1
|
Dandekar SS, Thanikkal S, Londhe A, Bhutada P, Saha U, Pawar S, Samson R, Dharne M, Saroj SD, Koratkar S. Characterization of novel phages KPAФ1, KP149Ф1, and KP149Ф2 for lytic efficiency against clinical MDR Klebsiella pneumoniae infections. Microb Pathog 2025; 202:107440. [PMID: 40024540 DOI: 10.1016/j.micpath.2025.107440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/04/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Phage therapy offers a promising approach to the increasing antimicrobial resistance of Klebsiella pneumoniae. This study highlights three novel lytic bacteriophages-KPAФ1, KP149Ф1, and KP149Ф2- targeting multidrug-resistant (MDR) K. pneumoniae. These phages belong to the Myoviridae and Podoviridae family and demonstrate their efficacy and stability across a wide range of temperatures (up to 60°C) and pH levels (pH 4 to 11). Genomic analysis reveals that they are free from virulence, toxicity, and antimicrobial resistance genes, making them promising candidates for therapeutic use. Among these phages, KPAФ1 showed the highest lytic activity with a 26.15% lysis against MDR K. pneumoniae isolates. Additionally, a phage cocktail comprising all three phages improved lytic efficacy to 32.30%. This study also examined the antimicrobial resistance profiles of K. pneumoniae isolates, emphasizing the critical need for alternative treatments. By effectively targeting resistant strains, these phages offer a potential candidacy to be used as a viable alternative or a complementary antimicrobial agent to traditional antibiotics, opening up the possibility for advanced phage-based therapies. The promising results from this study pave the way for developing new treatments that could significantly improve patient care and outcomes from the growing issue of resistant bacterial infections.
Collapse
Affiliation(s)
- Shraddha S Dandekar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Maharashtra, India.
| | - Sinta Thanikkal
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Maharashtra, India.
| | - Arti Londhe
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Maharashtra, India.
| | - Pankhudi Bhutada
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Maharashtra, India.
| | - Ujjayni Saha
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Maharashtra, India.
| | - Shubhankar Pawar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Maharashtra, India.
| | - Rachel Samson
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, Maharashtra, 411008, India.
| | - Mahesh Dharne
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, Maharashtra, 411008, India.
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Maharashtra, India.
| | - Santosh Koratkar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Maharashtra, India.
| |
Collapse
|
2
|
Yan T, Wang Q, Ma C, Teng X, Gong Z, Chu W, Zhou Q, Liu Z. Phage vB_Kpn_HF0522: Isolation, Characterization, and Therapeutic Potential in Combatting K1 Klebsiella pneumoniae Infections. Infect Drug Resist 2025; 18:803-818. [PMID: 39958984 PMCID: PMC11827489 DOI: 10.2147/idr.s501921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/17/2025] [Indexed: 02/18/2025] Open
Abstract
Purpose Klebsiella pneumoniae is a globally prevalent pathogen responsible for severe hospital- and community-acquired infections, and presents significant challenges for clinical management. Current therapeutic strategies are no longer able to meet the clinical needs; therefore, there is an urgent need to develop novel therapeutic strategies. This study aimed to evaluate the efficacy of phage therapy in treating bacterial infections. Methods Isolated phage vB_Kpn_HF0522 and phage morphology were observed using transmission electron microscopy. Analysis of vB_Kpn_HF0522 characteristics, including optimal multiplicity of infection (MOI), one-step growth curve, host range, stability in different environments, and adsorption capacity. The phage genomic sequence was analyzed to explore evolutionary relationships. The effect of phage vB_Kpn_HF0522 on biofilms was assessed using crystal violet staining assay. The Galleria mellonella (G. mellonella) infection model and mouse infection models were established to evaluate the practical application potential of the phage and the fitness cost of phage-resistant bacteria. Results Phage was isolated from hospital sewage for experimental studies. Genome analysis revealed that vB_Kpn_HF0522 is a double-stranded linear DNA virus. Biological characterization demonstrated that this phage specifically targets serotype K1 K. pneumoniae with an optimal multiplicity of infection (MOI) of 0.01, effectively disrupting biofilms and inhibiting bacterial growth. The bacterial growth rate remained largely unchanged after the phage resistance mutation, but mice infected with the mutant strain showed significantly higher survival rates than those infected with the wild-type strain. vB_Kpn_HF0522 increased the survival rate of infected G. mellonella from 12.5% to 75%, inhibited incisional surgical site infections and alleviated inflammatory response in mice. Conclusion These findings indicate that vB_Kpn_HF0522 has significant potential for treating specific bacterial infections, and may serve as an antimicrobial agent for research and clinical anti-infective therapy.
