1
|
Mora VP, Kalergis AM, Bohmwald K. Neurological Impact of Respiratory Viruses: Insights into Glial Cell Responses in the Central Nervous System. Microorganisms 2024; 12:1713. [PMID: 39203555 PMCID: PMC11356956 DOI: 10.3390/microorganisms12081713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 09/03/2024] Open
Abstract
Respiratory viral infections pose a significant public health threat, particularly in children and older adults, with high mortality rates. Some of these pathogens are the human respiratory syncytial virus (hRSV), severe acute respiratory coronavirus-2 (SARS-CoV-2), influenza viruses (IV), human parvovirus B19 (B19V), and human bocavirus 1 (HBoV1). These viruses cause various respiratory symptoms, including cough, fever, bronchiolitis, and pneumonia. Notably, these viruses can also impact the central nervous system (CNS), leading to acute manifestations such as seizures, encephalopathies, encephalitis, neurological sequelae, and long-term complications. The precise mechanisms by which these viruses affect the CNS are not fully understood. Glial cells, specifically microglia and astrocytes within the CNS, play pivotal roles in maintaining brain homeostasis and regulating immune responses. Exploring how these cells interact with viral pathogens, such as hRSV, SARS-CoV-2, IVs, B19V, and HBoV1, offers crucial insights into the significant impact of respiratory viruses on the CNS. This review article examines hRSV, SARS-CoV-2, IV, B19V, and HBoV1 interactions with microglia and astrocytes, shedding light on potential neurological consequences.
Collapse
Affiliation(s)
- Valentina P. Mora
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy (MIII), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Karen Bohmwald
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| |
Collapse
|
2
|
Barrios-González DA, Philibert-Rosas S, Martínez-Juárez IE, Sotelo-Díaz F, Rivas-Alonso V, Sotelo J, Sebastián-Díaz MA. Frequency and Focus of in Vitro Studies of Microglia-Expressed Cytokines in Response to Viral Infection: A Systematic Review. Cell Mol Neurobiol 2024; 44:21. [PMID: 38349562 PMCID: PMC10864563 DOI: 10.1007/s10571-024-01454-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
It is well known that as part of their response to infectious agents such as viruses, microglia transition from a quiescent state to an activated state that includes proinflammatory and anti-inflammatory phases; this behavior has been described through in vitro studies. However, recent in vivo studies on the function of microglia have questioned the two-phase paradigm; therefore, a change in the frequency of in vitro studies is expected. A systematic review was carried out to identify the microglial cytokine profile against viral infection that has been further evaluated through in vitro studies (pro-inflammatory or anti-inflammatory), along with analysis of its publication frequency over the years. For this review, 531 articles published in the English language were collected from PubMed, Web of Science, EBSCO and ResearchGate. Only 27 papers met the inclusion criteria for this systematic review. In total, 19 cytokines were evaluated in these studies, most of which are proinflammatory; the most common are IL-6, followed by TNF-α and IL-1β. It should be pointed out that half of the studies were published between 2015 and 2022 (raw data available in https://github.com/dadriba05/SystematicReview.git ). In this review, we identified that evaluation of pro-inflammatory cytokines released by microglia against viral infections has been performed more frequently than that of anti-inflammatory cytokines; additionally, a higher frequency of evaluation of the response of microglia cells to viral infection through in vitro studies from 2015 and beyond was noted.
Collapse
Affiliation(s)
| | | | | | - Fernando Sotelo-Díaz
- Epilepsy Clinic. National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Verónica Rivas-Alonso
- Multiple Sclerosis Clinic, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Julio Sotelo
- Department of Neuroimmunology, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Mario A Sebastián-Díaz
- Nephrology Department, South Central High Specialty Hospital PEMEX, Anillo Periférico 4019 Fuentes del Pedregal, Tlalpan, 1440, Mexico City, Mexico.
