1
|
Chen CY, Zhang W, Xu XR, Pu YT, Tu YD, Peng W, Yao X, Zhou S, Fang BJ. Efficacy and Safety of Huashi Baidu Granules in Treating Patients with SARS-CoV-2 Omicron Variant: A Single-Center Retrospective Cohort Study. Chin J Integr Med 2024; 30:107-114. [PMID: 37222827 PMCID: PMC10206345 DOI: 10.1007/s11655-023-3549-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2023] [Indexed: 05/25/2023]
Abstract
OBJECTIVE To evaluate the efficacy and safety of Huashi Baidu Granules (HSBD) in treating patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant. METHODS A single-center retrospective cohort study was conducted during COVID-19 Omicron epidemic in the Mobile Cabin Hospital of Shanghai New International Expo Center from April 1st to May 23rd, 2022. All COVID-19 patients with asymptomatic or mild infection were assigned to the treatment group (HSBD users) and the control group (non-HSBD users). After propensity score matching in a 1:1 ratio, 496 HSBD users of treatment group were matched by propensity score to 496 non-HSBD users. Patients in the treatment group were administrated HSBD (5 g/bag) orally for 1 bag twice a day for 7 consecutive days. Patients in the control group received standard care and routine treatment. The primary outcomes were the negative conversion time of nucleic acid and negative conversion rate at day 7. Secondary outcomes included the hospitalized days, the time of the first nucleic acid negative conversion, and new-onset symptoms in asymptomatic patients. Adverse events (AEs) that occurred during the study were recorded. Further subgroup analysis was conducted in vaccinated (378 HSBD users and 390 non-HSBD users) and unvaccinated patients (118 HSBD users and 106 non-HSBD users). RESULTS The median negative conversion time of nucleic acid in the treatment group was significantly shortened than the control group [3 days (IQR: 2-5 days) vs. 5 days (IQR: 4-6 days); P<0.01]. The negative conversion rate of nucleic acid in the treatment group were significantly higher than those in the control group at day 7 (91.73% vs. 86.90%, P=0.014). Compared with the control group, the hospitalized days in the treatment group were significantly reduced [10 days (IQR: 8-11 days) vs. 11 days (IQR: 10.25-12 days); P<0.01]. The time of the first nucleic acid negative conversion had significant differences between the treatment and control groups [3 days (IQR: 2-4 days) vs. 5 days (IQR: 4-6 days); P<0.01]. The incidence of new-onset symptoms including cough, pharyngalgia, expectoration and fever in the treatment group were lower than the control group (P<0.05 or P<0.01). In the vaccinated patients, the median negative conversion time and hospitalized days were significantly shorter than the control group after HSDB treatment [3 days (IQR: 2-5 days) vs. 5 days (IQR: 4-6 days), P<0.01; 10 days (IQR: 8-11 days) vs. 11 days (IQR: 10-12 days), P<0.01]. In the unvaccinated patients, HSBD treatment efficiently shorten the median negative conversion time and hospitalized days [4 days (IQR: 2-6 days) vs. 5 days (IQR: 4-7 days), P<0.01; 10.5 days (IQR: 8.75-11 days) vs. 11.0 days (IQR: 10.75-13 days); P<0.01]. No serious AEs were reported during the study. CONCLUSION HSBD treatment significantly shortened the negative conversion time of nuclear acid, the length of hospitalization, and the time of the first nucleic acid negative conversion in patients infected with SARS-COV-2 Omicron variant (Trial registry No. ChiCTR2200060472).
Collapse
Affiliation(s)
- Cai-Yu Chen
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wen Zhang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xiang-Ru Xu
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yu-Ting Pu
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Ya-Dan Tu
- Department of Classical Traditional Chinese Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Wei Peng
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xuan Yao
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Shuang Zhou
- Acupuncture and Massage College, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bang-Jiang Fang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
- Institute of Emergency and Critical Care Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
2
|
Wu Z, Zhang T, Ma X, Guo S, Zhou Q, Zahoor A, Deng G. Recent advances in anti-inflammatory active components and action mechanisms of natural medicines. Inflammopharmacology 2023; 31:2901-2937. [PMID: 37947913 DOI: 10.1007/s10787-023-01369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Inflammation is a series of reactions caused by the body's resistance to external biological stimuli. Inflammation affects the occurrence and development of many diseases. Anti-inflammatory drugs have been used widely to treat inflammatory diseases, but long-term use can cause toxic side-effects and affect human functions. As immunomodulators with long-term conditioning effects and no drug residues, natural products are being investigated increasingly for the treatment of inflammatory diseases. In this review, we focus on the inflammatory process and cellular mechanisms in the development of diseases such as inflammatory bowel disease, atherosclerosis, and coronavirus disease-2019. Also, we focus on three signaling pathways (Nuclear factor-kappa B, p38 mitogen-activated protein kinase, Janus kinase/signal transducer and activator of transcription-3) to explain the anti-inflammatory effect of natural products. In addition, we also classified common natural products based on secondary metabolites and explained the association between current bidirectional prediction progress of natural product targets and inflammatory diseases.
Collapse
Affiliation(s)
- Zhimin Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tao Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaofei Ma
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qingqing Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Arshad Zahoor
- College of Veterinary Sciences, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
3
|
Yu Z, Zheng Y, Chen B, Lv J, Zhu X, Shang B, Xv Y, Tao R, Yang Y, Cong J, Li D, Wu H, Qv W, Zhang X, Xv C, Feng H, Yuan W, Gao Y. Efficacy and safety of Huashi Baidu granule plus Nirmatrelvir-Ritonavir combination therapy in patients with high-risk factors infected with Omicron (B.1.1.529): A multi-arm single-center, open-label, randomized controlled trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155025. [PMID: 37639813 DOI: 10.1016/j.phymed.2023.155025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/31/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Huashi Baidu granule (HSBD) and Paxlovid (Nirmatrelvir-Ritonavir) are antiviral Chinese patent medicine and western medicine specially developed for treating coronavirus disease 2019 (COVID-19). Their efficacy and safety in treating COVID-19 are still under investigated. PURPOSE To assess and compare the efficacy and safety of HSBD, Paxlovid, and the combination in treating high-risk patients infected with SARS-CoV-2 Omicron. STUDY DESIGN The study was a prospective single-center, open-label, randomized, controlled clinical trial conducted from April 18 to June 5, 2022. (ClinicalTrial.gov registration number: ChiCTR2200059390) METHODS: 312 severe patients aged 18 years and older infected with SARS-CoV-2 Omicron from Shuguang Hospital in Shanghai were randomly allocated to HSBD monotherapy (orally 137 g twice daily for 7 days, n = 105), Paxlovid monotherapy (orally 300 mg of Nirmatrelvir plus 100 mg of Ritonavir every 12 h for 5 days, n = 103), or combination therapy (n = 104). The primary outcome was SARS-CoV-2 nucleic acid negative conversion within 7-day treatment. The secondary outcome included hospital discharging conditions, severe conversion of symptom, and adverse events. RESULTS Of 312 participants, 85 (82%) of 104 in combination therapy, 71 (68%) of 105 in HSBD monotherapy, and 73 (71%) of 103 in Paxlovid monotherapy had a primary outcome event. The hazard ratios of primary outcome were 1.37 (95% CI 1.03 - 1.84, p = 0.012) for combination versus HSBD, 1.28 (0.98-1.69, p = 0.043) for combination versus Paxlovid, and 0.88 (0.66-1.18, p = 0.33) for HSBD versus Paxlovid. There was no statistical difference of efficacy between HSBD and Paxlovid, while combination therapy exhibited more effective than either alone. For secondary outcomes, the hospital discharging rates within 7 days exhibited the significant increase in combination therapy than in HSBD or Paxlovid monotherapy (71% (74/104) vs 55% (58/105) vs 52% (54/103), p < 0.05). The risk of severe conversion of symptom showed no statistical significance among three interventions (1% (1/104) vs 3% (3/105) vs 3% (3/103), p > 0.05). No severe adverse events occurred among combination therapy and monotherapies in the trial. CONCLUSION For patients with severe COVID-19, HSBD exhibits similar efficacy to Paxlovid, while combination therapy is more likely to increase the curative efficacy of Omicron variant than monotherapies, with few serious adverse events.
Collapse
Affiliation(s)
- Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Team of COVID-19 Epidemic Prevention and Treatment, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanxi Zheng
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Team of COVID-19 Epidemic Prevention and Treatment, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bowu Chen
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Team of COVID-19 Epidemic Prevention and Treatment, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia Lv
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Team of COVID-19 Epidemic Prevention and Treatment, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaojun Zhu
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Team of COVID-19 Epidemic Prevention and Treatment, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Binyi Shang
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Team of COVID-19 Epidemic Prevention and Treatment, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuping Xv
- Nursing Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ru Tao
- Nursing Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanbing Yang
- Nursing Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jun Cong
- Team of COVID-19 Epidemic Prevention and Treatment, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Dan Li
- Team of COVID-19 Epidemic Prevention and Treatment, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Huan Wu
- Team of COVID-19 Epidemic Prevention and Treatment, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenchao Qv
- Team of COVID-19 Epidemic Prevention and Treatment, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiyi Zhang
- Department of Informatics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chengbin Xv
- Department of Informatics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hai Feng
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weian Yuan
- Centre of Good Clinical Practice, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yueqiu Gao
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Team of COVID-19 Epidemic Prevention and Treatment, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
Girgis AS, Panda SS, Kariuki BM, Bekheit MS, Barghash RF, Aboshouk DR. Indole-Based Compounds as Potential Drug Candidates for SARS-CoV-2. Molecules 2023; 28:6603. [PMID: 37764378 PMCID: PMC10537473 DOI: 10.3390/molecules28186603] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
The COVID-19 pandemic has posed a significant threat to society in recent times, endangering human health, life, and economic well-being. The disease quickly spreads due to the highly infectious SARS-CoV-2 virus, which has undergone numerous mutations. Despite intense research efforts by the scientific community since its emergence in 2019, no effective therapeutics have been discovered yet. While some repurposed drugs have been used to control the global outbreak and save lives, none have proven universally effective, particularly for severely infected patients. Although the spread of the disease is generally under control, anti-SARS-CoV-2 agents are still needed to combat current and future infections. This study reviews some of the most promising repurposed drugs containing indolyl heterocycle, which is an essential scaffold of many alkaloids with diverse bio-properties in various biological fields. The study also discusses natural and synthetic indole-containing compounds with anti-SARS-CoV-2 properties and computer-aided drug design (in silico studies) for optimizing anti-SARS-CoV-2 hits/leads.