Collapse
Affiliation(s)
- Tao Yan
- Department of Clinical Laboratory Center, Anhui Chest Hospital, Hefei, 230031, People’s Republic of China
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People’s Republic of China
| | - Qiuyan Wang
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People’s Republic of China
| | - Chengcheng Ma
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People’s Republic of China
| | - Xuan Teng
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People’s Republic of China
| | - Zhen Gong
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People’s Republic of China
| | - Wenwen Chu
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People’s Republic of China
| | - Qiang Zhou
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People’s Republic of China
| | - Zhou Liu
- Department of Clinical Laboratory Center, Anhui Chest Hospital, Hefei, 230031, People’s Republic of China
| |
Collapse
|
3
|
Liu Y, Wang J, Zhao R, Liu X, Dong Y, Shi W, Jiang H, Guan X. Bacterial isolation and genome analysis of a novel Klebsiella quasipneumoniae phage in southwest China's karst area. Virol J 2024; 21:56. [PMID: 38448926 PMCID: PMC10916049 DOI: 10.1186/s12985-024-02321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Southwest China is one of the largest karst regions in the world. Karst environment is relatively fragile and vulnerable to human activities. Due to the discharge of sewage and domestic garbage, the karst system may be polluted by pathogenic bacteria. The detection of bacterial distribution and identification of phage capable of infecting them is an important approach for environmental assessment and resource acquisition. METHODS Bacteria and phages were isolated from karst water in southwest China using the plate scribing and double plate method, respectively. Isolated phage was defined by transmission electron microscopy, one-step growth curve and optimal multiplicity of infection (MOI). Genomic sequencing, phylogenetic analysis, comparative genomic and proteomic analysis were performed. RESULTS A Klebsiella quasipneumoniae phage was isolated from 32 isolates and named KL01. KL01 is morphologically identified as Caudoviricetes with an optimal MOI of 0.1, an incubation period of 10 min, and a lysis period of 60 min. The genome length of KL01 is about 45 kb, the GC content is 42.5%, and it contains 59 open reading frames. The highest average nucleotide similarity between KL01 and a known Klebsiella phage 6939 was 83.04%. CONCLUSIONS KL01 is a novel phage, belonging to the Autophagoviridae, which has strong lytic ability. This study indicates that there were not only some potential potentially pathogenic bacteria in the karst environment, but also phage resources for exploration and application.
Collapse
Affiliation(s)
- Yanju Liu
- School of Ocean Sciences, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Jinfeng Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Ruoyu Zhao
- School of Ocean Sciences, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Xiaoping Liu
- School of Ocean Sciences, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Yang Dong
- School of Ocean Sciences, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Wenyu Shi
- College of Food Science & Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Hongchen Jiang
- School of Ocean Sciences, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Xiangyu Guan
- School of Ocean Sciences, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, 100083, Beijing, China.
