1
|
Greene MJ, Boehm AE, Vanston JE, Pandiyan VP, Sabesan R, Tuten WS. Unique yellow shifts for small and brief stimuli in the central retina. J Vis 2024; 24:2. [PMID: 38833255 PMCID: PMC11156209 DOI: 10.1167/jov.24.6.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/01/2024] [Indexed: 06/06/2024] Open
Abstract
The spectral locus of unique yellow was determined for flashes of different sizes (<11 arcmin) and durations (<500 ms) presented in and near the fovea. An adaptive optics scanning laser ophthalmoscope was used to minimize the effects of higher-order aberrations during simultaneous stimulus delivery and retinal imaging. In certain subjects, parafoveal cones were classified as L, M, or S, which permitted the comparison of unique yellow measurements with variations in local L/M ratios within and between observers. Unique yellow shifted to longer wavelengths as stimulus size or duration was reduced. This effect is most pronounced for changes in size and more apparent in the fovea than in the parafovea. The observed variations in unique yellow are not entirely predicted from variations in L/M ratio and therefore implicate neural processes beyond photoreception.
Collapse
Affiliation(s)
- Maxwell J Greene
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA, USA
| | - Alexandra E Boehm
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA, USA
| | - John E Vanston
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA, USA
| | - Vimal P Pandiyan
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Ramkumar Sabesan
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - William S Tuten
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
2
|
Age-related changes in visual search: manipulation of colour cues based on cone contrast and opponent modulation space. Sci Rep 2020; 10:21328. [PMID: 33288789 PMCID: PMC7721812 DOI: 10.1038/s41598-020-78303-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 11/16/2020] [Indexed: 11/09/2022] Open
Abstract
Reduced retinal illuminance affects colour perception in older adults, and studies show that they exhibit deficiencies in yellow-blue (YB) discrimination. However, the influence of colour cues on the visual attention in older individuals remains unclarified. Visual attention refers to the cognitive model by which we prioritise regions within the visual space and selectively process information. The present study aimed to explore the effect of colour on visual search performance in older observers. In our experiment, younger observers wearing glasses with a filter that simulated the spectral transmittance of the aging human lens and older observers performed two types of search tasks, feature search (FS) and conjunction search (CS), under three colour conditions: red-green, YB, and luminance. Targets and distractors were designed on the basis of the Derrington–Krauskopf–Lennie colour representation. In FS tasks, reaction times changed according to colour in all groups, especially under the YB condition, regardless of the presence or absence of distractors. In CS tasks with distractors, older participants and younger participants wearing glasses showed slower responses under chromatic conditions than under the achromatic condition. These results provide preliminary evidence that, for older observers, visual search performance may be affected by impairments in chromatic colour discrimination.
Collapse
|
3
|
Ma S, Hanselaer P, Teunissen K, Smet KAG. Effect of adapting field size on chromatic adaptation. OPTICS EXPRESS 2020; 28:17266-17285. [PMID: 32679938 DOI: 10.1364/oe.392844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
The human visual system adapts to changes in white tone of the illumination to maintain approximately the same object color appearance. Chromatic adaptation transforms (CAT) were developed to predict corresponding colors, which are colors that look the same under a wide range of illuminants. However, existing CATs fail to accurately predict corresponding colors, particularly under colored illumination, because of an inaccurate estimation of the degree of adaptation. In this study, the impact of the adapting field size on the degree of adaptation was investigated. A memory color matching experiment was conducted, in a real scene, with the background adapting field varying in the field of view, luminance and chromaticity to provide data for the development of a more comprehensive CAT. Results show that a larger field of view leads to a more complete adaptation, despite a much lower background luminance.
Collapse
|
4
|
Williams L, Butler JS, Thirkettle M, Stafford T, Quinlivan B, McGovern E, O'Riordan S, Redgrave P, Reilly R, Hutchinson M. Slowed Luminance Reaction Times in Cervical Dystonia: Disordered Superior Colliculus Processing. Mov Disord 2020; 35:877-880. [DOI: 10.1002/mds.27975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 11/25/2019] [Indexed: 01/23/2023] Open
Affiliation(s)
- Laura Williams
- Department of NeurologySt. Vincent's University Hospital Dublin Ireland
- School of Medicine and Medical Science, University College Dublin Dublin Ireland
| | - John S. Butler
- Trinity Centre for Bioengineering, Trinity College Dublin Dublin Ireland
- School of Mathematical Sciences, Technological University Dublin Dublin 2 Dublin Ireland
| | - Martin Thirkettle
- Department of Psychology, Sociology & PoliticsSheffield Hallam University Sheffield United Kingdom
| | - Tom Stafford
- Department of PsychologyUniversity of Sheffield Sheffield United Kingdom
| | - Brendan Quinlivan
- Trinity Centre for Bioengineering, Trinity College Dublin Dublin Ireland
| | - Eavan McGovern
- Department of NeurologySt. Vincent's University Hospital Dublin Ireland
- School of Medicine and Medical Science, University College Dublin Dublin Ireland
| | - Sean O'Riordan
- Department of NeurologySt. Vincent's University Hospital Dublin Ireland
- School of Medicine and Medical Science, University College Dublin Dublin Ireland
| | - Peter Redgrave
- Department of PsychologyUniversity of Sheffield Sheffield United Kingdom
| | - Richard Reilly
- Trinity Centre for Bioengineering, Trinity College Dublin Dublin Ireland
| | - Michael Hutchinson
- Department of NeurologySt. Vincent's University Hospital Dublin Ireland
- School of Medicine and Medical Science, University College Dublin Dublin Ireland
| |
Collapse
|
5
|
Lin G, Taylor C, Rucker F. Effect of duration, and temporal modulation, of monochromatic light on emmetropization in chicks. Vision Res 2020; 166:12-19. [PMID: 31786198 PMCID: PMC6936105 DOI: 10.1016/j.visres.2019.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/18/2019] [Accepted: 11/03/2019] [Indexed: 12/11/2022]
Abstract
Previous experiments disagree on the effect of monochromatic light on emmetropization. Some species respond to wavelength defocus created by longitudinal chromatic aberration and become more myopic in monochromatic red light and more hyperopic in monochromatic blue light, while other species do not. Using the chicken model, we studied the effect of the duration of light exposure, modes of lighting, and circadian interruption on emmetropization in monochromatic light. To achieve this goal, we exposed one-week-old chicks to flickering or steady monochromatic red or blue light for a short (10 days) or long (17 days) duration; other chicks were exposed to white light for 10 days. Refraction and ocular biometry were measured. Activity was measured via a motion detection algorithm and an IR camera. The results showed that in both steady and flickering light, there was a greater increase in axial length and vitreous chamber depth in chicks exposed to red or white light compared to chicks exposed to blue light. With a longer duration of exposure, axial length and vitreous chamber depth differences were no longer observed, except at an intermediate time point. Chicks exposed to red light were more active during the day compared to chicks exposed to blue light. We conclude that our results indicate that with short duration monochromatic light exposure, chicks rely on wavelength defocus to guide emmetropization. With longer exposure from hatching, our results support the notion that responses to wavelength defocus can be transient and that the difference between species may be due to differences in experimental duration and/or interference with circadian activity rhythms.