Collapse
Affiliation(s)
- Adel S. Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt; (M.S.B.); (R.F.B.); (D.R.A.)
| | - Siva S. Panda
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA 30912, USA
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | - Benson M. Kariuki
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK; (B.M.K.)
| | - Mohamed S. Bekheit
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt; (M.S.B.); (R.F.B.); (D.R.A.)
| | - Reham F. Barghash
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt; (M.S.B.); (R.F.B.); (D.R.A.)
| | - Dalia R. Aboshouk
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt; (M.S.B.); (R.F.B.); (D.R.A.)
| |
Collapse
|
5
|
Meng T, Ding J, Shen S, Xu Y, Wang P, Song X, Li Y, Li S, Xu M, Tian Z, He Q. Xuanfei Baidu decoction in the treatment of coronavirus disease 2019 (COVID-19): Efficacy and potential mechanisms. Heliyon 2023; 9:e19163. [PMID: 37809901 PMCID: PMC10558324 DOI: 10.1016/j.heliyon.2023.e19163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 10/10/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide and become a major global public health concern. Although novel investigational COVID-19 antiviral candidates such as the Pfizer agent PAXLOVID™, molnupiravir, baricitinib, remdesivir, and favipiravir are currently used to treat patients with COVID-19, there is still a critical need for the development of additional treatments, as the recommended therapeutic options are frequently ineffective against SARS-CoV-2. The efficacy and safety of vaccines remain uncertain, particularly with the emergence of several variants. All 10 versions of the National Health Commission's diagnosis and treatment guidelines for COVID-19 recommend using traditional Chinese medicine. Xuanfei Baidu Decoction (XFBD) is one of the "three Chinese medicines and three Chinese prescriptions" recommended for COVID-19. This review summarizes the clinical evidence and potential mechanisms of action of XFBD for COVID-19 treatment. With XFBD, patients with COVID-19 experience improved clinical symptoms, shorter hospital stay, prevention of the progression of their symptoms from mild to moderate and severe symptoms, and reduced mortality in critically ill patients. The mechanisms of action may be associated with its direct antiviral, anti-inflammatory, immunomodulatory, antioxidative, and antimicrobial properties. High-quality clinical and experimental studies are needed to further explore the clinical efficacy and underlying mechanisms of XFBD in COVID-19 treatment.
Collapse
Affiliation(s)
- Tiantian Meng
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100032, China
- Department of Rehabilitation, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100071, China
| | - Jingyi Ding
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100032, China
| | - Shujie Shen
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100089, China
| | - Yingzhi Xu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100010 China
| | - Peng Wang
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100010, China
- Department of Traditional Chinese Medicine, Beijing Jiangong Hospital, Beijing, 100032, China
| | - Xinbin Song
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yixiang Li
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Shangjin Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100032, China
| | - Minjie Xu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100010 China
| | - Ziyu Tian
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qingyong He
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100032, China
| |
Collapse
|
6
|
Zhang M, Liu L, Zhao Y, Cao Y, Zhu Y, Han L, Yang Q, Wang Y, Wang C, Zhang H, Wang Y, Zhang J. Discovery and evaluation of active compounds from Xuanfei Baidu formula against COVID-19 via SARS-CoV-2 M pro. Chin Med 2023; 18:94. [PMID: 37528477 PMCID: PMC10394814 DOI: 10.1186/s13020-023-00790-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/25/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2) is still a widespread concern. As one of the effective traditional Chinese medicine (TCM) formulae, Xuanfei Baidu formula (XFBD) shows significant efficacy for treatment of COVID-19 patients. However, its antiviral active compounds and mechanism are still unclear. PURPOSE In this study, we explored the bioactive compounds of XFBD and its antiviral mechanism by integrating computational analysis and experimental testing. METHODS Focusing on the SARS-CoV-2 main protease (Mpro), as a key target in virus transcription and replication, the fluorescence resonance energy transfer (FRET) assay was built to screen out satisfactory natural inhibitors in XFBD. The surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) were undertaken to verify the binding affinity of ligand-Mpro. Omicron BA.1.1 and BA.2.3 variants were used to evaluate the antiviral activity of the focused compounds in non-cytotoxicity concentrations. For introducing the molecular mechanism, computational modeling and NMR spectra were employed to characterize the ligand-binding modes and identify the ligand-binding site on Mpro. RESULTS From a library of 83 natural compounds, acteoside, licochalcone B, licochalcone D, linoleic acid, and physcion showed the satisfactory inhibition effects on Mpro with IC50 ranging from 1.93 to 42.96 µM, which were further verified by SPR. Showing the excellent binding affinity, acteoside was witnessed to gain valuable insights into the thermodynamic signatures by ITC and presented antiviral activity on Omicron BA.1.1 and BA.2.3 variants in vitro. The results revealed that acteoside inhibited Mpro via forming the hydrogen bond between 7-H of acteoside and Mpro. CONCLUSION Acteoside is regarded as a representative active natural compound in XFBD to inhibit replication of SARS-CoV-2, which provides the antiviral evidence and some insights into the identification of SARS-CoV-2 Mpro natural inhibitors.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae (Ministry of Education), Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Liting Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Yao Zhao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Yipeng Cao
- National Supercomputer Center in Tianjin, Tianjin, 300457, China
| | - Yan Zhu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Lifeng Han
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Qi Yang
- Guangzhou Laboratory, Guangzhou, 510005, China
| | - Yu Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae (Ministry of Education), Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Changjian Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Han Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China.
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae (Ministry of Education), Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| | - Yuefei Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China.
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| | - Junhua Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China.
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
7
|
Ye L, Fan S, Zhao P, Wu C, Liu M, Hu S, Wang P, Wang H, Bi H. Potential herb‒drug interactions between anti-COVID-19 drugs and traditional Chinese medicine. Acta Pharm Sin B 2023; 13:S2211-3835(23)00203-4. [PMID: 37360014 PMCID: PMC10239737 DOI: 10.1016/j.apsb.2023.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/21/2023] [Accepted: 04/20/2023] [Indexed: 06/28/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide. Effective treatments against COVID-19 remain urgently in need although vaccination significantly reduces the incidence, hospitalization, and mortality. At present, antiviral drugs including Nirmatrelvir/Ritonavir (PaxlovidTM), Remdesivir, and Molnupiravir have been authorized to treat COVID-19 and become more globally available. On the other hand, traditional Chinese medicine (TCM) has been used for the treatment of epidemic diseases for a long history. Currently, various TCM formulae against COVID-19 such as Qingfei Paidu decoction, Xuanfei Baidu granule, Huashi Baidu granule, Jinhua Qinggan granule, Lianhua Qingwen capsule, and Xuebijing injection have been widely used in clinical practice in China, which may cause potential herb-drug interactions (HDIs) in patients under treatment with antiviral drugs and affect the efficacy and safety of medicines. However, information on potential HDIs between the above anti-COVID-19 drugs and TCM formulae is lacking, and thus this work seeks to summarize and highlight potential HDIs between antiviral drugs and TCM formulae against COVID-19, and especially pharmacokinetic HDIs mediated by metabolizing enzymes and/or transporters. These well-characterized HDIs could provide useful information on clinical concomitant medicine use to maximize clinical outcomes and minimize adverse and toxic effects.
Collapse
Affiliation(s)
- Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pengfei Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chenghua Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Menghua Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuang Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hongyu Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
8
|
Chen YT, Su ECY, Hung FM, Hiramatsu T, Hung TJ, Kuo CY. Constructing a Learning Curve to Discuss the Medical Treatments and the Effect of Vaccination of COVID-19. Healthcare (Basel) 2023; 11:1591. [PMID: 37297731 PMCID: PMC10252948 DOI: 10.3390/healthcare11111591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Acknowledging the extreme risk COVID-19 poses to humans, this paper attempted to analyze and compare case fatality rates, identify the existence of learning curves for COVID-19 medical treatments, and examine the impact of vaccination on fatality rate reduction. Confirmed cases and deaths were extracted from the "Daily Situation Report" provided by the World Health Organization. The results showed that low registration and low viral test rates resulted in low fatality rates, and the learning curve was significant for all countries except China. Treatment for COVID-19 can be improved through repeated experience. Vaccinations in the U.K. and U.S.A. are highly effective in reducing fatality rates, but not in other countries. The positive impact of vaccines may be attributed to higher vaccination rates. In addition to China, this study identified the existence of learning curves for the medical treatment of COVID-19 that can explain the effect of vaccination rates on fatalities.