| |
Collapse
|
4
|
Su X, Fang T, Fang L, Wang D, Jiang X, Liu C, Zhang H, Guo R, Wang J. Effects of short-term exposure to simulated microgravity on the physiology of Bacillus subtilis and multiomic analysis. Can J Microbiol 2023; 69:464-478. [PMID: 37463516 DOI: 10.1139/cjm-2023-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
In our study, Bacillus subtilis was disposed to a simulated microgravity (SMG) environment in high-aspect ratio rotating-wall vessel bioreactors for 14 days, while the control group was disposed to the same bioreactors in a normal gravity (NG) environment for 14 days. The B. subtilis strain exposed to the SMG (labeled BSS) showed an enhanced growth ability, increased biofilm formation ability, increased sensitivity to ampicillin sulbactam and cefotaxime, and some metabolic alterations compared with the B. subtilis strain under NG conditions (labeled BSN) and the original strain of B. subtilis (labeled BSO). The differentially expressed proteins (DEPs) associated with an increased growth rate, such as DNA strand exchange activity, oxidoreductase activity, proton-transporting ATP synthase complex, and biosynthetic process, were significantly upregulated in BSS. The enhanced biofilm formation ability may be related with the DEPs of spore germination and protein processing in BSS, and differentially expressed genes involved in protein localization and peptide secretion were also significantly enriched. The results revealed that SMG may increase the level of related functional proteins by upregulating or downregulating affiliated genes to change physiological characteristics and modulate growth ability, biofilm formation ability (epsB, epsC, epsN), antibiotic sensitivity (penP) and metabolism. Our experiment may gives new ideas for the study of space microbiology.
Collapse
Affiliation(s)
- Xiaolei Su
- Department of Otorhinolaryngology Head and Neck Surgery, Air Force Medical Center, PLA, Beijing, China
| | - Tingzheng Fang
- Sixth Department of Health Care, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Lin Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Air Force Medical Center, PLA, Beijing, China
| | - Dapeng Wang
- Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Xuege Jiang
- Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Changting Liu
- Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Honglei Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Air Force Medical Center, PLA, Beijing, China
| | - Rui Guo
- Department of Otorhinolaryngology Head and Neck Surgery, Air Force Medical Center, PLA, Beijing, China
| | - Junfeng Wang
- Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Fayez MS, Hakim TA, Zaki BM, Makky S, Abdelmoteleb M, Essam K, Safwat A, Abdelsattar AS, El-Shibiny A. Morphological, biological, and genomic characterization of Klebsiella pneumoniae phage vB_Kpn_ZC2. Virol J 2023; 20:86. [PMID: 37138257 PMCID: PMC10158348 DOI: 10.1186/s12985-023-02034-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/07/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Bacteriophages (phages) are one of the most promising alternatives to traditional antibiotic therapies, especially against multidrug-resistant bacteria. Klebsiella pneumoniae is considered to be an opportunistic pathogen that can cause life-threatening infections. Thus, this study aims at the characterization of a novel isolated phage vB_Kpn_ZC2 (ZCKP2, for short). METHODS The phage ZCKP2 was isolated from sewage water by using the clinical isolate KP/08 as a host strain. The isolated bacteriophage was purified and amplified, followed by testing of its molecular weight using Pulse-Field Gel Electrophoresis (PFGE), transmission electron microscopy, antibacterial activity against a panel of other Klebsiella pneumoniae hosts, stability studies, and whole genome sequencing. RESULTS Phage ZCKP2 belongs morphologically to siphoviruses as indicated from the Transmission Electron Microscopy microgram. The Pulsed Field Gel Electrophoresis and the phage sequencing estimated the phage genome size of 48.2 kbp. Moreover, the absence of lysogeny-related genes, antibiotic resistance genes, and virulence genes in the annotated genome suggests that phage ZCKP2 is safe for therapeutic use. Genome-based taxonomic analysis indicates that phage ZCKP2 represents a new family that has not been formally rated yet. In addition, phage ZCKP2 preserved high stability at different temperatures and pH values (-20 - 70 °C and pH 4 - 9). For the antibacterial activity, phage ZCKP2 maintained consistent clear zones on KP/08 bacteria along with other hosts, in addition to effective bacterial killing over time at different MOIs (0.1, 1, and 10). Also, the genome annotation predicted antibacterial lytic enzymes. Furthermore, the topology of class II holins was predicted in some putative proteins with dual transmembrane domains that contribute significantly to antibacterial activity. Phage ZCKP2 characterization demonstrates safety and efficiency against multidrug-resistant K. pneumoniae, hence ZCKP2 is a good candidate for further in vivo and phage therapy clinical applications.