Collapse
Affiliation(s)
- Gregory Lin
- New England College of Optometry, Dept. of Biomedical
Science, 424 Beacon St., Boston MA 0211
| | - Christopher Taylor
- New England College of Optometry, Dept. of Biomedical
Science, 424 Beacon St., Boston MA 0211
| | - Frances Rucker
- New England College of Optometry, Dept. of Biomedical Science, 424 Beacon St., Boston, MA 0211, United States.
| |
Collapse
|
6
|
Rucker F, Britton S, Taylor C. Color and Temporal Frequency Sensitive Eye Growth in Chick. Invest Ophthalmol Vis Sci 2019; 59:6003-6013. [PMID: 30572345 PMCID: PMC6306076 DOI: 10.1167/iovs.18-25322] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Purpose Longitudinal chromatic aberration can provide luminance and chromatic signals for emmetropization. A previous experiment examined the role of temporal sensitivity to luminance flicker in the emmetropization response. In the current experiment, we investigate the role of temporal sensitivity to color flicker. Methods Five-day-old chicks were exposed to sinusoidal color modulation of blue/yellow (N = 73) or red/green LEDs (N = 84) at 80% contrast for 3 days. The modulation frequencies used were as follows: 0, 0.2, 1, 2, 5, and 10 Hz. There were 5 to 16 chicks per condition. Mean illumination was 680 lux. Changes in ocular components were measured using Lenstar, and refraction was measured with a Hartinger refractometer. Results Eyes grew less when exposed to high temporal frequencies and more at low temporal frequencies. With blue/yellow modulation, the temporal variation was small; eyes grew 268 ± 15 μm at 0 Hz and 224 ± 12 μm at 10 Hz, representing a 16.4% growth reduction. With red/green modulation, eyes grew 336 ± 31 μm at 0 Hz and 218 ± 20 μm at 10 Hz, representing a 35% growth reduction. Choroidal and anterior chamber changes compensated for eye growth, reducing refractive effects; blue/yellow refraction changes ranged from −0.63 to 1.04 diopters. Conclusions At high temporal frequencies, color is not a factor, but at low temporal frequencies, red/green modulation produced maximal growth. The pattern of changes observed in each ocular component with changes in the temporal frequency and/or the color of the stimulus was consistent with the idea that the natural sunlight spectrum may be optimal for emmetropization.
Collapse
Affiliation(s)
- Frances Rucker
- New England College of Optometry, Department of Biomedical Science and Disease, Boston, Massachusetts, United States
| | - Stephanie Britton
- New England College of Optometry, Department of Biomedical Science and Disease, Boston, Massachusetts, United States
| | - Christopher Taylor
- New England College of Optometry, Department of Biomedical Science and Disease, Boston, Massachusetts, United States
| |
Collapse
|
7
|
Tian T, Zou L, Wu S, Liu H, Liu R. Wavelength Defocus and Temporal Sensitivity Affect Refractive Development in Guinea Pigs. ACTA ACUST UNITED AC 2019; 60:2173-2180. [PMID: 31108548 DOI: 10.1167/iovs.18-25228] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Tian Tian
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences (Fudan University), Shanghai, China
| | - Leilei Zou
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences (Fudan University), Shanghai, China
| | - Sujia Wu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences (Fudan University), Shanghai, China
| | - Hong Liu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences (Fudan University), Shanghai, China
| | - Rui Liu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences (Fudan University), Shanghai, China
| |
Collapse
|
8
|
Baudin J, Angueyra JM, Sinha R, Rieke F. S-cone photoreceptors in the primate retina are functionally distinct from L and M cones. eLife 2019; 8:39166. [PMID: 30672735 PMCID: PMC6344076 DOI: 10.7554/elife.39166] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022] Open
Abstract
Daylight vision starts with signals in three classes of cone photoreceptors sensitive to short (S), middle (M), and long (L) wavelengths. Psychophysical studies show that perceptual sensitivity to rapidly varying inputs differs for signals originating in S cones versus L and M cones; notably, S-cone signals appear perceptually delayed relative to L- and M-cone signals. These differences could originate in the cones themselves or in the post-cone circuitry. To determine if the cones could contribute to these and related perceptual phenomena, we compared the light responses of primate S, M, and L cones. We found that S cones generate slower light responses than L and M cones, show much smaller changes in response kinetics as background-light levels increase, and are noisier than L and M cones. It will be important to incorporate these differences into descriptions of how cone signaling shapes human visual perception.
Collapse
Affiliation(s)
- Jacob Baudin
- Department of Physiology and Biophysics, University of Washington, Seattle, United States.,Howard Hughes Medical Institute, University of Washington, Seattle, United States.,Google Inc., Seattle, United States
| | - Juan M Angueyra
- Department of Physiology and Biophysics, University of Washington, Seattle, United States.,Howard Hughes Medical Institute, University of Washington, Seattle, United States
| | - Raunak Sinha
- Department of Physiology and Biophysics, University of Washington, Seattle, United States.,Howard Hughes Medical Institute, University of Washington, Seattle, United States.,Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, United States.,Howard Hughes Medical Institute, University of Washington, Seattle, United States
| |
Collapse
|
9
|
Kóbor P, Petykó Z, Telkes I, Martin PR, Buzás P. Temporal properties of colour opponent receptive fields in the cat lateral geniculate nucleus. Eur J Neurosci 2017; 45:1368-1378. [PMID: 28391639 DOI: 10.1111/ejn.13574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 11/29/2022]
Abstract
The primordial form of mammalian colour vision relies on opponent interactions between inputs from just two cone types, 'blue' (S-) and 'green' (ML-) cones. We recently described the spatial receptive field structure of colour opponent blue-ON cells from the lateral geniculate nucleus of cats. Functional inputs from the opponent cone types were spatially coextensive and equally weighted, supporting their high chromatic and low achromatic sensitivity. Here, we studied relative cone weights, temporal frequency tuning and visual latency of cat blue-ON cells and non-opponent achromatic cells to temporally modulated cone-isolating and achromatic stimuli. We confirmed that blue-ON cells receive equally weighted antagonistic inputs from S- and ML-cones whereas achromatic cells receive exclusive ML-cone input. The temporal frequency tuning curves of S- and ML-cone inputs to blue-ON cells were tightly correlated between 1 and 48 Hz. Optimal temporal frequencies of blue-ON cells were around 3 Hz, whereas the frequency optimum of achromatic cells was close to 10 Hz. Most blue-ON cells showed negligible response to achromatic flicker across all frequencies tested. Latency to visual stimulation was significantly greater in blue-ON than in achromatic cells. The S- and ML-cone responses of blue-ON cells had on average, similar latencies to each other. Altogether, cat blue-ON cells showed remarkable balance of opponent cone inputs. Our results also confirm similarities to primate blue-ON cells suggesting that colour vision in mammals evolved on the basis of a sluggish pathway that is optimized for chromatic sensitivity at a wide range of spatial and temporal frequencies.