Collapse
Affiliation(s)
- Yi-Tui Chen
- Smart Healthcare Interdisciplinary College, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan
- Department of Health Care Management, College of Health Technology, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei 103, Taiwan
| | - Emily Chia-Yu Su
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Fang Ming Hung
- Department of Surgical Intensive Care Unit, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Tomoru Hiramatsu
- School of Policy Studies, Kwansei Gakuin University, Gakuen Uegahara 1, Sanda 669-1330, Japan
| | - Tzu-Jen Hung
- Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
| | - Chao-Yang Kuo
- Smart Healthcare Interdisciplinary College, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan
| |
Collapse
|
9
|
Zhou M, Liu Y, Qin H, Shang T, Xue Z, Yang S, Zhang H, Yang J. Xuanfei Baidu Decoction regulates NETs formation via CXCL2/CXCR2 signaling pathway that is involved in acute lung injury. Biomed Pharmacother 2023; 161:114530. [PMID: 36933379 PMCID: PMC10019344 DOI: 10.1016/j.biopha.2023.114530] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening symptoms in Coronavirus Disease 2019 (COVID-19) patients. Xuanfei Baidu Decoction (XFBD) is a recommend first-line traditional Chinese medicine (TCM) formula therapeutic strategy for COVID-19 patients. Prior studies demonstrated the pharmacological roles and mechanisms of XFBD and its derived effective components against inflammation and infections through multiple model systems, which provided the biological explanations for its clinical use. Our previous work revealed that XFBD inhibited macrophages and neutrophils infiltration via PD-1/IL17A signaling pathway. However, the subsequent biological processes are not well elucidated. Here, we proposed a hypothesis that XFBD can regulate the neutrophils-mediated immune responses, including neutrophil extracellular traps (NETs) formation and the generation of platelet-neutrophil aggregates (PNAs) after XFBD administration in lipopolysaccharide (LPS)-induced ALI mice. The mechanism behind it was also firstly explained, that is XFBD regulated NETs formation via CXCL2/CXCR2 axis. Altogether, our findings demonstrated the sequential immune responses of XFBD after inhibiting neutrophils infiltration, as well as shedding light on exploiting the therapy of XFBD targeting neutrophils to ameliorate ALI during the clinical course.
Collapse
Affiliation(s)
- Mengen Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
| | - Yiman Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
| | - Honglin Qin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
| | - Ting Shang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
| | - Zhifeng Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
| | - Shuang Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China; Hai he Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| | - Jian Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China; Hai he Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
10
|
Bao Y, Zhang R, Jiang X, Liu F, He Y, Hu H, Hou X, Hao L, Pei X. Detoxification mechanisms of ginseng to aconite: A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116009. [PMID: 36516908 DOI: 10.1016/j.jep.2022.116009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aconite (Fuzi, FZ), the processed root tuber of Aconitum carmichaelii Debx., is utilized as a classic medicine to treat diseases of the cardiovascular system and immune system. Resulting from the narrow margin of safety between a therapeutic dose and a toxic dose, FZ often causes cardiotoxicity including hypotension, palpitation, and bradycardia. Contributing to the detoxification effects of the other famous herbal medicine ginseng (Renshen, RS), which is the dried root and rhizome of Panax ginseng C. A. Meyer, people broadly combine FZ and RS as compatibility more than 1800 years to attenuate the toxicity of FZ. However, the systematic detoxification mechanisms of RS to FZ have not been fully revealed. AIM OF THE REVIEW Aiming to provide a comprehensive interpretation of the attenuation processes of FZ via RS, this review summarizes the up-to-date information about regulatory mechanisms of RS to FZ to shed the light on the essence of detoxification. MATERIALS AND METHODS Literature was searched in electronic databases, including PubMed, Web of Science ScienceDirect, Google Scholar, CNKI and WanFang Data. Relevant studies on detoxification mechanisms were included while irrelevant and duplicate studies were excluded. According to the study design, subject, intervention regime, outcome, first author and year of publication of included data, detoxification mechanisms of RS to FZ were summarized and visualized. RESULTS A total of 144 studies were identified through databases from their inception up to Oct. 2022. Included information indicated that diester-diterpenoid alkaloids (DDAs) were the main toxic substances of FZ. The main mechanisms that RS attenuates the toxicity of FZ were transforming toxic compounds of FZ, affecting the absorption and metabolism of FZ as well as the FZ-induced cell toxicity alleviation. CONCLUSION FZ, as a famous traditional Chinese medicine, has good prospects for utilization. The narrow margin of safety between a therapeutic dose and a toxic dose of FZ limits its clinical effect and safety while RS is always combined with FZ to alleviate its toxicity. However, mechanisms responsible for the detoxification process have not been well identified. Therefore, detoxification mechanisms of RS to FZ are reviewed to ensure the safety and effectiveness of FZ.
Collapse
Affiliation(s)
- Yiwen Bao
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, PR China
| | - Ruiyuan Zhang
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, PR China
| | - Xinyi Jiang
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, PR China
| | - Fang Liu
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, PR China.
| | - Yao He
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, PR China.
| | - Huiling Hu
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, PR China
| | - Xinlian Hou
- Huarun Sanjiu (Ya'an) Pharmaceutical Group Co., LTD, Ya'an, 625000, PR China
| | - Li Hao
- Huarun Sanjiu (Ya'an) Pharmaceutical Group Co., LTD, Ya'an, 625000, PR China
| | - Xu Pei
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, PR China
| |
Collapse
|
11
|
Li Z, Pan H, Yang J, Chen D, Wang Y, Zhang H, Cheng Y. Xuanfei Baidu formula alleviates impaired mitochondrial dynamics and activated NLRP3 inflammasome by repressing NF-κB and MAPK pathways in LPS-induced ALI and inflammation models. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154545. [PMID: 36423572 PMCID: PMC9643338 DOI: 10.1016/j.phymed.2022.154545] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/23/2022] [Accepted: 11/07/2022] [Indexed: 05/06/2023]
Abstract
BACKGROUND Xuanfei Baidu Formula (XBF) is an effective traditional Chinese medicine (TCM) remedy for treating coronavirus disease 2019 (COVID-19) in China. This herbal medicine has shown effects in reducing clinical symptoms and shortening the average length of hospital stay for COVID-19 patients. Previous studies have demonstrated that XBF alleviates acute lung injury (ALI) by regulating macrophage-mediated immune inflammation, but the mechanisms of action remain elusive. PURPOSE This study aimed to evaluate the lung-protective and anti-inflammatory effects of XBF and its underlying mechanisms. METHODS Here, XBF's effects were investigated in an ALI mouse model induced by inhalation of atomized lipopolysaccharide (LPS). Besides, the LPS-induced inflammation model in RAW264.7 cells was used to clarify the underlying mechanisms of XBF against ALI. RESULTS Our results showed that XBF treatment alleviated LPS-induced lung injury, as evidenced by reduced histopathological changes, pulmonary alveoli permeability, fibrosis, and apoptosis in the lung tissues. In addition, inflammation was alleviated as shown by decreased levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β in serum and bronchoalveolar lavage fluid (BALF), and reduced white blood cell (WBC) count in BALF. Furthermore, consistent with the in vivo assay, XBF inhibited LPS-induced inflammatory cytokines release and pro-inflammatory polarization in RAW264.7 cells. Mechanistically, XBF increased mitochondrial fusion by upregulating Mfn1 and attenuated NLRP3 inflammasome activation by repressing Casp11, respectively, to inhibit NF-κB and MAPK pathways, thus repressing pro-inflammatory macrophage polarization. CONCLUSION In this study, we demonstrate that XBF exerts anti-ALI and -inflammatory effects by recovering mitochondrial dynamics and reducing inflammasome activation, providing a biological illustration of the clinical efficacy of XBF in treating COVID-19 patients.
Collapse
Affiliation(s)
- Zhenhao Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; BoYu Intelligent Health Innovation Laboratory, Hangzhou 311121, China.
| | - Haitao Pan
- BoYu Intelligent Health Innovation Laboratory, Hangzhou 311121, China
| | - Jihong Yang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; BoYu Intelligent Health Innovation Laboratory, Hangzhou 311121, China
| | - Dongjie Chen
- BoYu Intelligent Health Innovation Laboratory, Hangzhou 311121, China
| | - Yu Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yiyu Cheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
12
|
He Q, Shi Y, Tang Q, Xing H, Zhang H, Wang M, Chen X. Herbal medicine in the treatment of COVID-19 based on the gut-lung axis. ACUPUNCTURE AND HERBAL MEDICINE 2022; 2:172-183. [PMID: 37808350 PMCID: PMC9746256 DOI: 10.1097/hm9.0000000000000038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/12/2022] [Indexed: 08/18/2023]
Abstract
Respiratory symptoms are most commonly experienced by patients in the early stages of novel coronavirus disease 2019 (COVID-19). However, with a better understanding of COVID-19, gastrointestinal symptoms such as diarrhea, nausea, and vomiting have attracted increasing attention. The gastrointestinal tract may be a target organ of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The intestinal microecological balance is a crucial factor for homeostasis, including immunity and inflammation, which are closely related to COVID-19. Herbal medicine can restore intestinal function and regulate the gut flora structure. Herbal medicine has a long history of treating lung diseases from the perspective of the intestine, which is called the gut-lung axis. The physiological activities of guts and lungs influence each other through intestinal flora, microflora metabolites, and mucosal immunity. Microecological modulators are included in the diagnosis and treatment protocols for COVID-19. In this review, we demonstrate the relationship between COVID-19 and the gut, gut-lung axis, and the role of herbal medicine in treating respiratory diseases originating from the intestinal tract. It is expected that the significance of herbal medicine in treating respiratory diseases from the perspective of the intestinal tract could lead to new ideas and methods for treatment. Graphical abstract http://links.lww.com/AHM/A33.
