1
|
Abstract
INTRODUCTION The SARS-CoV-2 pandemic, and the subsequent limitations on standard diagnostics, has vastly expanded the user base of Reverse Transcription Loop-mediated isothermal Amplification (RT-LAMP) in fundamental research and development. RT-LAMP has also penetrated commercial markets, with emergency use authorizations for clinical diagnosis. AREAS COVERED This review discusses the role of RT-LAMP within the context of other technologies like RT-qPCR and rapid antigen tests, progress in sample preparation strategies to enable simplified workflow for RT-LAMP directly from clinical specimens, new challenges with primer and assay design for the evolving pandemic, prominent detection modalities including colorimetric and CRISPR-mediated methods, and translational research and commercial development of RT-LAMP for clinical applications. EXPERT OPINION RT-LAMP occupies a middle ground between RT-qPCR and rapid antigen tests. The simplicity approaches that of rapid antigen tests, making it suitable for point-of-care use, but the sensitivity nears that of RT-qPCR. RT-LAMP still lags RT-qPCR in fundamental understanding of the mechanism, and the interplay between sample preparation and assay performance. Industry is now beginning to address issues around scalability and usability, which could finally enable LAMP and RT-LAMP to find future widespread application as a diagnostic for other conditions, including other pathogens with pandemic potential.
Collapse
Affiliation(s)
- Gihoon Choi
- Biotechnology & Bioengineering Department, Sandia National Laboratories, Livermore, CA, USA
| | - Taylor J Moehling
- Biotechnology & Bioengineering Department, Sandia National Laboratories, Livermore, CA, USA
| | - Robert J Meagher
- Biotechnology & Bioengineering Department, Sandia National Laboratories, Livermore, CA, USA
| |
Collapse
|
2
|
Sun B, Zhang J, Li Z, Xie M, Luo C, Wang Y, Chen L, Wang Y, Jiang D, Yang K. Integration: Gospel for immune bioinformatician on epitope-based therapy. Front Immunol 2023; 14:1075419. [PMID: 36798136 PMCID: PMC9927647 DOI: 10.3389/fimmu.2023.1075419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Affiliation(s)
- Baozeng Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Junqi Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Zhikui Li
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Mingyang Xie
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Cheng Luo
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Yongkai Wang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Longyu Chen
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Yueyue Wang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Dongbo Jiang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China.,The Key Laboratory of Bio-hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China.,Department of Microbiology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Kun Yang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China.,The Key Laboratory of Bio-hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China.,Department of Rheumatology, Tangdu Hospital, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Madurani KA, Suprapto, Yudha Syahputra M, Puspita I, Furqoni AH, Puspasari L, Rosyidah H, Hatta AM, Juniastuti, Lusida MI, Tominaga M, Kurniawan F. Fluorescence spectrophotometry for COVID-19 determination in clinical swab samples. ARAB J CHEM 2022; 15:104020. [PMID: 35664893 PMCID: PMC9150911 DOI: 10.1016/j.arabjc.2022.104020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Considering the limitations of the assays currently available for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its emerging variants, a simple and rapid method using fluorescence spectrophotometry was developed to detect coronavirus disease 2019 (COVID-19). Forty clinical swab samples were collected from the nasopharyngeal and oropharyngeal cavities of COVID-19-positive and -negative. Each sample was divided into two parts. The first part of the samples was analyzed using reverse transcription-polymerase chain reaction (RT-qPCR) as the control method to identify COVID-19-positive and -negative samples. The second part of the samples was analyzed using fluorescence spectrophotometry. Fluorescence measurements were performed at excitation and emission wavelengths ranging from 200 to 800 nm. Twenty COVID-19-positive samples and twenty COVID-19-negative samples were detected based on RT-qPCR results. The fluorescence spectrum data indicated that the COVID-19-positive and -negative samples had significantly different characteristics. All positive samples could be distinguished from negative samples by fluorescence spectrophotometry. Principal component analysis showed that COVID-19-positive samples were clustered separately from COVID-19-negative samples. The specificity and accuracy of this experiment reached 100%. Limit of detection (LOD) obtained 42.20 copies/ml (Ct value of 33.65 cycles) for E gene and 63.60 copies/ml (Ct value of 31.36 cycles) for ORF1ab gene. This identification process only required 4 min. Thus, this technique offers an efficient and accurate method to identify an individual with active SARS-CoV-2 infection and can be easily adapted for the early investigation of COVID-19, in general.