Collapse
Affiliation(s)
- Péter Kóbor
- Institute of Physiology, Medical School, University of Pécs, 7624, Pécs, Hungary.,Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Zoltán Petykó
- Institute of Physiology, Medical School, University of Pécs, 7624, Pécs, Hungary.,Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Ildikó Telkes
- Institute of Physiology, Medical School, University of Pécs, 7624, Pécs, Hungary.,Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Paul R Martin
- Australian Research Council Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia.,Save Sight Institute, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Péter Buzás
- Institute of Physiology, Medical School, University of Pécs, 7624, Pécs, Hungary.,Centre for Neuroscience, University of Pécs, Pécs, Hungary
| |
Collapse
|
10
|
O’Donell BM, Colombo EM. The Appropriateness of Contrast Metric for Reaction Times. Perception 2016; 45:931-945. [DOI: 10.1177/0301006616643651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We analyzed different contrast metrics to scale the stimulus strength for suprathreshold reaction times (RTs) when it is modulated along an achromatic channel (L + M) and both chromatic channels L/M and S/(L + M) considering increments and decrements along these axes. RTs were examined as a function of the Weber luminance contrast; spatial luminance ratio (SRL) and, in terms of threshold units. The results show that when there is only luminance decreasing or increasing, RTs cluster around a single RT/luminance contrast function regardless the stimulus sign and our results indicate that both SRL, Weber luminance contrast or threshold units, equate RT values. While, if the stimulus is modulated along an isoluminant plane, the appropriate contrast is Weber (RMS) or SRL for stimuli modulated along L/M axis and for stimuli modulated along S/L + M, showing an asymmetry between S-cone decrements and increments in L/M cone pathway. Threshold units are not appropriate, showing inconsistencies: The stimulus with chromatic direction equal to 90° appears as the most informative with a maximum gain. Even more so, the shared contrast gain grows as the size of the stimulus decreases.
Collapse
Affiliation(s)
- Beatriz M. O’Donell
- Departamento de Luminotecnia Luz y Visión “Ing, Herberto C. Bühler”, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, Argentina
- Instituto de Investigación en Luz, Ambiente y Visión (CONICET-UNT), Tucumán, Argentina
| | - Elisa M. Colombo
- Departamento de Luminotecnia Luz y Visión “Ing, Herberto C. Bühler”, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, Argentina
- Instituto de Investigación en Luz, Ambiente y Visión (CONICET-UNT), Tucumán, Argentina
| |
Collapse
|
11
|
Cormenzana Méndez I, Martín A, Charmichael TL, Jacob MM, Lacerda EMCB, Gomes BD, Fitzgerald MEC, Ventura DF, Silveira LCL, O'Donell BM, Souza GS. Color Discrimination Is Affected by Modulation of Luminance Noise in Pseudoisochromatic Stimuli. Front Psychol 2016; 7:1006. [PMID: 27458404 PMCID: PMC4934133 DOI: 10.3389/fpsyg.2016.01006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/20/2016] [Indexed: 11/13/2022] Open
Abstract
Pseudoisochromatic stimuli have been widely used to evaluate color discrimination and to identify color vision deficits. Luminance noise is one of the stimulus parameters used to ensure that subject's response is due to their ability to discriminate target stimulus from the background based solely on the hue between the colors that compose such stimuli. We studied the influence of contrast modulation of the stimulus luminance noise on threshold and reaction time color discrimination. We evaluated color discrimination thresholds using the Cambridge Color Test (CCT) at six different stimulus mean luminances. Each mean luminance condition was tested using two protocols: constant absolute difference between maximum and minimum luminance of the luminance noise (constant delta protocol, CDP), and constant contrast modulation of the luminance noise (constant contrast protocol, CCP). MacAdam ellipses were fitted to the color discrimination thresholds in the CIE 1976 color space to quantify the color discrimination ellipses at threshold level. The same CDP and CCP protocols were applied in the experiment measuring RTs at three levels of stimulus mean luminance. The color threshold measurements show that for the CDP, ellipse areas decreased as a function of the mean luminance and they were significantly larger at the two lowest mean luminances, 10 cd/m2 and 13 cd/m2, compared to the highest one, 25 cd/m2. For the CCP, the ellipses areas also decreased as a function of the mean luminance, but there was no significant difference between ellipses areas estimated at six stimulus mean luminances. The exponent of the decrease of ellipse areas as a function of stimulus mean luminance was steeper in the CDP than CCP. Further, reaction time increased linearly with the reciprocal of the length of the chromatic vectors varying along the four chromatic half-axes. It decreased as a function of stimulus mean luminance in the CDP but not in the CCP. The findings indicated that visual performance using pseudoisochromatic stimuli was dependent on the Weber's contrast of the luminance noise. Low Weber's contrast in the luminance noise is suggested to have a reduced effect on chromatic information and, hence, facilitate desegregation of the hue-defined target from the background.
Collapse
Affiliation(s)
- Iñaki Cormenzana Méndez
- Departamento de Luminotecnia, Luz y Visión "Ing. Herberto C. Bühler", Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán Tucumán, Argentina
| | - Andrés Martín
- Departamento de Luminotecnia, Luz y Visión "Ing. Herberto C. Bühler", Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán Tucumán, Argentina
| | | | - Mellina M Jacob
- Instituto de Ciências Biológicas, Universidade Federal do Pará Belém, Brazil
| | | | - Bruno D Gomes
- Instituto de Ciências Biológicas, Universidade Federal do Pará Belém, Brazil
| | - Malinda E C Fitzgerald
- Department of Biology, Christian Brothers UniversityMemphis, TN, USA; Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Dora F Ventura
- Department of Experimental Psychology, Instituto de Psicologia, Universidade de São Paulo São Paulo, Brazil
| | - Luiz C L Silveira
- Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil; Núcleo de Medicina Tropical, Universidade Federal do ParáBelém, Brazil; Universidade do CeumaSão Luís, Brazil
| | - Beatriz M O'Donell
- Departamento de Luminotecnia, Luz y Visión "Ing. Herberto C. Bühler", Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán Tucumán, Argentina
| | - Givago S Souza
- Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil; Núcleo de Medicina Tropical, Universidade Federal do ParáBelém, Brazil
| |
Collapse
|
12
|
Express saccades and superior colliculus responses are sensitive to short-wavelength cone contrast. Proc Natl Acad Sci U S A 2016; 113:6743-8. [PMID: 27140613 DOI: 10.1073/pnas.1600095113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A key structure for directing saccadic eye movements is the superior colliculus (SC). The visual pathways that project to the SC have been reported to carry only luminance information and not color information. Short-wavelength-sensitive cones (S-cones) in the retina make little or no contribution to luminance signals, leading to the conclusion that S-cone stimuli should be invisible to SC neurons. The premise that S-cone stimuli are invisible to the SC has been used in numerous clinical and human psychophysical studies. The assumption that the SC cannot use S-cone stimuli to guide behavior has never been tested. We show here that express saccades, which depend on the SC, can be driven by S-cone input. Further, express saccade reaction times and changes in SC activity depend on the amount of S-cone contrast. These results demonstrate that the SC can use S-cone stimuli to guide behavior. We conclude that the use of S-cone stimuli is insufficient to isolate SC function in psychophysical and clinical studies of human subjects.