Collapse
Affiliation(s)
- Qiaoyu He
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yumeng Shi
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qian Tang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Xing
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Han Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mei Wang
- LU-European Center for Chinese Medicine and Natural Compounds, Institute of Biology, Leiden University/SU Biomedicine, Leiden, Netherlands
| | - Xiaopeng Chen
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
13
|
Gao J, Xiao G, Fan G, Zhang H, Zhu Y, lu: M. “三药三方”治疗COVID-19的临床和药理研究进展. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Singh B, Eshaghian E, Chuang J, Covasa M. Do Diet and Dietary Supplements Mitigate Clinical Outcomes in COVID-19? Nutrients 2022; 14:nu14091909. [PMID: 35565876 PMCID: PMC9104892 DOI: 10.3390/nu14091909] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/07/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) has caused a pandemic and upheaval that health authorities and citizens around the globe are still grappling with to this day. While public health measures, vaccine development, and new therapeutics have made great strides in understanding and managing the pandemic, there has been an increasing focus on the potential roles of diet and supplementation in disease prevention and adjuvant treatment. In the literature, the impact of nutrition on other respiratory illnesses, including the common cold, pneumonia, and influenza, has been widely demonstrated in both animal and human models. However, there is much less research on the impact related to COVID-19. The present study discusses the potential uses of diets, vitamins, and supplements, including the Mediterranean diet, glutathione, zinc, and traditional Chinese medicine, in the prevention of infection and severe illness. The evidence demonstrating the efficacy of diet supplementation on infection risk, disease duration, severity, and recovery is mixed and inconsistent. More clinical trials are necessary in order to clearly demonstrate the contribution of nutrition and to guide potential therapeutic protocols.
Collapse
Affiliation(s)
- Bhavdeep Singh
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (B.S.); (E.E.); (J.C.)
| | - Eli Eshaghian
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (B.S.); (E.E.); (J.C.)
| | - Judith Chuang
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (B.S.); (E.E.); (J.C.)
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (B.S.); (E.E.); (J.C.)
- Department of Biomedical Sciences, College of Medicine and Biological Sciences, University of Suceava, 7200229 Suceava, Romania
- Correspondence:
| |
Collapse
|
15
|
Shah T, Xia KY, Shah Z, Baloch Z. Therapeutic mechanisms and impact of traditional Chinese medicine on COVID-19 and other influenza diseases. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2022. [PMCID: PMC8666147 DOI: 10.1016/j.prmcm.2021.100029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Coronavirus disease 2019 (COVID-19), first reported in Wuhan, China, has rapidly spread worldwide. Traditional Chinese medicine (TCM) has been used to prevent and treat viral epidemics and plagues for over 2,500 years. In the guidelines on fighting against COVID-19, the National Health Commission of the People's Republic of China has recommended certain TCM formulas, namely Jinhua Qinggan granule (JHQGG), Lianhua Qingwen granule (LHQWG), Qingfei Paidu decoction (QFPDD), Xuanfei Baidu granule (XFBD), Xuebijing injection (XBJ), and Huashi Baidu granule (HSBD) for treating COVID-19 infected individuals. Among these six TCM formulas, JHQGG and LHQWG effectively treated mild/moderate and severe COVID-19 infections. XFBD therapy is recommended for mild COVID-19 infections, while XBJ and HSBD effectively treat severe COVID-19 infections. The internationalization of TCM faces many challenges due to the absence of a clinical efficacy evaluation system, insufficient research evidence, and a lack of customer trust across the globe. Therefore, evidence-based research is crucial in battling this infectious disease. This review summarizes SARS-CoV-2 pathogenesis and the history of TCM used to treat various viral epidemics, with a focus on six TCM formulas. Based on the evidence, we also discuss the composition of various TCM formulas, their underlying therapeutic mechanisms, and their role in curing COVID-19 infections. In addition, we evaluated the roles of six TCM formulas in the treatment and prevention of other influenza diseases, such as influenza A (H1N1), severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS). Furthermore, we highlighted the efficacy and side effects of single prescriptions used in TCM formulas.
Collapse
|
16
|
Xia KY, Zhao Z, Shah T, Wang JY, Baloch Z. Composition, Clinical Efficiency, and Mechanism of NHC-Approved “Three Chinese Medicines and Three Chinese Recipes” for COVID-19 Treatment. Front Pharmacol 2022; 12:781090. [PMID: 35185537 PMCID: PMC8855106 DOI: 10.3389/fphar.2021.781090] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022] Open
Abstract
Traditional Chinese medicines (TCMs) have been regularly prescribed to treat and prevent diseases for thousands of years in the eastern part of the Asian continent. Thus, when the coronavirus disease 2019 (COVID-19) epidemic started, TCM was officially incorporated as a strategy by the National Health Commission (NHC) for the treatment of COVID-19 infection. TCMs were used to treat COVID-19 and had a significant effect on alleviating symptoms, delaying disease progression, improving the cure rate, and reducing the mortality rate in China. Therefore, China’s National Health Commission officially approved Qingfei Paidu decoction, Xuanfei Baidu decoction, Huashi Baidu decoction, Lianhua Qingwen capsules, Jinhua Qinggan granules, and Xuebijing for COVID-19 treatment. This review evaluates and summarizes the use of TCMs against infectious diseases and the composition, clinical efficacy, and mechanisms of the NHC-approved “three Chinese medicines and three Chinese recipes” for COVID-19 treatment. The three Chinese medicines and three Chinese recipes have been demonstrated to be highly effective against COVID-19, but there is a lack of in vivo or in vitro evidence. Most of the available data related to the potential mechanism of the three Chinese medicines and three Chinese recipes is based on virtual simulation or prediction, which is acquired via molecular docking and network pharmacology analysis. These predictions have not yet been proven. Therefore, there is a need for high-quality in vivo and in vitro and clinical studies by employing new strategies and technologies such as genomics, metabolomics, and proteomics to verify the predicted mechanisms of these drug’s effects on COVID-19.
Collapse
Affiliation(s)
- Ke-Yao Xia
- Faculty of Traditional Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Zeyuan Zhao
- Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine, Kunming University of Science and Technology, Kunming, China
| | - Taif Shah
- Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine, Kunming University of Science and Technology, Kunming, China
| | - Jing-Yi Wang
- Faculty of Traditional Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Zulqarnain Baloch,
| |
Collapse
|
17
|
Nazar N, Howard C, Slater A, Sgamma T. Challenges in Medicinal and Aromatic Plants DNA Barcoding-Lessons from the Lamiaceae. PLANTS (BASEL, SWITZERLAND) 2022; 11:137. [PMID: 35009140 PMCID: PMC8747715 DOI: 10.3390/plants11010137] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The potential value of DNA barcoding for the identification of medicinal plants and authentication of traded plant materials has been widely recognized; however, a number of challenges remain before DNA methods are fully accepted as an essential quality control method by industry and regulatory authorities. The successes and limitations of conventional DNA barcoding are considered in relation to important members of the Lamiaceae. The mint family (Lamiaceae) contains over one thousand species recorded as having a medicinal use, with many more exploited in food and cosmetics for their aromatic properties. The family is characterized by a diversity of secondary products, most notably the essential oils (EOs) produced in external glandular structures on the aerial parts of the plant that typify well-known plants of the basil (Ocimum), lavender (Lavandula), mint (Mentha), thyme (Thymus), sage (Salvia) and related genera. This complex, species-rich family includes widely cultivated commercial hybrids and endangered wild-harvested traditional medicines, and examples of potential toxic adulterants within the family are explored in detail. The opportunities provided by next generation sequencing technologies to whole plastome barcoding and nuclear genome sequencing are also discussed with relevant examples.
Collapse
Affiliation(s)
- Nazia Nazar
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK;
| | - Caroline Howard
- Tree of Life Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK;
| | - Adrian Slater
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK;
| | - Tiziana Sgamma
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK;
| |
Collapse
|
18
|
Therapeutic options in coronavirus treatment. CORONAVIRUS DRUG DISCOVERY 2022. [PMCID: PMC9217689 DOI: 10.1016/b978-0-323-85156-5.00021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This chapter details the various therapeutic options available for the treatment of the novel coronavirus, SARS-CoV-2, that has brought the world to a standstill. As at 3.53 CEST, June 28, 2020, WHO reported 9,843,073 confirmed cases of COVID-19, with a death toll of 495,760. The rate of the spread of this disease is alarming posing serious threat to the world healthcare system. Clinical investigations and research are on the way for the development of vaccines or antiviral drugs. Despite this effort, no medication has been found to be very effective for its treatment. In this chapter, emphasis was laid on the need for repurposing of antiviral drugs to combat COVID-19 along with other alternatives such as convalescent plasma therapy and exploitation of drugs from medicinal plants and other natural resources.
Collapse
|
19
|
Shen L, Liu F, Huang L, Liu G, Zhou L, Peng L. VDA-RWLRLS: An anti-SARS-CoV-2 drug prioritizing framework combining an unbalanced bi-random walk and Laplacian regularized least squares. Comput Biol Med 2022; 140:105119. [PMID: 34902608 PMCID: PMC8664497 DOI: 10.1016/j.compbiomed.2021.105119] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 11/08/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND A new coronavirus disease named COVID-19, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is rapidly spreading worldwide. However, there is currently no effective drug to fight COVID-19. METHODS In this study, we developed a Virus-Drug Association (VDA) identification framework (VDA-RWLRLS) combining unbalanced bi-Random Walk, Laplacian Regularized Least Squares, molecular docking, and molecular dynamics simulation to find clues for the treatment of COVID-19. First, virus similarity and drug similarity are computed based on genomic sequences, chemical structures, and Gaussian association profiles. Second, an unbalanced bi-random walk is implemented on the virus network and the drug network, respectively. Third, the results of the random walks are taken as the input of Laplacian regularized least squares to compute the association score for each virus-drug pair. Fourth, the final associations are characterized by integrating the predictions from the virus network and the drug network. Finally, molecular docking and molecular dynamics simulation are implemented to measure the potential of screened anti-COVID-19 drugs and further validate the predicted results. RESULTS In comparison with six state-of-the-art association prediction models (NGRHMDA, SMiR-NBI, LRLSHMDA, VDA-KATZ, VDA-RWR, and VDA-BiRW), VDA-RWLRLS demonstrates superior VDA prediction performance. It obtains the best AUCs of 0.885 8, 0.835 5, and 0.862 5 on the three VDA datasets. Molecular docking and dynamics simulations demonstrated that remdesivir and ribavirin may be potential anti-COVID-19 drugs. CONCLUSIONS Integrating unbalanced bi-random walks, Laplacian regularized least squares, molecular docking, and molecular dynamics simulation, this work initially screened a few anti-SARS-CoV-2 drugs and may contribute to preventing COVID-19 transmission.