Collapse
Affiliation(s)
- Kartika A Madurani
- Laboratory of Instrumentation and Analytical Science, Chemistry Department, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Suprapto
- Laboratory of Instrumentation and Analytical Science, Chemistry Department, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Muhammad Yudha Syahputra
- Laboratory of Instrumentation and Analytical Science, Chemistry Department, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Ika Puspita
- Photonics Engineering Laboratory, Department of Engineering Physics, Faculty of Industrial Technology and Systems Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Abdul Hadi Furqoni
- Human Genetic Laboratory, Institute of Tropical Disease, Airlangga University, Surabaya 60115, Indonesia
| | - Listya Puspasari
- Laboratory of Instrumentation and Analytical Science, Chemistry Department, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Hafildatur Rosyidah
- Laboratory of Instrumentation and Analytical Science, Chemistry Department, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Agus Muhamad Hatta
- Photonics Engineering Laboratory, Department of Engineering Physics, Faculty of Industrial Technology and Systems Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Juniastuti
- Faculty of Medicine, Airlangga University, Surabaya 60131, Indonesia.,Institute of Tropical Disease, Airlangga University, Surabaya 60115, Indonesia
| | - Maria Inge Lusida
- Faculty of Medicine, Airlangga University, Surabaya 60131, Indonesia.,Institute of Tropical Disease, Airlangga University, Surabaya 60115, Indonesia
| | - Masato Tominaga
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Fredy Kurniawan
- Laboratory of Instrumentation and Analytical Science, Chemistry Department, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| |
Collapse
|
4
|
Paul S, Bravo Vázquez LA, Reyes-Pérez PR, Estrada-Meza C, Aponte Alburquerque RA, Pathak S, Banerjee A, Bandyopadhyay A, Chakraborty S, Srivastava A. The role of microRNAs in solving COVID-19 puzzle from infection to therapeutics: A mini-review. Virus Res 2022; 308:198631. [PMID: 34788642 PMCID: PMC8590742 DOI: 10.1016/j.virusres.2021.198631] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 02/08/2023]
Abstract
Nowadays, one of the major global health concerns is coronavirus disease 2019 (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Even though numerous treatments and vaccines to combat this virus are currently under development, the detailed molecular mechanisms underlying the pathogenesis of this disease are yet to be elucidated to design future therapeutic tools against SARS-CoV-2 variants. MicroRNAs (miRNAs) are small (20-24 nucleotides), non-coding RNA molecules that regulate post-transcriptional gene expression. Recently, it has been demonstrated that both host and viral-encoded miRNAs are crucial for the successful infection of SARS-CoV-2. For instance, dysregulation of miRNAs that modulate multiple genes expressed in COVID-19 patients with comorbidities (e.g., type 2 diabetes, lung adenocarcinoma, and cerebrovascular disorders) could affect the severity of the disease. Thus, altered expression levels of circulating miRNAs might be helpful to diagnose this illness and forecast whether a COVID-19 patient could develop a severe state of the disease. Besides, researchers have found a number of miRNAs could inhibit the expression of proteins, such as ACE2, TMPRSS2, spike, and Nsp12, involved in the life cycle of SARS-CoV-2. Accordingly, miRNAs represent potential biomarkers and therapeutic targets for this devastating viral disease. Therefore, in this current review, we present the recent discoveries regarding the clinical relevance and biological roles of miRNAs in COVID-19.
Collapse
Affiliation(s)
- Sujay Paul
- Tecnológico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, CP 76130 Querétaro, México.
| | - Luis Alberto Bravo Vázquez
- Tecnológico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, CP 76130 Querétaro, México
| | - Paula Roxana Reyes-Pérez
- Tecnológico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, CP 76130 Querétaro, México
| | - Carolina Estrada-Meza
- Tecnológico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, CP 76130 Querétaro, México
| | - Rafael Arturo Aponte Alburquerque
- Tecnológico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, CP 76130 Querétaro, México
| | - Surajit Pathak
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Antara Banerjee
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Anindya Bandyopadhyay
- International Rice Research Institute, Manila, Philippines; Reliance Industries Ltd, Navi Mumbai, India
| | - Samik Chakraborty
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Aashish Srivastava
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| |
Collapse
|
5
|
Dogra N, Ledesma-Feliciano C, Sen R. Developmental Aspects of SARS-CoV-2, Potential Role of Exosomes and Their Impact on the Human Transcriptome. J Dev Biol 2021; 9:54. [PMID: 34940501 PMCID: PMC8708617 DOI: 10.3390/jdb9040054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
With over 4.8 million deaths within 2 years, time is of the essence in combating COVID-19. The infection now shows devastating impacts on the younger population, who were not previously predicted to be vulnerable, such as in the older population. COVID-19-related complications have been reported in neonates whose mothers were infected with SARS-CoV-2 during pregnancy, and in children who get infected. Hence, a deeper understanding of the pathophysiology of COVID-19 during various developmental stages and placental transmission is essential. Although a connection has not yet been established between exosomal trafficking and the placental transmission of COVID-19, reports indicate that SARS-CoV-2 components may be trafficked between cells through exosomes. As the infection spreads, the transcriptome of cells is drastically perturbed, e.g., through the severe upregulation of several immune-related genes. Consequently, a major outcome of COVID-19 is an elevated immune response and the detection of viral RNA transcripts in host tissue. In this direction, this review focuses on SARS-CoV-2 virology, its in utero transmission from infected pregnant mothers to fetuses, SARS-CoV-2 and exosomal cellular trafficking, transcriptomic impacts, and RNA-mediated therapeutics against COVID-19. Future research will establish stronger connections between the above processes to develop diagnostic and therapeutic solutions towards COVID-19 and similar viral outbreaks.
Collapse
Affiliation(s)
- Navneet Dogra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carmen Ledesma-Feliciano
- Division of Infectious Diseases, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA;
| | - Rwik Sen
- Active Motif, Incorporated, Carlsbad, CA 92008, USA
| |
Collapse
|