Collapse
|
13
|
Werner JS. The Verriest Lecture: Short-wave-sensitive cone pathways across the life span. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2016; 33:A104-22. [PMID: 26974914 PMCID: PMC5330185 DOI: 10.1364/josaa.33.00a104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Structurally and functionally, the short-wave-sensitive (S) cone pathways are thought to decline more rapidly with normal aging than the middle- and long-wave-sensitive cone pathways. This would explain the celebrated results by Verriest and others demonstrating that the largest age-related color discrimination losses occur for stimuli on a tritan axis. Here, we challenge convention, arguing from psychophysical data that selective S-cone pathway losses do not cause declines in color discrimination. We show substantial declines in chromatic detection and discrimination, as well as in temporal and spatial vision tasks, that are mediated by S-cone pathways. These functional losses are not, however, unique to S-cone pathways. Finally, despite reduced photon capture by S cones, their postreceptoral pathways provide robust signals for the visual system to renormalize itself to maintain nearly stable color perception across the life span.
Collapse
Affiliation(s)
- John S. Werner
- University of California, Davis, Department of Ophthalmology & Vision Science, Department of Neurobiology, Physiology & Behavior, Sacramento, California 95817, USA
| |
Collapse
|
14
|
Rucker F, Britton S, Spatcher M, Hanowsky S. Blue Light Protects Against Temporal Frequency Sensitive Refractive Changes. Invest Ophthalmol Vis Sci 2016; 56:6121-31. [PMID: 26393671 DOI: 10.1167/iovs.15-17238] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Time spent outdoors is protective against myopia. The outdoors allows exposure to short-wavelength (blue light) rich sunlight, while indoor illuminants can be deficient at short-wavelengths. In the current experiment, we investigate the role of blue light, and temporal sensitivity, in the emmetropization response. METHODS Five-day-old chicks were exposed to sinusoidal luminance modulation of white light (with blue; N = 82) or yellow light (without blue; N = 83) at 80% contrast, at one of six temporal frequencies: 0, 0.2, 1, 2, 5, 10 Hz daily for 3 days. Mean illumination was 680 lux. Changes in ocular components and corneal curvature were measured. RESULTS Refraction, eye length, and choroidal changes were dependent on the presence of blue light (P < 0.03, all) and on temporal frequency (P < 0.03, all). In the presence of blue light, refraction did not change across frequencies (mean change -0.24 [diopters] D), while in the absence of blue light, we observed a hyperopic shift (>1 D) at high frequencies, and a myopic shift (>-0.6 D) at low frequencies. With blue light there was little difference in eye growth across frequencies (77 μm), while in the absence of blue light, eyes grew more at low temporal frequencies and less at high temporal frequencies (10 vs. 0.2 Hz: 145 μm; P < 0.003). Overall, neonatal astigmatism was reduced with blue light. CONCLUSIONS Illuminants rich in blue light can protect against myopic eye growth when the eye is exposed to slow changes in luminance contrast as might occur with near work.
Collapse
|
15
|
Abstract
We review the features of the S-cone system that appeal to the psychophysicist and summarize the celebrated characteristics of S-cone mediated vision. Two factors are emphasized: First, the fine stimulus control that is required to isolate putative visual mechanisms and second, the relationship between physiological data and psychophysical approaches. We review convergent findings from physiology and psychophysics with respect to asymmetries in the retinal wiring of S-ON and S-OFF visual pathways, and the associated treatment of increments and decrements in the S-cone system. Beyond the retina, we consider the lack of S-cone projections to superior colliculus and the use of S-cone stimuli in experimental psychology, for example to address questions about the mechanisms of visually driven attention. Careful selection of stimulus parameters enables psychophysicists to produce entirely reversible, temporary, "lesions," and to assess behavior in the absence of specific neural subsystems.
Collapse
|
16
|
Pietersen ANJ, Cheong SK, Solomon SG, Tailby C, Martin PR. Temporal response properties of koniocellular (blue-on and blue-off) cells in marmoset lateral geniculate nucleus. J Neurophysiol 2014; 112:1421-38. [DOI: 10.1152/jn.00077.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Visual perception requires integrating signals arriving at different times from parallel visual streams. For example, signals carried on the phasic-magnocellular (MC) pathway reach the cerebral cortex pathways some tens of milliseconds before signals traveling on the tonic-parvocellular (PC) pathway. Visual latencies of cells in the koniocellular (KC) pathway have not been specifically studied in simian primates. Here we compared MC and PC cells to “blue-on” (BON) and “blue-off” (BOF) KC cells; these cells carry visual signals originating in short-wavelength-sensitive (S) cones. We made extracellular recordings in the lateral geniculate nucleus (LGN) of anesthetized marmosets. We found that BON visual latencies are 10–20 ms longer than those of PC or MC cells. A small number of recorded BOF cells ( n = 7) had latencies 10–20 ms longer than those of BON cells. Within all cell groups, latencies of foveal receptive fields (<10° eccentricity) were longer (by 3–8 ms) than latencies of peripheral receptive fields (>10°). Latencies of yellow-off inputs to BON cells lagged the blue-on inputs by up to 30 ms, but no differences in visual latency were seen on comparing marmosets expressing dichromatic (“red-green color-blind”) or trichromatic color vision phenotype. We conclude that S-cone signals leaving the LGN on KC pathways are delayed with respect to signals traveling on PC and MC pathways. Cortical circuits serving color vision must therefore integrate across delays in (red-green) chromatic signals carried by PC cells and (blue-yellow) signals carried by KC cells.
Collapse
Affiliation(s)
- A. N. J. Pietersen
- Australian Research Council Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, Australia
- Save Sight Institute, University of Sydney, Sydney, Australia
| | - S. K. Cheong
- Australian Research Council Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, Australia
- Save Sight Institute, University of Sydney, Sydney, Australia
| | - S. G. Solomon
- School of Medical Sciences, University of Sydney, Sydney, Australia
- Department of Experimental Psychology, University College London, London, United Kingdom; and
| | - C. Tailby
- School of Medical Sciences, University of Sydney, Sydney, Australia
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Australia
| | - P. R. Martin
- Australian Research Council Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, Australia
- Save Sight Institute, University of Sydney, Sydney, Australia
- School of Medical Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
17
|
Mizzi R, Michael GA. The role of the collicular pathway in the salience-based progression of visual attention. Behav Brain Res 2014; 270:330-8. [DOI: 10.1016/j.bbr.2014.05.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/16/2014] [Accepted: 05/20/2014] [Indexed: 11/25/2022]
|
18
|
Gagin G, Bohon KS, Butensky A, Gates MA, Hu JY, Lafer-Sousa R, Pulumo RL, Qu J, Stoughton CM, Swanbeck SN, Conway BR. Color-detection thresholds in rhesus macaque monkeys and humans. J Vis 2014; 14:12. [PMID: 25027164 DOI: 10.1167/14.8.12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Macaque monkeys are a model of human color vision. To facilitate linking physiology in monkeys with psychophysics in humans, we directly compared color-detection thresholds in humans and rhesus monkeys. Colors were defined by an equiluminant plane of cone-opponent color space. All subjects were tested on an identical apparatus with a four-alternative forced-choice task. Targets were 2° square, centered 2° from fixation, embedded in luminance noise. Across all subjects, the change in detection thresholds from initial testing to plateau performance (“learning”) was similar for +L − M (red) colors and +M − L (bluish-green) colors. But the extent of learning was higher for +S (lavender) than for −S (yellow-lime); moreover, at plateau performance, the cone contrast at the detection threshold was higher for +S than for −S. These asymmetries may reflect differences in retinal circuitry for S-ON and S-OFF. At plateau performance, the two species also had similar detection thresholds for all colors, although monkeys had shorter reaction times than humans and slightly lower thresholds for colors that modulated L/M cones. We discuss whether these observations, together with previous work showing that monkeys have lower spatial acuity than humans, could be accounted for by selective pressures driving higher chromatic sensitivity at the cost of spatial acuity amongst monkeys, specifically for the more recently evolved L − M mechanism.