Collapse
Affiliation(s)
- Ling Shen
- School of Computer Science, Hunan University of Technology, Zhuzhou, 412 007, Hunan, China
| | - Fuxing Liu
- School of Computer Science, Hunan University of Technology, Zhuzhou, 412 007, Hunan, China
| | - Li Huang
- Academy of Arts and Design, Tsinghua University, Beijing, 10 084, Beijing, China; The Future Laboratory, Tsinghua University, Beijing, 10 084, Beijing, China
| | - Guangyi Liu
- School of Computer Science, Hunan University of Technology, Zhuzhou, 412 007, Hunan, China
| | - Liqian Zhou
- School of Computer Science, Hunan University of Technology, Zhuzhou, 412 007, Hunan, China.
| | - Lihong Peng
- School of Computer Science, Hunan University of Technology, Zhuzhou, 412 007, Hunan, China; College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412 007, Hunan, China.
| |
Collapse
|
20
|
Nayak B, Lal G, Kumar S, Das CJ, Saraya A, Shalimar. Host Response to SARS-CoV2 and Emerging Variants in Pre-Existing Liver and Gastrointestinal Diseases. Front Cell Infect Microbiol 2021; 11:753249. [PMID: 34760721 PMCID: PMC8573081 DOI: 10.3389/fcimb.2021.753249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/04/2021] [Indexed: 01/08/2023] Open
Abstract
Background Novel coronavirus SARS-CoV2 is evolving continuously with emergence of several variants of increasing transmission capabilities and pandemic potential. Generation of variants occurs through accumulation of mutations due to the RNA nature of viral genome, which is further enhanced by variable selection pressures of this ongoing pandemic. COVID-19 presentations of SARS-CoV2 are mainly pulmonary manifestations with or without mild gastrointestinal (GI) and hepatic symptoms. However, the virus has evolved beyond pulmonary manifestations to multisystem disorder due to systemic inflammation and cytokine storm. Definitive cause of acute or late onset of inflammation, infection in various organs, and host response to emerging variants lacks clarity and needs elucidation. Several studies have reported underlying diseases including diabetes, hypertension, obesity, cardio- and cerebrovascular disorders, and immunocompromised conditions as significant risk factors for severe form of COVID-19. Pre-existing liver and GI diseases are also highly predominant in the population, which can alter COVID-19 outcome due to altered immune status and host response. We aim to review the emerging variants of SARS-CoV2 and host response in patients with pre-existing liver and GI diseases. Methods In this review, we have elucidated the emergence and characteristic features of new SARS-CoV2 variants, mechanisms of infection and host immune response, GI and hepatic manifestation with radiologic features of COVID-19, and outcomes in pre-existing liver and GI diseases. Key Findings Emerging variants of concern (VOC) have shown increased transmissibility and virulence with severe COVID-19 presentation and mortality. There is a drastic swift of variants from the first wave to the next wave of infections with predominated major VOC including alpha (B.1.1.7, UK), beta (B.1.351, South Africa), gamma (B.1.1.28.1, Brazil), and delta (B1.1.617, India) variants. The mutations in the spike protein of VOC are implicated for increased receptor binding (N501Y, P681R) and immune escape (L452R, E484K/Q, T478K/R) to host response. Pre-existing liver and GI diseases not only have altered tissue expression and distribution of viral entry ACE2 receptor but also host protease TMPRSS2, which is required for both spike protein binding and cleavage to initiate infection. Altered immune status due to pre-existing conditions results in delayed virus clearance or prolonged viremia. Even though GI and hepatic manifestations of SARS-CoV2 are less severe, the detection of virus in patient’s stool indicates GI tropism, replication, and shedding from the GI tract. COVID-19-induced liver injury, acute hepatic decompensation, and incidences of acute-on-chronic liver failure may change the disease outcomes. Conclusions The changes in the spike protein of emerging variants, immunomodulation by viral proteins, and altered expression of host viral entry receptor in pre-existing diseases are the key determinants of host response to SARS-CoV2 and its disease outcome.
Collapse
Affiliation(s)
- Baibaswata Nayak
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Geetanjali Lal
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Sonu Kumar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Chandan J Das
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - Anoop Saraya
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
21
|
Yan H, Lu J, Wang J, Chen L, Wang Y, Li L, Miao L, Zhang H. Prevention of Cyclophosphamide-Induced Immunosuppression in Mice With Traditional Chinese Medicine Xuanfei Baidu Decoction. Front Pharmacol 2021; 12:730567. [PMID: 34737699 PMCID: PMC8560678 DOI: 10.3389/fphar.2021.730567] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/13/2021] [Indexed: 12/23/2022] Open
Abstract
Background and aims: Xuanfei Baidu decoction (XFBD), a traditional Chinese medicine formulation, was designed and successfully applied for COVID-19 disease treatment in China, while the mechanism is still not clear. Methods: To evaluate the protective effect of XFBD on immunosuppression in cyclophosphamide (CY)-treated mice, XFBD was orally administrated, the body weight was measured, and the immune organ index was calculated. HE staining was performed to analyze the pathological structures of the liver, spleen, and thymus. The levels of cytokines and immunoglobulin in the serum and spleen were evaluated by ELISA and RT-PCR. Splenic lymphocytes were isolated, and LPS-stimulated cell proliferation and the number of CD4+ and CD8+ T lymphocytes were evaluated. Results: XFBD significantly suppressed body weight loss and increased the indices of spleen and thymus. The pathological alteration was much improved after XFBD administration. The reductions of TNF-α, IFN-γ, IgG, and IgM levels in serum and IL-2, IL-4, and IL-6 expressions in the spleen were all significantly alleviated by XFBD. Splenic lymphocyte proliferation in response to LPS was further enhanced after treatment with XFBD. The reduction of CD4+ and CD8+ T lymphocytes in CY-treated mice was also highly increased in XFBD groups. Conclusion: Our findings suggested that XFBD played a crucial role in protection against immunosuppression in CY-treated mice and could be a potential candidate for immune modification and therapy.
Collapse
Affiliation(s)
- Huimin Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jia Lu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiabao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Miao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
22
|
Development of an Inactivated Vaccine against SARS CoV-2. Vaccines (Basel) 2021; 9:vaccines9111266. [PMID: 34835197 PMCID: PMC8624180 DOI: 10.3390/vaccines9111266] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 12/15/2022] Open
Abstract
The rapid spread of SARS-CoV-2 with its mutating strains has posed a global threat to safety during this COVID-19 pandemic. Thus far, there are 123 candidate vaccines in human clinical trials and more than 190 candidates in preclinical development worldwide as per the WHO on 1 October 2021. The various types of vaccines that are currently approved for emergency use include viral vectors (e.g., adenovirus, University of Oxford/AstraZeneca, Gamaleya Sputnik V, and Johnson & Johnson), mRNA (Moderna and Pfizer-BioNTech), and whole inactivated (Sinovac Biotech and Sinopharm) vaccines. Amidst the emerging cases and shortages of vaccines for global distribution, it is vital to develop a vaccine candidate that recapitulates the severe and fatal progression of COVID-19 and further helps to cope with the current outbreak. Hence, we present the preclinical immunogenicity, protective efficacy, and safety evaluation of a whole-virion inactivated SARS-CoV-2 vaccine candidate (ERUCoV-VAC) formulated in aluminium hydroxide, in three animal models, BALB/c mice, transgenic mice (K18-hACE2), and ferrets. The hCoV-19/Turkey/ERAGEM-001/2020 strain was used for the safety evaluation of ERUCoV-VAC. It was found that ERUCoV-VAC was highly immunogenic and elicited a strong immune response in BALB/c mice. The protective efficacy of the vaccine in K18-hACE2 showed that ERUCoV-VAC induced complete protection of the mice from a lethal SARS-CoV-2 challenge. Similar viral clearance rates with the safety evaluation of the vaccine in upper respiratory tracts were also positively appreciable in the ferret models. ERUCoV-VAC has been authorized by the Turkish Medicines and Medical Devices Agency and has now entered phase 3 clinical development (NCT04942405). The name of ERUCoV-VAC has been changed to TURKOVAC in the phase 3 clinical trial.