| |
Collapse
|
3
|
Tran AT, Truong AD, Nguyen DTK, Nguyen HT, Nguyen TT, Tran HTT, Dang HV. Biological properties and diverse cytokine profiles followed by in vitro and in vivo infections with LSDV strain isolated in first outbreaks in Vietnam. Vet Res Commun 2023; 47:2005-2016. [PMID: 37382734 DOI: 10.1007/s11259-023-10158-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/26/2023] [Indexed: 06/30/2023]
Abstract
Preliminary information about LSD virus isolated from the first outbreaks in Vietnam has been reported by our laboratory. In the current study, LSDV strain, LSDV/Vietnam/Langson/HL01(HL01) was further analyzed to provide a better understanding of this viral pathogen. HL01 LSDV strain was propagated at MOI 0.01 in MDBK cells and then given to cattle at dose of 106.5 TCID50/ml (2ml/animal). The production of proinflammatory (IFN-γ, IL-1α, and TNF-α) and anti-inflammatory (IL-6, IL-10, and TGF-ß1) cytokines were measured by real-time PCR, both In vitro and In vivo. The results demonstrated that HL01 strain caused the typical signs of LSD and LSDV In vitro and In vivo, respectively suggesting a virulent field LSDV strain. Additionally, different cytokine profiles were observed in these In vitro and In vivo studies. In MDBK cells, different cytokines profiles were observed in two phases: in the early phase, the expression levels of all examined cytokines were significantly increased at 6 h (p < 0.05). In the later phase, the peak levels of the cytokine secretion were recognized from 72 to 96 h, with the exception of IL-1α when compared to controls. In cattle, the expression levels of all six cytokines were significantly higher at day 7 following LSDV challenge (p < 0.05) when compared to controls, especially expression levels of TGF-β1 and IL-10. These findings suggest the important roles of these cytokines in protection against LSDV infections. Additionally, the data from diverse cytokine profiles followed by this LSDV strain challenge provides key understanding of the underlying cellular immune mechanisms in the host against LSDV infection In vitro and In vivo.
Collapse
Affiliation(s)
- Anh Tuan Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Vietnam
- Nghe An, Regional Animal Health Office (RAHO3), Vinh City, Vietnam
| | - Anh Duc Truong
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Vietnam
| | - Dung Thi Kim Nguyen
- National Veterinary Joint Stock Company (VETVACO), Km 18, National Highway 32, Duc Thuong Commune, Hoai Duc District, Hanoi, 100000, Vietnam
| | - Hung Tuan Nguyen
- National Veterinary Joint Stock Company (VETVACO), Km 18, National Highway 32, Duc Thuong Commune, Hoai Duc District, Hanoi, 100000, Vietnam
| | - Thanh Thuy Nguyen
- Department of Electron Microscopy, National Institute of Hygiene and Epidemiology, Hanoi, 100000, Vietnam
| | - Ha Thi Thanh Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Vietnam.
| | - Hoang Vu Dang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Vietnam.
| |
Collapse
|
4
|
Martins JSCDC, Sousa TDC, Oliveira MDLDA, Gimba ERP, Siqueira MM, Matos ADR. Total Osteopontin and Its Isoform OPN4 Are Differently Expressed in Respiratory Samples during Influenza A(H1N1)pdm09 Infection and Progression. Microorganisms 2023; 11:1349. [PMID: 37317323 DOI: 10.3390/microorganisms11051349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 06/16/2023] Open
Abstract
Influenza A virus (IAV) infection affects the human respiratory tract, causing an acute and highly contagious disease. Individuals with comorbidities and in the extremes of age are classified as risk groups for serious clinical outcomes. However, part of the severe infections and fatalities are observed among young healthy individuals. Noteworthy, influenza infections lack specific prognostic biomarkers that would predict the disease severity. Osteopontin (OPN) has been proposed as a biomarker in a few human malignancies and its differential modulation has been observed during viral infections. However, OPN expression levels in the primary site of IAV infection have not been previously investigated. Therefore, we evaluated the transcriptional expression patterns of total OPN (tOPN) and its splicing isoforms (OPNa, OPNb, OPNc, OPN4, and OPN5) in 176 respiratory secretion samples collected from human influenza A(H1N1)pdm09 cases and a group of 65 IAV-negative controls. IAV samples were differentially classified according to their disease severity. tOPN was more frequently detected in IAV samples (34.1%) when compared with the negative controls (18.5%) (p < 0.05), as well as in fatal (59.1%) versus non-fatal IAV samples (30.5%) (p < 0.01). OPN4 splice variant transcript was more prevalent in IAV cases (78.4%) than in the negative controls (66.1%) (p = 0.05) and in severe cases (85.7%) in relation to the non-severe ones (69.2%) (p < 0.01). OPN4 detection was also associated with severity symptoms such as dyspnea (p < 0.05), respiratory failure (p < 0.05), and oxygen saturation < 95% (p < 0.05). In addition, the OPN4 expression level was increased in the fatal cases of respiratory samples. Our data indicated that tOPN and OPN4 had a more pronounced expression pattern in IAV respiratory samples, pointing to the potential use of these molecules as biomarkers to evaluate disease outcomes.