Collapse
Affiliation(s)
- Galina Gagin
- Neuroscience Program, Wellesley College, Wellesley, MA, USA
| | | | - Adam Butensky
- Harvard College, Harvard University, Cambridge, MA, USA
| | - Monica A Gates
- Neuroscience Program, Wellesley College, Wellesley, MA, USA
| | - Jiun-Yiing Hu
- Neuroscience Program, Wellesley College, Wellesley, MA, USA
| | | | | | - Jane Qu
- Neuroscience Program, Wellesley College, Wellesley, MA, USA
| | | | | | - Bevil R Conway
- Neuroscience Program, Wellesley College, Wellesley, MA, USADepartment of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Hall N, Colby C. S-cone Visual Stimuli Activate Superior Colliculus Neurons in Old World Monkeys: Implications for Understanding Blindsight. J Cogn Neurosci 2014; 26:1234-56. [DOI: 10.1162/jocn_a_00555] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
The superior colliculus (SC) is thought to be unresponsive to stimuli that activate only short wavelength-sensitive cones (S-cones) in the retina. The apparent lack of S-cone input to the SC was recognized by Sumner et al. [Sumner, P., Adamjee, T., & Mollon, J. D. Signals invisible to the collicular and magnocellular pathways can capture visual attention. Current Biology, 12, 1312–1316, 2002] as an opportunity to test SC function. The idea is that visual behavior dependent on the SC should be impaired when S-cone stimuli are used because they are invisible to the SC. The SC plays a critical role in blindsight. If the SC is insensitive to S-cone stimuli blindsight behavior should be impaired when S-cone stimuli are used. Many clinical and behavioral studies have been based on the assumption that S-cone-specific stimuli do not activate neurons in the SC. Our goal was to test whether single neurons in macaque SC respond to stimuli that activate only S-cones. Stimuli were calibrated psychophysically in each animal and at each individual spatial location used in experimental testing [Hall, N. J., & Colby, C. L. Psychophysical definition of S-cone stimuli in the macaque. Journal of Vision, 13, 2013]. We recorded from 178 visually responsive neurons in two awake, behaving rhesus monkeys. Contrary to the prevailing view, we found that nearly all visual SC neurons can be activated by S-cone-specific visual stimuli. Most of these neurons were sensitive to the degree of S-cone contrast. Of 178 visual SC neurons, 155 (87%) had stronger responses to a high than to a low S-cone contrast. Many of these neurons' responses (56/178 or 31%) significantly distinguished between the high and low S-cone contrast stimuli. The latency and amplitude of responses depended on S-cone contrast. These findings indicate that stimuli that activate only S-cones cannot be used to diagnose collicular mediation.
Collapse
|
20
|
Antidromic latency of magnocellular, parvocellular, and koniocellular (Blue-ON) geniculocortical relay cells in marmosets. Vis Neurosci 2014; 31:263-73. [DOI: 10.1017/s0952523814000066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractWe studied the functional connectivity of cells in the lateral geniculate nucleus (LGN) with the primary visual cortex (V1) in anesthetized marmosets (Callithrix jacchus). The LGN sends signals to V1 along parallel visual pathways called parvocellular (P), magnocellular (M), and koniocellular (K). To better understand how these pathways provide inputs to V1, we antidromically activated relay cells in the LGN by electrically stimulating V1 and measuring the conduction latencies of P (n = 7), M (n = 14), and the “Blue-ON” (n = 5) subgroup of K cells (K-BON cells). We found that the antidromic latencies of K-BON cells were similar to those of P cells. We also measured the response latencies to high contrast visual stimuli for a subset of cells. We found the LGN cells that have the shortest latency of response to visual stimulation also have the shortest antidromic latencies. We conclude that Blue color signals are transmitted directly to V1 from the LGN by K-BON cells.
Collapse
|
21
|
Zele AJ, Maynard ML, Joyce DS, Cao D. Effect of rod-cone interactions on mesopic visual performance mediated by chromatic and luminance pathways. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2014; 31:A7-A14. [PMID: 24695205 PMCID: PMC3979541 DOI: 10.1364/josaa.31.0000a7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We studied the effect of rod-cone interactions on mesopic visual reaction time (RT). Rod and cone photoreceptor excitations were independently controlled using a four-primary photostimulator. It was observed that (1) lateral rod-cone interactions increase the cone-mediated RTs; (2) the rod-cone interactions are strongest when rod sensitivity is maximal in a dark surround, but weaker with increased rod activity in a light surround; and (3) the presence of a dark surround nonselectively increased the mean and variability of chromatic (+L-M, S-cone) and luminance (L+M+S) RTs independent of the level of rod activity. The results demonstrate that lateral rod-cone interactions must be considered when deriving mesopic luminous efficiency using RT.
Collapse
Affiliation(s)
- Andrew J. Zele
- Visual Science Laboratory, School of Optometry and Vision Science & Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059 QLD, Australia
| | - Michelle L. Maynard
- Visual Science Laboratory, School of Optometry and Vision Science & Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059 QLD, Australia
| | - Daniel S. Joyce
- Visual Science Laboratory, School of Optometry and Vision Science & Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059 QLD, Australia
| | - Dingcai Cao
- Visual Perception Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago 60612, Illinois, USA
| |
Collapse
|
22
|
Abstract
The short-wavelength-sensitive (S) cones play an important role in color vision of primates, and may also contribute to the coding of other visual features, such as luminance and motion. The color signals carried by the S cones and other cone types are largely separated in the subcortical visual pathway. Studies on nonhuman primates or humans have suggested that these signals are combined in the striate cortex (V1) following a substantial amplification of the S-cone signals in the same area. In addition to reviewing these studies, this review describes the circuitry in V1 that may underlie the processing of the S-cone signals and the dynamics of this processing. It also relates the interaction between various cone signals in V1 to the results of some psychophysical and physiological studies on color perception, which leads to a discussion of a previous model, in which color perception is produced by a multistage processing of the cone signals. Finally, I discuss the processing of the S-cone signals in the extrastriate area V2.
Collapse
|
23
|
Latency of chromatic information in area V4. ACTA ACUST UNITED AC 2013; 108:11-7. [PMID: 23811158 DOI: 10.1016/j.jphysparis.2013.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/31/2013] [Accepted: 05/23/2013] [Indexed: 11/23/2022]
Abstract
In the primate visual system, information about color is known to be carried in separate divisions of the retino-geniculo-cortical pathway. From the retina, responses of photoreceptors to short (S), medium (M), and long (L) wavelengths of light are processed in two different opponent pathways. Signals in the S-opponent pathway, or blue/yellow channel, have been found to lag behind signals in the L/M-opponent pathway, or red/green channel in primary visual area V1, and psychophysical studies have suggested similar perceptual delays. However, more recent psychophysical studies have found that perceptual differences are negligible with the proper controls, suggesting that information between the two channels is integrated at some stage of processing beyond V1. To study the timing of color signals further downstream in visual cortex, we examined the responses of neurons in area V4 to colored stimuli varying along the two cardinal axes of the equiluminant opponent color space. We used information theory to measure the mutual information between the stimuli presented and the neural responses in short time windows in order to estimate the latency of color information in area V4. We found that on average, despite the latency difference in V1, information about S-opponent signals arrives in V4 at the same time as information about L/M-opponent signals. This work indicates a convergence of signal timing among chromatic channels within extrastriate cortex.