Collapse
|
23
|
Liang L, Jin X, Li J, Li R, Jiao X, Ma Y, Li Z, Liu R. A comprehensive review of pharmacokinetic and pharmacodynamic in animals: exploration of interaction with antibiotics of Shuang-Huang-Lian preparations. Curr Top Med Chem 2021; 22:83-94. [PMID: 34636312 DOI: 10.2174/1568026621666211012111442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/22/2021] [Accepted: 08/22/2021] [Indexed: 12/15/2022]
Abstract
As a traditional Chinese medicine, Shuang-Huang-Lian (SHL) has been widely used for treating infectious diseases of the respiratory tract such as encephalitis, pneumonia and asthma. During the past few decades, considerable research has focused on the pharmacological action, pharmacokinetic interaction with antibiotics and clinical applications of SHL. A huge and more recent body of pharmacokinetic study supports the combination of SHL and antibiotics has different effects such as antagonism and synergism. SHL has been one of the best-selling traditional Chinese medicine (TCM) products. However, there is no system review of SHL preparations, ranging from protection against respiratory tract infections to interaction with antibiotics. Since their important significance in clinical therapy, the pharmacodynamic, pharmacokinetic, and interactions with antibiotics of SHL were reviewed and discussed. In addition, this review attempts to explore the possible potential mechanism of SHL preparations in prevention and treatment of COVID-19. We are concerned about what is known of the effects of SHL against virus, bacterium, and its interactions with antibiotics, providing a new strategy for expanding the clinical research and medication of SHL preparations.
Collapse
Affiliation(s)
- Liuyi Liang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617. China
| | - Xin Jin
- Military Medicine Section, Logistics University of Chinese People's Armed Police Force, 1 Huizhihuan Road, Dongli District, Tianjin 300309. China
| | - Jinjing Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617. China
| | - Rong Li
- Military Medicine Section, Logistics University of Chinese People's Armed Police Force, 1 Huizhihuan Road, Dongli District, Tianjin 300309. China
| | - Xinyi Jiao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617. China
| | - Yuanyuan Ma
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617. China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617. China
| | - Rui Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617. China
| |
Collapse
|
24
|
Carta A, Conversano C. Cost utility analysis of Remdesivir and Dexamethasone treatment for hospitalised COVID-19 patients - a hypothetical study. BMC Health Serv Res 2021; 21:986. [PMID: 34537034 PMCID: PMC8449700 DOI: 10.1186/s12913-021-06998-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sars-Cov-2 is a novel corona virus associated with significant morbidity and mortality. Remdesivir and Dexamethasone are two treatments that have shown to be effective against the Sars-Cov-2 associated disease. However, a cost-effectiveness analysis of the two treatments is still lacking. OBJECTIVE The cost-utility of Remdesivir, Dexamethasone and a simultaneous use of the two drugs with respect to standard of care for treatment Covid-19 hospitalized patients is evaluated, together with the effect of Remdesivir compared to the base model but based on alernative assumptions. METHODS A decision tree for an hypothetical cohort of Covid-19 hospitalized patients, from an health care perspective and a one year horizon is specified. Efficacy data are retrieved from a literature review of clinical trials, whilst costs and utility are obtained from other published studies. RESULTS Remdesivir, if health care costs are related to the days of hospitalization, is a cost saving strategy. Dexamethasone is cost effective with an ICER of 5208/QALY, and the concurrent use of Remdesivir and Dexamethasone is the most favorable strategy for higher level of willingness to pay thresholds. Moreover, if Remdesivir has a positive effect on mortality the utility is three times higher respect to base case. Whereas, if health care costs are not related to the length of patient hospitalization Remdesivir has an ICER respect to standard of care of 384412.8/QALY gained, which is not cost effective. We also find that Dexaamethasone is cost effective respect to standard care if we compute the cost for live saved with an ICER of 313.79 for life saved. The uncertainty of the model parameters is also tested through both a one-way deterministic sensitivity analysis and a probabilistic sensitivity analysis. CONCLUSION We find that the use of Remdesivir and/or Dexamethasone is effective from an economic standpoint.
Collapse
Affiliation(s)
- Andrea Carta
- Department of Business and Economics, University of Cagliari, Viale S. Ignazio 17, Cagliari, 09123, Italy
| | - Claudio Conversano
- Department of Business and Economics, University of Cagliari, Viale S. Ignazio 17, Cagliari, 09123, Italy.
| |
Collapse
|
25
|
Treatment of moderate to severe respiratory COVID-19: a cost-utility analysis. Sci Rep 2021; 11:17787. [PMID: 34493774 PMCID: PMC8423816 DOI: 10.1038/s41598-021-97259-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 08/20/2021] [Indexed: 01/08/2023] Open
Abstract
Despite COVID-19’s significant morbidity and mortality, considering cost-effectiveness of pharmacologic treatment strategies for hospitalized patients remains critical to support healthcare resource decisions within budgetary constraints. As such, we calculated the cost-effectiveness of using remdesivir and dexamethasone for moderate to severe COVID-19 respiratory infections using the United States health care system as a representative model. A decision analytic model modelled a base case scenario of a 60-year-old patient admitted to hospital with COVID-19. Patients requiring oxygen were considered moderate severity, and patients with severe COVID-19 required intubation with intensive care. Strategies modelled included giving remdesivir to all patients, remdesivir in only moderate and only severe infections, dexamethasone to all patients, dexamethasone in severe infections, remdesivir in moderate/dexamethasone in severe infections, and best supportive care. Data for the model came from the published literature. The time horizon was 1 year; no discounting was performed due to the short duration. The perspective was of the payer in the United States health care system. Supportive care for moderate/severe COVID-19 cost $11,112.98 with 0.7155 quality adjusted life-year (QALY) obtained. Using dexamethasone for all patients was the most-cost effective with an incremental cost-effectiveness ratio of $980.84/QALY; all remdesivir strategies were more costly and less effective. Probabilistic sensitivity analyses showed dexamethasone for all patients was most cost-effective in 98.3% of scenarios. Dexamethasone for moderate-severe COVID-19 infections was the most cost-effective strategy and would have minimal budget impact. Based on current data, remdesivir is unlikely to be a cost-effective treatment for COVID-19.
Collapse
|
26
|
Huang K, Zhang P, Zhang Z, Youn JY, Wang C, Zhang H, Cai H. Traditional Chinese Medicine (TCM) in the treatment of COVID-19 and other viral infections: Efficacies and mechanisms. Pharmacol Ther 2021; 225:107843. [PMID: 33811957 PMCID: PMC8011334 DOI: 10.1016/j.pharmthera.2021.107843] [Citation(s) in RCA: 249] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
COVID-19 has remained an uncontained, worldwide pandemic. While battling for the disease in China, six Traditional Chinese Medicine (TCM) recipes have been shown to be remarkably effective for treating patients with COVID-19. The present review discusses principles of TCM in curing infectious disease, and clinical evidence and mechanisms of the 6 most effective TCM recipes used in treating COVID-19 in 92% of all of the confirmed cases in China. Applications of TCM and specific recipes in the treatment of other viral infections, such as those caused by SARS-CoV, MERS-CoV, hepatitis B virus, hepatitis C virus, influenza A virus (including H1N1 and H7N9), influenza B, dengue virus as well as Ebola virus, are also discussed. Among the 6 TCM recipes, Jinhua Qinggan (JHQG) granules and Lianhua Qingwen (LHQW) capsules are recommended during medical observation; Lung Cleansing and Detoxifying Decoction (LCDD) is recommended for the treatment of both severe and non-severe patients; Xuanfeibaidu (XFBD) granules are recommended for treating moderate cases; while Huashibaidu (HSBD) and Xuebijing (XBJ) have been used in managing severe cases effectively. The common components and the active ingredients of the six TCM recipes have been summarized to reveal most promising drug candidates. The potential molecular mechanisms of the active ingredients in the six TCM recipes that target ACE2, 3CLpro and IL-6, revealed by molecular biological studies and/or network pharmacology prediction/molecular docking analysis/visualization analysis, are fully discussed. Therefore, further investigation of these TCM recipes may be of high translational value in enabling novel targeted therapies for COVID-19, potentially via purification and characterization of the active ingredients in the effective TCM recipes.
Collapse
Affiliation(s)
- Kai Huang
- Department of Anesthesiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, United States of America
| | - Pan Zhang
- Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Zhenghao Zhang
- Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Ji Youn Youn
- Department of Anesthesiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, United States of America
| | - Chen Wang
- Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.
| | - Hongchun Zhang
- Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Hua Cai
- Department of Anesthesiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, United States of America.
| |
Collapse
|
27
|
Dogan O, Tiwari S, Jabbar MA, Guggari S. A systematic review on AI/ML approaches against COVID-19 outbreak. COMPLEX INTELL SYST 2021; 7:2655-2678. [PMID: 34777970 PMCID: PMC8256231 DOI: 10.1007/s40747-021-00424-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/05/2021] [Indexed: 12/24/2022]
Abstract
A pandemic disease, COVID-19, has caused trouble worldwide by infecting millions of people. The studies that apply artificial intelligence (AI) and machine learning (ML) methods for various purposes against the COVID-19 outbreak have increased because of their significant advantages. Although AI/ML applications provide satisfactory solutions to COVID-19 disease, these solutions can have a wide diversity. This increase in the number of AI/ML studies and diversity in solutions can confuse deciding which AI/ML technique is suitable for which COVID-19 purposes. Because there is no comprehensive review study, this study systematically analyzes and summarizes related studies. A research methodology has been proposed to conduct the systematic literature review for framing the research questions, searching criteria and relevant data extraction. Finally, 264 studies were taken into account after following inclusion and exclusion criteria. This research can be regarded as a key element for epidemic and transmission prediction, diagnosis and detection, and drug/vaccine development. Six research questions are explored with 50 AI/ML approaches in COVID-19, 8 AI/ML methods for patient outcome prediction, 14 AI/ML techniques in disease predictions, along with five AI/ML methods for risk assessment of COVID-19. It also covers AI/ML method in drug development, vaccines for COVID-19, models in COVID-19, datasets and their usage and dataset applications with AI/ML.