Collapse
Affiliation(s)
- Mohamed S. Fayez
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578 Egypt
| | - Toka A. Hakim
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578 Egypt
| | - Bishoy Maher Zaki
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578 Egypt
- Microbiology and Immunology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 11787 Egypt
| | - Salsabil Makky
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578 Egypt
| | - Mohamed Abdelmoteleb
- Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516 Egypt
| | - Kareem Essam
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578 Egypt
| | - Anan Safwat
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578 Egypt
| | - Abdallah S. Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578 Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578 Egypt
- Faculty of Environmental Agricultural Sciences, Arish University, Arish, 45511 Egypt
| |
Collapse
|
6
|
Zaki BM, Hussein AH, Hakim TA, Fayez MS, El-Shibiny A. Phages for treatment of Klebsiella pneumoniae infections. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 200:207-239. [PMID: 37739556 DOI: 10.1016/bs.pmbts.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Klebsiella pneumoniae is an opportunistic pathogen involved in both hospital- and community-acquired infections. K. pneumoniae is associated with various infections, including pneumonia, septicemia, meningitis, urinary tract infection, and surgical wound infection. K. pneumoniae possesses serious virulence, biofilm formation ability, and severe resistance to many antibiotics especially hospital-acquired strains, due to excessive use in healthcare systems. This limits the available effective antibiotics that can be used for patients suffering from K. pneumoniae infections; therefore, alternative treatments are urgently needed. Bacteriophages (for short, phages) are prokaryotic viruses capable of infecting, replicating, and then lysing (lytic phages) the bacterial host. Phage therapy exhibited great potential for treating multidrug-resistant bacterial infections comprising K. pneumoniae. Hence, this chapter emphasizes and summarizes the research articles in the PubMed database from 1948 until the 15th of December 2022, addressing phage therapy against K. pneumoniae. The chapter provides an overview of K. pneumoniae phages covering different aspects, including phage isolation, different morphotypes of isolated phages, in vitro characterization, anti-biofilm activity, various therapeutic forms, in vivo research and clinical studies.
Collapse
Affiliation(s)
- Bishoy Maher Zaki
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Assmaa H Hussein
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | - Toka A Hakim
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | - Mohamed S Fayez
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt; Faculty of Environmental Agricultural Sciences, Arish University, Arish, Egypt.
| |
Collapse
|
7
|
Yang B, Wang Y, Gao L, Rao SQ, Zhou WY, Yang ZQ, Jiao XA, Mintah BK, Dabbour M. Isolation and genomic characterization of Vmp-1 using Vibrio mimicus as the host: A novel virulent bacteriophage capable of cross-species lysis against three Vibrio spp. Microb Pathog 2023; 174:105948. [PMID: 36526034 DOI: 10.1016/j.micpath.2022.105948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Vibrio mimicus is a zoonotic pathogen that is widely distributed in aquatic habitats/environments (marine coastal water, estuaries, etc). The development of biocontrol agents for V. mimicus is imperative for the prevention and control of aquatic animal diseases and human food-borne infections. In this study, a broad-spectrum bacteriophage Vmp-1 was isolated from dealt aquatic product in a local market by double-layer agar plate method using V. mimicus CICC21613 as the host bacteria. Results indicated that Vmp-1, which belongs to the family Podoviridae, showed good pH tolerance (pH 3.0-12.0) and thermal stability (30-50 °C). The optimal multiplicity of infection (MOI) of Vmp-1 was 0.001 for a 20-min incubation and 100-min lysis period. Vmp-1 effectively controlled V. mimicus CICC21613 in LBS model (MOI = 0.0001, 0.001, 0.01, 0.1, 1) within 8 h. The full length of the Vmp-1 genome was 43,312 bp, with average GC content of 49.5%, and a total of 44 protein-coding regions. This study provides a novel phage strain that has the highest homology with vB_VpP_HA5 (GenBank: OK585159.1, 95.96%) for the development of biocontrol agents for V. mimicus.
Collapse
Affiliation(s)
- Bin Yang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Yang Wang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Lu Gao
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Sheng-Qi Rao
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Wen-Yuan Zhou
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Zhen-Quan Yang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China; Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009, PR China.
| | - Xin-An Jiao
- Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | | | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, P.O. Box 13736, Moshtohor, Qaluobia, Egypt
| |
Collapse
|