Collapse
|
24
|
The path to learning: Action acquisition is impaired when visual reinforcement signals must first access cortex. Behav Brain Res 2013; 243:267-72. [DOI: 10.1016/j.bbr.2013.01.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/14/2013] [Accepted: 01/23/2013] [Indexed: 11/20/2022]
|
25
|
Abstract
We used the perceptual reports of nonhuman primates to perform psychophysical calibrations of S-cone isolating stimuli. S-cone stimuli were calibrated separately at several spatial locations for each monkey. To do this we exploited the effect of transient tritanopia, which causes a selective decrease of sensitivity in the observer's S-cone channel. At the start of each transient tritanopia trial monkeys were visually adapted to a bright yellow background. This type of adaptation is known to induce transient tritanopia. Calibrated S-cone isolating stimuli were determined by finding a near S-cone stimulus whose detection threshold was maximally elevated during transient tritanopia. At the start of each control trial, monkeys were adapted to a bright white background. In these trials, monkeys' detection thresholds for near S-cone stimuli were unchanged. We found that S-cone isolating stimuli could be determined at most locations tested in each monkey. Calibrated S-cone stimuli were particular to both spatial location and animal. To understand the visual system as a whole in vivo requires physiological methods not possible in human subjects. The present results open the door to novel behavioral and physiological experiments by showing that S-cone isolating stimuli can be calibrated in monkeys.
Collapse
Affiliation(s)
- Nathan Hall
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
26
|
Zele AJ, Kremers J, Feigl B. Mesopic rod and S-cone interactions revealed by modulation thresholds. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2012; 29:A19-A26. [PMID: 22330378 DOI: 10.1364/josaa.29.000a19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We analyzed mesopic rod and S-cone interactions in terms of their contributions to the blue-yellow opponent pathway. Stimuli were generated using a four-primary colorimeter. Mixed rod and S-cone modulation thresholds (constant L-, M-cone excitation) were measured as a function of their phase difference. Modulation amplitude was equated using threshold units and contrast ratios. This study identified three interaction types: (1) a linear and antagonistic rod:S-cone interaction, (2) probability summation, and (3) a previously unidentified mutual nonlinear reinforcement. Linear rod:S-cone interactions occur within the blue-yellow opponent pathway. Probability summation involves signaling by different postreceptoral pathways. The origin of the nonlinear reinforcement is possibly at the photoreceptors.
Collapse
Affiliation(s)
- Andrew J Zele
- Visual Science Laboratory, School of Optometry and Vision Science & Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
| | | | | |
Collapse
|
27
|
Medina JM, Díaz JA. S-cone excitation ratios for reaction times to blue-yellow suprathreshold changes at isoluminance. Ophthalmic Physiol Opt 2011; 30:511-7. [PMID: 20883334 DOI: 10.1111/j.1475-1313.2010.00745.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We examined different contrast metrics to scale visual latencies for suprathreshold stimuli modulated along tritan confusion lines. S-cone increments ('blue') and decrements ('yellow') were isolated along two different tritan confusion lines, each one having a different luminance value. Reaction times (RT) were evaluated as a function of the Weber contrast and the S-cone excitation ratio between the test stimulus and the background. RTs were described using a model that generalizes Piéron's law and incorporates the notion of threshold units and power law scaling. Our results show that RTs for S-cone increments and decrements equate better when using the S-cone excitation ratio. However, a single function did not describe all RT data. S-cone RTs are better described by separate functions. We conclude that S-cone increments and decrements do not scale in the same manner. Both Weber contrast and the S-cone excitation ratio are plausible metrics at isoluminance. The implications for the S-cone pathways are discussed.
Collapse
Affiliation(s)
- José M Medina
- Center for Physics, University of Minho, Braga, Portugal.
| | | |
Collapse
|
28
|
Vincent CJ, Gobet F, Parker A, Derrington AM. The L/M-opponent channel provides a distinct and time-dependent contribution towards visual recognition. Perception 2010; 39:1185-98. [PMID: 21125947 DOI: 10.1068/p6476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The visual pathway has been successfully modelled as containing separate channels consisting of one achromatically opponent mechanism and two chromatically opponent mechanisms. However, little is known about how time affects the processing of chromatic information. Here, parametrically defined objects were generated. Reduced-colour objects were interleaved with full-colour objects and measures of recognition performance (d') were compared by the continuous serial recognition paradigm. Measures were taken at multiple delay intervals (1, 4, 7, and 10 s). When chromatic variations were removed, recognition performance was impaired, but at the 1 s and 10 s intervals only. When luminance variations were removed, no impairment resulted. When only L/M-opponent modulations were removed, a deficit in performance was produced only at the 1 s and 10 s intervals, similar to the removal of chromatic variation. When only S-opponent modulations were removed, no impairment was observed. The results suggest that the L/M-opponent pathway provides a specialised contribution to visual recognition, but that its effect is modulated by time. A three-stage process model is proposed to explain the data.
Collapse
Affiliation(s)
- Christopher J Vincent
- School of Psychology, University of Nottingham, University Road, Nottingham NG7 2RD, UK.
| | | | | | | |
Collapse
|
29
|
Abstract
We present a series of experiments exploring the effect of chromaticity on reaction time (RT) for a variety of stimulus conditions, including chromatic and luminance contrast, luminance, and size. The chromaticity of these stimuli was varied along a series of vectors in color space that included the two chromatic-opponent-cone axes, a red-green (L-M) axis and a blue-yellow [S - (L + M)] axis, and intermediate noncardinal orientations, as well as the luminance axis (L + M). For Weber luminance contrasts above 10-20%, RTs tend to the same asymptote, irrespective of chromatic direction. At lower luminance contrast, the addition of chromatic information shortens the RT. RTs are strongly influenced by stimulus size when the chromatic stimulus is modulated along the [S - (L + M)] pathway and by stimulus size and adaptation luminance for the (L-M) pathway. RTs are independent of stimulus size for stimuli larger than 0.5 deg. Data are modeled with a modified version of Pieron's formula with an exponent close to 2, in which the stimulus intensity term is replaced by a factor that considers the relative effects of chromatic and achromatic information, as indexed by the RMS (square-root of the cone contrast) value at isoluminance and the Weber luminance contrast, respectively. The parameters of the model reveal how RT is linked to stimulus size, chromatic channels, and adaptation luminance and how they can be interpreted in terms of two chromatic mechanisms. This equation predicts that, for isoluminance, RTs for a stimulus lying on the S-cone pathway are higher than those for a stimulus lying on the L-M-cone pathway, for a given RMS cone contrast. The equation also predicts an asymptotic trend to the RT for an achromatic stimulus when the luminance contrast is sufficiently large.