Collapse
Affiliation(s)
- Onur Dogan
- Department of Industrial Engineering, Izmir Bakircay University, 35665 Izmir, Turkey
- Research Center for Data Analytics and Spatial Data Modeling (RC-DAS), Izmir Bakircay University, 35665 Izmir, Turkey
| | - Sanju Tiwari
- Department of Computer Science, Universidad Autonoma de Tamaulipas, Ciudad Victoria, Mexico
| | - M. A. Jabbar
- Vardhaman College of Engineering, Kacharam, India
| | | |
Collapse
|
28
|
Attia YA, El-Saadony MT, Swelum AA, Qattan SYA, Al-Qurashi AD, Asiry KA, Shafi ME, Elbestawy AR, Gado AR, Khafaga AF, Hussein EOS, Ba-Awadh H, Tiwari R, Dhama K, Alhussaini B, Alyileili SR, El-Tarabily KA, Abd El-Hack ME. COVID-19: pathogenesis, advances in treatment and vaccine development and environmental impact-an updated review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22241-22264. [PMID: 33733422 PMCID: PMC7969349 DOI: 10.1007/s11356-021-13018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/15/2021] [Indexed: 05/08/2023]
Abstract
Diseases negatively impact the environment, causing many health risks and the spread of pollution and hazards. A novel coronavirus, severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has led to a recent respiratory syndrome epidemic in humans. In December 2019, the sudden emergence of this new coronavirus and the subsequent severe disease it causes created a serious global health threat and hazards. This is in contrast to the two aforementioned coronaviruses, SARS-CoV-2 (in 2002) and middle east respiratory syndrome coronavirus MERS-CoV (in 2012), which were much more easily contained. The World Health Organization (WHO) dubbed this contagious respiratory disease an "epidemic outbreak" in March 2020. More than 80 companies and research institutions worldwide are working together, in cooperation with many governmental agencies, to develop an effective vaccine. To date, six authorized vaccines have been registered. Up till now, no approved drugs and drug scientists are racing from development to clinical trials to find new drugs for COVID-19. Wild animals, such as snakes, bats, and pangolins are the main sources of coronaviruses, as determined by the sequence homology between MERS-CoV and viruses in these animals. Human infection is caused by inhalation of respiratory droplets. To date, the only available treatment protocol for COVID-19 is based on the prevalent clinical signs. This review aims to summarize the current information regarding the origin, evolution, genomic organization, epidemiology, and molecular and cellular characteristics of SARS-CoV-2 as well as the diagnostic and treatment approaches for COVID-19 and its impact on global health, environment, and economy.
Collapse
Affiliation(s)
- Youssef A Attia
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, P.O. Box 80208, Jeddah, 21589, Saudi Arabia.
- The Strategic Center to Kingdom Vision Realization, King Abdulaziz University, Jeddah, Saudi Arabia.
- Animal and Poultry Production Department, Faculty of Agriculture, Damanhour University, Damanhour, Egypt.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia.
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Zagazig, 44519, Egypt.
| | - Shaza Y A Qattan
- Department of Biological Sciences, Microbiology, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Adel D Al-Qurashi
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, P.O. Box 80208, Jeddah, 21589, Saudi Arabia
| | - Khalid A Asiry
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, P.O. Box 80208, Jeddah, 21589, Saudi Arabia
| | - Manal E Shafi
- Department of Biological Sciences, Zoology, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Ahmed R Elbestawy
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, Damanhur, 22511, Egypt
| | - Ahmed R Gado
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, Damanhur, 22511, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Alexandria, 22758, Egypt
| | - Elsayed O S Hussein
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hani Ba-Awadh
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Kuldeep Dhama
- Division of Pathology, Indian Veterinary Research Institute (IVRI), Izatnagar-243, Bareilly, Uttar Pradesh, 122, India
| | - Bakr Alhussaini
- Department of Pediatric, Faculty of Medicine, King Abdualziz University, Jeddah, Saudi Arabia
| | - Salem R Alyileili
- Department of Integrative Agriculture, College of Food and Agriculture, United Arab Emirates University, 15551, Al-Ain, United Arab Emirates
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, 15551, Al-Ain, United Arab Emirates.
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia.
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
29
|
A review on antiviral and immunomodulatory polysaccharides from Indian medicinal plants, which may be beneficial to COVID-19 infected patients. Int J Biol Macromol 2021; 181:462-470. [PMID: 33794238 PMCID: PMC8006514 DOI: 10.1016/j.ijbiomac.2021.03.162] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/14/2021] [Accepted: 03/25/2021] [Indexed: 12/18/2022]
Abstract
The emergence of the novel coronavirus, SARS-CoV-2 has pushed forward the world to experience the first pandemic of this century. Any specific drug against this RNA virus is yet to be discovered and presently, the COVID-19 infected patients are being treated symptomatically. During the last few decades, a number of polysaccharides with potential biological activities have been invented from Indian medicinal plants. Many polysaccharides, such as sulfated xylomannan, xylan, pectins, fucoidans, glucans, glucoarabinan, and arabinoxylan from Indian medicinal plants, have been shown to exhibit antiviral and immunomodulating activities. Plant polysaccharides exhibit antiviral activities through interference with the viral life cycle and inhibition of attachment of virus to host cell. Intake of certain immune stimulating plant polysaccharides may also protect from the virus to a certain extent. In process of continuous search for most potent drug, Indian plant polysaccharides may emerge as significant biomaterial to combat COVID-19. This review explores a number of polysaccharides from Indian medicinal plants which showed antiviral and immunomodulating activities. It is aimed to provide an overview about the composition, molecular mass, branching configuration and related bioactivities of polysaccharides which is crucial for their classification as possible drug to induce immune response in viral diseases.
Collapse
|
30
|
Abstract
A newly emerged coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), belongs to the β-coronavirus family and shows high similarities with SARS-CoV. On March 11, 2020, the World Health Organization (WHO) declared SARS-CoV-2 a global pandemic, and the disease was named the coronavirus disease 2019 (COVID-19). The ongoing COVID-19 pandemic has caused over 46 million infections and over one million deaths worldwide, and the numbers are still increasing. Efficacious antiviral agents are urgently needed to combat this virus. The life cycle of SARS-CoV-2 mainly includes the viral attachment, membrane fusion, genomic replication, assembly and budding of virions. Accordingly, drug development against SARS-CoV-2 currently focuses on blocking spike protein binding to ACE2, inhibiting viral membrane fusion with host cells, and preventing the viral replication by targeting 3C-like protease, papain-like protease, RNA-dependent RNA polymerase as well as some host-cell proteins. In this review, the advances of drug development in these three major areas are elaborated.
Collapse
|
31
|
Yoo JH. What We Do Know and Do Not Yet Know about COVID-19 Vaccines as of the Beginning of the Year 2021. J Korean Med Sci 2021; 36:e54. [PMID: 33559409 PMCID: PMC7870421 DOI: 10.3346/jkms.2021.36.e54] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), which started at the end of 2019 and has spread worldwide, has remained unabated in 2021. Since non-pharmaceutical interventions including social distancing are facing limitations in controlling COVID-19, additional absolute means to change the trend are necessary. To this end, coronavirus-specific antiviral drugs and vaccines are urgently needed, but for now, the priority is to promote herd immunity through extensive nationwide vaccination campaign. In addition to the vaccines based on the conventional technology such inactivated or killed virus or protein subunit vaccines, several vaccines on the new technological platforms, for example, nucleic acids-based vaccines delivered by viral carriers, nanoparticles, or plasmids as a medium were introduced in this pandemic. In addition to achieving sufficient herd immunity with vaccination, the development of antiviral treatments that work specifically against COVID-19 will also be necessary to terminate the epidemic completely.
Collapse
Affiliation(s)
- Jin Hong Yoo
- Division of Infectious Diseases, Department of Internal Medicine, Bucheon St. Mary's Hospital, Bucheon, Korea
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
32
|
Lobo-Galo N, Gálvez-Ruíz JC, Balderrama-Carmona AP, Silva-Beltrán NP, Ruiz-Bustos E. Recent biotechnological advances as potential intervention strategies against COVID-19. 3 Biotech 2021; 11:41. [PMID: 33457170 PMCID: PMC7796695 DOI: 10.1007/s13205-020-02619-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023] Open
Abstract
The emerging SARS-CoV-2 viral disease (COVID-19) has caused a global health alert due to its high rate of infection and mortality in individuals with chronic cardiovascular comorbidities, in addition to generating complex clinical conditions. This has forced the scientific community to explore different strategies that allow combating this viral infection as well as treating life-threatening systemic effect of the infection on the individual. In this work, we have reviewed the most recent scientific evidence to provide a comprehensive panorama regarding the biotechnological strategies that have been proposed to combat this new viral infection. We have focused our analysis on vaccine production, nanotechnology applications, repurposing of know drugs for unrelated pathologies, and the search for bioactive molecules obtained from natural products. The goals include safely use as potential prophylactic or therapeutic treatments, based on in silico and in vivo studies, including clinical trials around the world for the correct and timely diagnosis of the infection. This review aims to highlight the development of new ideas that can decrease the time lines for research output and improve research quality while at the same time, keeping in mind the efficacy and safety aspects of these potential biotechnological strategies.