Collapse
Affiliation(s)
- Jéssica Santa Cruz de Carvalho Martins
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fiocruz. Av. Leopoldo Bulhões, Manguinhos, 1480, Rio de Janeiro 20230-130, Brazil
| | - Thiago das Chagas Sousa
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fiocruz. Av. Leopoldo Bulhões, Manguinhos, 1480, Rio de Janeiro 20230-130, Brazil
| | - Maria de Lourdes de Aguiar Oliveira
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fiocruz. Av. Leopoldo Bulhões, Manguinhos, 1480, Rio de Janeiro 20230-130, Brazil
| | - Etel Rodrigues Pereira Gimba
- Grupo de Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Praça da Cruz Vermelha, 23, andar 6, Rio de Janeiro 20230-130, Brazil
- Programa de Pós-Graduação Stricto Sensu em Oncologia, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, andar 3, Rio de Janeiro 20231-050, Brazil
- Programa de Pós-Graduação em Ciências Biomédicas, Fisiologia e Farmacologia, Instituto Biomédico, Av. Prof. Hernani Melo, 101, Niterói 24210-130, Brazil
- Departamento de Ciências da Natureza, Universidade Federal Fluminense, Rua Recife 1-7, Bela Vista, Rio das Ostras 28880-000, Brazil
| | - Marilda Mendonça Siqueira
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fiocruz. Av. Leopoldo Bulhões, Manguinhos, 1480, Rio de Janeiro 20230-130, Brazil
| | - Aline da Rocha Matos
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fiocruz. Av. Leopoldo Bulhões, Manguinhos, 1480, Rio de Janeiro 20230-130, Brazil
| |
Collapse
|
5
|
Li L, Li P, Chen A, Li H, Liu Z, Yu L, Hou X. Quantitative proteomic analysis shows involvement of the p38 MAPK pathway in bovine parainfluenza virus type 3 replication. Virol J 2022; 19:116. [PMID: 35831876 PMCID: PMC9281021 DOI: 10.1186/s12985-022-01834-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 06/03/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Bovine parainfluenza virus type 3 (BPIV3) infection often causes respiratory tissue damage and immunosuppression and further results in bovine respiratory disease complex (BRDC), one of the major diseases in dairy cattle, caused huge economical losses every year. However, the pathogenetic and immunoregulatory mechanisms involved in the process of BPIV3 infection remain unknown. However, the pathogenetic and immunoregulatory mechanisms involved in the process of BPIV3 infection remain unknown. Proteomics is a powerful tool for high-throughput identification of proteins, which has been widely used to understand how viruses interact with host cells. METHODS In the present study, we report a proteomic analysis to investigate the whole cellular protein alterations of MDBK cells infected with BPIV3. To investigate the infection process of BPIV3 and the immune response mechanism of MDBK cells, isobaric tags for relative and absolute quantitation analysis (iTRAQ) and Q-Exactive mass spectrometry-based proteomics were performed. The differentially expressed proteins (DEPs) involved in the BPIV3 invasion process in MDBK cells were identified, annotated, and quantitated. RESULTS A total of 116 proteins, which included 74 upregulated proteins and 42 downregulated proteins, were identified as DEPs between the BPIV3-infected and the mock-infected groups. These DEPs included corresponding proteins related to inflammatory response, immune response, and lipid metabolism. These results might provide some insights for understanding the pathogenesis of BPIV3. Fluorescent quantitative PCR and western blotting analysis showed results consistent with those of iTRAQ identification. Interestingly, the upregulated protein MKK3 was associated with the p38 MAPK signaling pathway. CONCLUSIONS The results of proteomics analysis indicated BPIV3 infection could activate the p38 MAPK pathway to promote virus replication.
Collapse
Affiliation(s)
- Liyang Li
- Heilongjiang Bayi Agricultural University, Daqing, 163319, China.,Daqing Center of Inspection and Testing for Rural Affairs Agricultural Products and Processed Products, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Pengfei Li
- Department of Nephrology, Fifth Affiliated Hospital of Harbin Medical University, Daqing, 163319, China
| | - Ao Chen
- Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Hanbing Li
- Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Zhe Liu
- Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Liyun Yu
- Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Xilin Hou
- Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|