Collapse
|
30
|
Psychophysical channels and ERP population responses in human visual cortex: area summation across chromatic and achromatic pathways. Vision Res 2010; 50:1283-91. [PMID: 20430049 DOI: 10.1016/j.visres.2010.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 04/20/2010] [Accepted: 04/21/2010] [Indexed: 11/22/2022]
Abstract
In the early stages of vision, information is transmitted through distinct physiologically defined pathways. These may be related with three post-receptoral detection mechanisms defined psychophysically in humans. Accordingly, the parvocellular pathway is very sensitive to L-M-cone contrast, processes mainly foveal information and underlies fine discrimination of visual features. The magnocellular pathway is most sensitive to luminance contrast and is important for visuo-spatial and motion processing. The less understood koniocellular pathway responds to S-cone modulation outside the foveola. As such, the three pathways process visual information in a different manner, with the L-M-cone psychophysical channel being more devoted to central vision and the two other channels responding significantly to peripheral information. We measured size response functions of these three processing channels using event related potential (ERP/EEG) recordings and stimuli with various sizes and contrasts with the aim of studying coding of stimulus properties within each of these channels. The effect of stimulus size was significantly smaller for the L-M-cone channel consistent with its dominance in the central visual field. Furthermore, for this pathway, the effect of size was not modulated by stimulus contrast. In contrast, both the S-cone and achromatic channels showed a strong effect of size that was significantly modulated by contrast. Interestingly, both the S-cone and achromatic channels responded proportionally to the area of cortex activated, suggesting that the S-cone channel represents space in a similar manner to the achromatic channel. In conclusion, a fundamental relation exists between previously identified psychophysical mechanisms and population responses in the visual cortex.
Collapse
|
31
|
Lee RJ, Mollon JD, Zaidi Q, Smithson HE. Latency characteristics of the short-wavelength-sensitive cones and their associated pathways. J Vis 2009; 9:5.1-17. [PMID: 20053096 DOI: 10.1167/9.12.5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 10/09/2009] [Indexed: 11/24/2022] Open
Abstract
There are many distinct types of retinal ganglion and LGN cells that have opponent cone inputs and which may carry chromatic information. Of interest are the asymmetries in those LGN cells that carry S-cone signals: in S-ON cells, S+ signals are opposed by (L + M) whereas, in many S-OFF cells, L+ signals are opposed by (S + M), giving -S + L - M (C. Tailby, S. G. Solomon, & P. Lennie, 2008). However, the S-opponent pathway is traditionally modeled as +/-[S - (L + M)]. A phase lag of the S-cone signal has been inferred from psychophysical thresholds for discriminating combinations of simultaneous sinusoidal modulations along +/-[L - M] and +/-[S - (L + M)] directions (C. F. Stromeyer, R. T. Eskew, R. E. Kronauer, & L. Spillmann, 1991). We extend this experiment, measuring discrimination thresholds as a function of the phase delay between pairs of orthogonal component modulations. When one of the components isolates the tritan axis, there are phase delays at which discrimination is impossible; when neither component is aligned with the tritan axis, discrimination is possible at all delays. The data imply that the S-cone signal is delayed by approximately 12 ms relative to (L - M) responses. Given that post-receptoral mechanisms show diverse tuning around the tritan axis, we suggest that the delay arises before the S-opponent channels are constructed, possibly in the S-cones themselves.
Collapse
Affiliation(s)
- R J Lee
- Department of Psychology, Durham University, UK.
| | | | | | | |
Collapse
|
32
|
Wade AR. Long-range suppressive interactions between S-cone and luminance channels. Vision Res 2009; 49:1554-62. [PMID: 19344735 DOI: 10.1016/j.visres.2009.03.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 03/04/2009] [Accepted: 03/12/2009] [Indexed: 11/26/2022]
Abstract
Surround suppression (SS) refers to a reduction in the effective stimulus contrast in one visual location produced by a stimulus presented in an adjacent location. This type of suppression is tuned for orientation and spatial frequency and is thought to be a cortical process. In this paper we used psychophysical measurements to determine whether S-cone-driven signals are affected by surround suppression and, if so, whether S-cone and achromatic signals interact at spatially-remote locations. Our results revealed three important aspects of surround suppression. Firstly, we show that S-cone probes are suppressed by simultaneous S-cone contrast surrounds and that this suppression has the characteristics of a cortical mechanism. Secondly, we show that when probes and surrounds are presented simultaneously, there are no suppressive interactions between S-cone and luminance stimuli. Finally, we demonstrate that this apparent independence is an artifact of signal timing: when the S-cone components of the stimuli precede the luminance components by approximately 40 ms, we find a significant interaction between the two pathways. The amplitude of this interaction depends critically upon the relative onset times of the two components. These results indicate that some component of surround suppression depends on neural computations that occur after the S- and luminance pathways are combined in striate cortex. In addition, the strong dependence of the magnitude of surround suppression on temporal ordering suggests that much of the effect is driven by transient signals.
Collapse
Affiliation(s)
- Alex R Wade
- Smith-Kettlewell Eye Research Institute, Brain Imaging, San Francisco, CA 94115, United States.
| |
Collapse
|
33
|
On the search for an appropriate metric for reaction time to suprathreshold increments and decrements. Vision Res 2009; 49:524-9. [DOI: 10.1016/j.visres.2008.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 12/15/2008] [Accepted: 12/16/2008] [Indexed: 11/20/2022]
|
34
|
Abstract
Simple reaction times (RTs) were measured to brief temporally blurred (total onset 570 ms) Gaussian isoluminant chromatic patches (s.d. 0.5°) whose chromaticities lay along the cardinal chromatic axes (0°, 90°, 180°, and 270° in MBDKL color space). Bipolar adapting stimuli were employed (0° versus 180° or 90° versus 270°). These were larger Gaussian blobs (s.d. 1°), modulating sinusoidally between the two hues at 1 Hz. Throughout, the background was illuminant “C” (x = 0.31, y = 0.316, L = 12.5). In a single run, a series of 64 or 32 stimuli were presented without adaptation, followed by 64 or 32 stimuli each of which was preceded by 3 s of adaptation, either along the same or the orthogonal chromatic axis. Finally, 192 or 128 RTs were recorded to measure the time course of recovery from adaptation. Both adapting and test stimuli were presented at fixed supra-threshold contrasts. The effect of adaptation was seen as a lengthening of the RT, which occurred in the first few seconds of the adaptation period. After cessation of adaptation, there was a similarly rapid shortening of RT, although full recovery took 60–90 s. Adaptation gain functions suggested that the S-(L + M) system was less prone to adaptation than L-M.
Collapse
|
35
|
Bompas A, Sterling T, Rafal RD, Sumner P. Naso-temporal asymmetry for signals invisible to the retinotectal pathway. J Neurophysiol 2008; 100:412-21. [PMID: 18480367 DOI: 10.1152/jn.90312.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Monocular viewing conditions show an asymmetry between stimuli presented in the temporal and nasal visual fields in their efficiency for automatically triggering eye saccades and grasping attention. For instance, observers free to make a saccade to one of two stimuli presented together orient preferentially to the temporal stimulus. Such naso-temporal asymmetry (NTA) has been assumed to reflect the asymmetry in the retinotectal pathway to the superior colliculus. We tested this hypothesis using S cone stimuli, which are invisible to the magnocellular and retinotectal pathways. The observed NTA in choice saccades to bilateral stimuli was no less present for S cone stimuli than for luminance stimuli. Additionally, the amplitude of the NTA can be enhanced when S cone signals are added to luminance signals. These results suggest that behavioral NTA in humans is not diagnostic of retinotectal mediation. Furthermore, we found no asymmetries in latency, suggesting that the NTA in saccade choice does not originate simply from a bottom-up asymmetry in any low level visual pathways.
