 42:e2000078. [PMID: 32893352 PMCID: PMC8349470 DOI: 10.1002/bies.202000078] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/04/2020] [Indexed: 12/20/2022]
Abstract
Intermediate filaments (IFs) formed by vimentin are less understood than their cytoskeletal partners, microtubules and F-actin, but the unique physical properties of IFs, especially their resistance to large deformations, initially suggest a mechanical function. Indeed, vimentin IFs help regulate cell mechanics and contractility, and in crowded 3D environments they protect the nucleus during cell migration. Recently, a multitude of studies, often using genetic or proteomic screenings show that vimentin has many non-mechanical functions within and outside of cells. These include signaling roles in wound healing, lipogenesis, sterol processing, and various functions related to extracellular and cell surface vimentin. Extracellular vimentin is implicated in marking circulating tumor cells, promoting neural repair, and mediating the invasion of host cells by viruses, including SARS-CoV, or bacteria such as Listeria and Streptococcus. These findings underscore the fundamental role of vimentin in not only cell mechanics but also a range of physiological functions. Also see the video abstract here https://youtu.be/YPfoddqvz-g.
Collapse
Affiliation(s)
- Alison E Patteson
- Physics Department, Syracuse University, Syracuse, NY 13244
- BioInspired Institute, Syracuse University, Syracuse, NY 13244
| | - Amir Vahabikashi
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611
| | - Paul A. Janmey
- Institute for Medicine and Engineering, Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
12
|
Ramos I, Stamatakis K, Oeste CL, Pérez-Sala D. Vimentin as a Multifaceted Player and Potential Therapeutic Target in Viral Infections. Int J Mol Sci 2020; 21:E4675. [PMID: 32630064 PMCID: PMC7370124 DOI: 10.3390/ijms21134675] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022] Open
Abstract
Vimentin is an intermediate filament protein that plays key roles in integration of cytoskeletal functions, and therefore in basic cellular processes such as cell division and migration. Consequently, vimentin has complex implications in pathophysiology. Vimentin is required for a proper immune response, but it can also act as an autoantigen in autoimmune diseases or as a damage signal. Although vimentin is a predominantly cytoplasmic protein, it can also appear at extracellular locations, either in a secreted form or at the surface of numerous cell types, often in relation to cell activation, inflammation, injury or senescence. Cell surface targeting of vimentin appears to associate with the occurrence of certain posttranslational modifications, such as phosphorylation and/or oxidative damage. At the cell surface, vimentin can act as a receptor for bacterial and viral pathogens. Indeed, vimentin has been shown to play important roles in virus attachment and entry of severe acute respiratory syndrome-related coronavirus (SARS-CoV), dengue and encephalitis viruses, among others. Moreover, the presence of vimentin in specific virus-targeted cells and its induction by proinflammatory cytokines and tissue damage contribute to its implication in viral infection. Here, we recapitulate some of the pathophysiological implications of vimentin, including the involvement of cell surface vimentin in interaction with pathogens, with a special focus on its role as a cellular receptor or co-receptor for viruses. In addition, we provide a perspective on approaches to target vimentin, including antibodies or chemical agents that could modulate these interactions to potentially interfere with viral pathogenesis, which could be useful when multi-target antiviral strategies are needed.
Collapse
Affiliation(s)
- Irene Ramos
- Department of Neurology and Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Konstantinos Stamatakis
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC. Nicolás Cabrera, 1, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (K.S.); (C.L.O.)
| | - Clara L. Oeste
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC. Nicolás Cabrera, 1, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (K.S.); (C.L.O.)
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|