Collapse
Affiliation(s)
- Naun Lobo-Galo
- Departamento de Ciencias Químico Biológicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua Mexico
| | - Juan-Carlos Gálvez-Ruíz
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora Mexico
| | - Ana P. Balderrama-Carmona
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Unidad Regional Sur, Universidad de Sonora, Navojoa, Sonora Mexico
| | - Norma P. Silva-Beltrán
- Departamento de Ciencias de la Salud, campus Cajeme, Universidad de Sonora, Ciudad Obregón, Sonora Mexico
| | - Eduardo Ruiz-Bustos
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora Mexico
| |
Collapse
|
33
|
Guo DA, Wei WL, Wu SF, Li ZW, Li HJ, Qu H, Yao CL, Zhang JQ, Li JY, Zhang GL, Wu WY. Exploration of bioactive constituents and immunoregulatory mechanisms of a hanshi-yufei formulation for treating COVID-19. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2021. [DOI: 10.4103/wjtcm.wjtcm_45_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
34
|
Guo DA, Wei WL, Wu SF, Li ZW, Li HJ, Qu H, Yao CL, Zhang JQ, Li JY, Zhang GL, Wu WY. Exploration of bioactive constituents and immunoregulatory mechanisms of a Hanshi-Yufei formulation for treating COVID-19. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2021. [DOI: 10.4103/2311-8571.321975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
35
|
Gao C, Wu C, Zhang Q, Zhao X, Wu M, Chen R, Zhao Y, Li Z. Characterization of Chloroplast Genomes From Two Salvia Medicinal Plants and Gene Transfer Among Their Mitochondrial and Chloroplast Genomes. Front Genet 2020; 11:574962. [PMID: 33193683 PMCID: PMC7642825 DOI: 10.3389/fgene.2020.574962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/23/2020] [Indexed: 11/13/2022] Open
Abstract
Salvia species have been widely used as medicinal plants and have played an important role in the treatment and recovery of individuals with COVID-19. In this study, we reported two newly identified whole chloroplast genome sequences of Salvia medicinal plants (Salvia yangii and Salvia miltiorrhiza f. alba) and compared them with those of seven other reported Salvia chloroplast genomes. These were proven to be highly similar in terms of overall size, genome structure, gene content, and gene order. We identified 10 mutation hot spots (trnK-rps16, atpH-atpI, psaA-ycf3, ndhC-trnV, ndhF, rpl32-trnL, ndhG-ndhI, rps15-ycf1, ycf1a, and ycf1b) as candidate DNA barcodes for Salvia. Additionally, we observed the transfer of nine large-sized chloroplast genome fragments, with a total size of 49,895 bp (accounting for 32.97% of the chloroplast genome), into the mitochondrial genome as they shared >97% sequence similarity. Phylogenetic analyses of the whole chloroplast genome provided a high resolution of Salvia. This study will pave the way for the identification and breeding of Salvia medicinal plants and further phylogenetic evolutionary research on them as well.
Collapse
Affiliation(s)
- Chengwen Gao
- Laboratory of Medical Biology, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | | | | | | | | | | | | | - Zhiqiang Li
- Laboratory of Medical Biology, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
36
|
Zhang XR, Li TN, Ren YY, Zeng YJ, Lv HY, Wang J, Huang QW. The Important Role of Volatile Components From a Traditional Chinese Medicine Dayuan-Yin Against the COVID-19 Pandemic. Front Pharmacol 2020; 11:583651. [PMID: 33101037 PMCID: PMC7546797 DOI: 10.3389/fphar.2020.583651] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
Aromatic Chinese herbs have been used to prevent plagues since ancient times. Traditional Chinese medicine has unique advantages in the prevention and treatment of epidemic diseases. According to the traditional Chinese medicine treatment plan in the National COVID-19 Diagnosis and Treatment Plan (Trial Seventh Edition) of the National Health Commission, Chinese patent medicines or prescriptions rich in aromatic Chinese herbs are selected for prevention and treatment during the period of medical observation, clinical treatment, and recovery of confirmed COVID-19 patients. Some local health committees or traditional Chinese medicine administrations recommend a variety of other ways of using traditional aromatic Chinese herbs to prevent and cure COVID-19. These involve external fumigation, use of moxibustion, and wearing of sachet. The efficacy of aromatic Chinese herbs plays a decisive role in the prevention and treatment of COVID-19. The unique properties, chemical composition, and mechanism of action of aromatic Chinese herbs are worthy of extensive and in-depth experimental and clinical research. The findings are expected to provide a reference for follow-up treatment of novel coronavirus and the development of corresponding drugs. In 2003, Dayuan-Yin produced excellent results in the treatment of the SARS virus. Individually, 112 confirmed cases were administered this drug between January and April 2003, and more than 93.7% of the patients showed noticeable mitigation of the symptoms, as well as recovery. Dayuan-Yin also was selected as one of the nationally recommended prescriptions for the COVID-19. Based on the national recommendation of Dayuan-Yin prescription, this review discusses the role of volatile components in the prevention and treatment of COVID-19, and speculates the possible mechanism of action, so as to provide a basis for the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | - Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin-wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
37
|
Rabaan AA, Al-Ahmed SH, Sah R, Tiwari R, Yatoo MI, Patel SK, Pathak M, Malik YS, Dhama K, Singh KP, Bonilla-Aldana DK, Haque S, Martinez-Pulgarin DF, Rodriguez-Morales AJ, Leblebicioglu H. SARS-CoV-2/COVID-19 and advances in developing potential therapeutics and vaccines to counter this emerging pandemic. Ann Clin Microbiol Antimicrob 2020; 19:40. [PMID: 32878641 PMCID: PMC7464065 DOI: 10.1186/s12941-020-00384-w] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
A novel coronavirus (SARS-CoV-2), causing an emerging coronavirus disease (COVID-19), first detected in Wuhan City, Hubei Province, China, which has taken a catastrophic turn with high toll rates in China and subsequently spreading across the globe. The rapid spread of this virus to more than 210 countries while affecting more than 25 million people and causing more than 843,000 human deaths, it has resulted in a pandemic situation in the world. The SARS-CoV-2 virus belongs to the genus Betacoronavirus, like MERS-CoV and SARS-CoV, all of which originated in bats. It is highly contagious, causing symptoms like fever, dyspnea, asthenia and pneumonia, thrombocytopenia, and the severely infected patients succumb to the disease. Coronaviruses (CoVs) among all known RNA viruses have the largest genomes ranging from 26 to 32 kb in length. Extensive research has been conducted to understand the molecular basis of the SARS-CoV-2 infection and evolution, develop effective therapeutics, antiviral drugs, and vaccines, and to design rapid and confirmatory viral diagnostics as well as adopt appropriate prevention and control strategies. To date, August 30, 2020, no effective, proven therapeutic antibodies or specific drugs, and vaccines have turned up. In this review article, we describe the underlying molecular organization and phylogenetic analysis of the coronaviruses, including the SARS-CoV-2, and recent advances in diagnosis and vaccine development in brief and focusing mainly on developing potential therapeutic options that can be explored to manage this pandemic virus infection, which would help in valid countering of COVID-19.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| | - Shamsah H Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif, Saudi Arabia
| | - Ranjit Sah
- Department of Microbiology, Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu, Nepal
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Mohd Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Shailesh Kumar Patel
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - Mamta Pathak
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India.
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - D Katterine Bonilla-Aldana
- Semillero de Investigación en Zoonosis (SIZOO), Grupo de Investigación BIOECOS, Fundación Universitaria Autónoma de las Américas, Sede Pereira, Pereira, Risaralda, Colombia
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Colombia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Dayron F Martinez-Pulgarin
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Colombia
| | - Alfonso J Rodriguez-Morales
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Colombia.
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Americas, Pereira, Risaralda, Colombia.
- School of Medicine, Universidad Privada Franz Tamayo (UNIFRANZ), Cochabamba, Bolivia.
| | - Hakan Leblebicioglu
- Department of Infectious Diseases, Samsun VM Medicalpark Hospital, Samsun, Turkey
| |
Collapse
|
38
|
Wang X, Xie P, Sun G, Deng Z, Zhao M, Bao S, Zhou Y. A systematic review and meta-analysis of the efficacy and safety of western medicine routine treatment combined with Chinese herbal medicine in the treatment of COVID-19. Medicine (Baltimore) 2020; 99:e21616. [PMID: 32769922 PMCID: PMC7593006 DOI: 10.1097/md.0000000000021616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND COVID-19 is a global public health emergency. At present, there is no highly effective medicine for the prevention and treatment of 2019-nCoV. Western medicine for COVID-19 is mainly based on symptomatic support therapy. Chinese herbal medicine has been used to prevent infectious diseases for thousands of years in China. Western medicine routine treatment combined with Chinese herbal medicine is an alternative clinical option but lacks evidence-based medical evidence. The systematic review protocol aims to formulate a research plan that can evaluate the efficacy and safety of western medicine routine treatment combined with Chinese herbal medicine for COVID-19. METHODS We will search the following eight databases: Cochrane Library, PubMed, Embase, Medline, CNKI, Wanfang, VIP, and CBM. The search time is up to the end of July 2020. Two authors will independently complete literature screening, data extraction, and risk of bias assessment. In case of disagreement, the third author will assist in the judgment. The primary outcome will be the clinical cure rate. The secondary outcome will be accounting symptoms, fever time, time of virus nucleic acid turning negative, check the condition by drawing blood, pneumonia absorption rate, patient hospitalization time, severe conversion rate and case fatality rate, adverse reactions, and adverse events. Revman 5.3 will be used for systematic reviews and meta-analysis. The report of the protocol will follow the PRISMA-P statement, and the report of the systematic review and meta-analysis will follow the PRISMA statement. RESULTS We will provide evidence-based medical evidence of the efficacy and safety of western medicine routine treatment combined with Chinese herbal medicine for COVID-19. The findings will be published in peer-reviewed journals. REGISTRATION DETAILS CRD42020190106.
Collapse
Affiliation(s)
- Xuemei Wang
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine
| | - Ping Xie
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, P. R. China
| | - Guojuan Sun
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine
| | - Zhumei Deng
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine
| | - Min Zhao
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine
| | - Shuting Bao
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine
| | - Yunxia Zhou
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine
| |
Collapse
|