Collapse
Affiliation(s)
- Aline Bompas
- School of Psychology, Cardiff University, Cardiff, United Kingdom.
| | | | | | | |
Collapse
|
36
|
Abstract
Impulse response functions (IRFs) were obtained from two-pulse detection thresholds using isoluminant stimuli that produced increments or decrements in S-cone excitation. The pulses were chromatically modulated at constant luminance (based on 18 Hz heterochromatic flicker photometry). Chromatic stimuli were presented as a Gaussian patch (+/-1 SD = 2.3 degrees) in one of four quadrants around a central fixation cross on a CRT screen. Each of the two pulses (6.67 ms) was separated by an inter-stimulus interval (ISI) from 20 to 360 ms. Chromaticity of the pulses was changed from the equal-energy white of the background to a bluish or yellowish color along individually determined tritan lines (based on color matching under strong S-cone adaptation from a 420 nm background superimposed in Maxwellian view). Chromatic detection thresholds were determined by a four-alternative forced-choice method with staircases for each ISI interleaved in each session. Measurements were repeated in at least four sessions for each observer. IRFs were calculated by varying four parameters of an exponentially-damped sinewave. Both S-cone increment and decrement IRFs are characterized by a single excitatory phase and a much longer time course compared with IRFs derived for luminance modulation using the same apparatus and observers. S-cone increment IRFs are faster than S-cone decrement IRFs; the time to peak amplitude of S-cone increment and decrement IRFs is 50-70 and 100-120 ms, respectively. These results were used to derive the temporal contrast sensitivity for human observers of putative ON- and OFF-channels carrying signals from S-cones.
Collapse
Affiliation(s)
- Keizo Shinomori
- Department of Information Systems Engineering, Kochi University of Technology, Kami-city, Koichi, Japan.
| | | |
Collapse
|
37
|
Anderson EJ, Husain M, Sumner P. Human intraparietal sulcus (IPS) and competition between exogenous and endogenous saccade plans. Neuroimage 2007; 40:838-851. [PMID: 18222708 DOI: 10.1016/j.neuroimage.2007.10.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 10/19/2007] [Accepted: 10/30/2007] [Indexed: 11/29/2022] Open
Abstract
How are stimulus-driven reflexes generated, and what controls their competition with voluntary action? The saccadic reflex to look towards an abrupt visual onset (prosaccade) has been associated with the retinotectal and magnocellular pathways, which rapidly convey signals to the superior colliculus and cortical eye fields. Such stimulus-driven reflexes need to be suppressed when making an eye movement in the opposite direction (antisaccade), resulting in a cost in saccade latency. We compared the latencies of pro- and anti-saccades elicited by conventional luminance stimuli with those evoked by stimuli visible only to short-wave-sensitive cones (S cones) embedded in dynamic luminance noise. Critically, the retinotectal and magnocellular pathways are functionally blind to such stimuli. Compared to luminance stimuli, antisaccade latency costs were significantly reduced for 'S-cone' stimuli. This behavioural interaction is consistent with reduced competition between reflexive and endogenous saccade plans when S-cone stimuli are employed, while other processes involved in making an antisaccade, such as changing preparatory set or generating an endogenous saccade, are predicted to be equivalent for each kind of stimulus. Using fMRI, we found that activity in the right intraparietal sulcus (IPS) mirrored the behavioural interaction in saccade latencies. Thus, the right IPS appears to index the degree of competition between exogenous and endogenous saccade plans, showing the activity pattern predicted for an area involved in suppressing the saccade reflex. Furthermore, signals recorded from the superior colliculus showed the reverse pattern of responses, consistent with a direct inhibitory influence of IPS on SC.
Collapse
Affiliation(s)
- Elaine J Anderson
- Institute of Cognitive Neuroscience, Alexandra House, 17 Queen Square, London WC1N 3AR, UK; Department of Clinical Neuroscience, Imperial College London, Charing Cross Campus, Fulham Palace Road, London W6 8RP, UK.
| | - Masud Husain
- Institute of Cognitive Neuroscience, Alexandra House, 17 Queen Square, London WC1N 3AR, UK; Department of Clinical Neuroscience, Imperial College London, Charing Cross Campus, Fulham Palace Road, London W6 8RP, UK
| | - Petroc Sumner
- Department of Clinical Neuroscience, Imperial College London, Charing Cross Campus, Fulham Palace Road, London W6 8RP, UK; School of Psychology, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| |
Collapse
|
38
|
Zele AJ, Cao D, Pokorny J. Threshold units: a correct metric for reaction time? Vision Res 2007; 47:608-11. [PMID: 17240416 PMCID: PMC1847630 DOI: 10.1016/j.visres.2006.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 12/05/2006] [Accepted: 12/06/2006] [Indexed: 12/01/2022]
Abstract
PURPOSE To compare reaction time (RT) to rod incremental and decremental stimuli expressed in physical contrast units or psychophysical threshold units. METHODS Rod contrast detection thresholds and suprathreshold RTs were measured for Rapid-On and Rapid-Off ramp stimuli. RESULTS Threshold sensitivity to Rapid-Off stimuli was higher than to Rapid-On stimuli. Suprathreshold RTs specified in Weber contrast for Rapid-Off stimuli were shorter than for Rapid-On stimuli. Reaction time data expressed in multiples of threshold reversed the outcomes: Reaction times for Rapid-On stimuli were shorter than those for Rapid-Off stimuli. The use of alternative contrast metrics also failed to equate RTs. CONCLUSIONS A case is made that the interpretation of RT data may be confounded when expressed in threshold units. Stimulus energy or contrast is the only metric common to the response characteristics of the cells underlying speeded responses. The use of threshold metrics for RT can confuse the interpretation of an underlying physiological process.
Collapse
Affiliation(s)
- Andrew J. Zele
- Department of Ophthalmology and Visual Science, The University of Chicago, 940 East 57th Street, Chicago, IL 60637, USA
| | - Dingcai Cao
- Department of Ophthalmology and Visual Science, The University of Chicago, 940 East 57th Street, Chicago, IL 60637, USA
- Department of Health Studies, The University of Chicago, 940 East 57th Street, Chicago, IL 60637, USA
| | - Joel Pokorny
- Department of Ophthalmology and Visual Science, The University of Chicago, 940 East 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
39
|
Conway BR, Livingstone MS. Spatial and temporal properties of cone signals in alert macaque primary visual cortex. J Neurosci 2006; 26:10826-46. [PMID: 17050721 PMCID: PMC2963176 DOI: 10.1523/jneurosci.2091-06.2006] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurons in the lateral geniculate nucleus cannot perform the spatial color calculations necessary for color contrast and color constancy. Under neutral-adapting conditions, we mapped the cone inputs (L, M, and S) to 83 cone-opponent cells representing the central visual field of the next stage of visual processing, primary visual cortex (V1), to determine how the color signals are spatially transformed. Cone-opponent cells, constituting approximately 10% of V1 cells, formed two populations, red-green (L vs M; 66 of 83) and blue-yellow (S vs L+M; 17 of 83). Many cone-opponent cells (48 of 83) were double-opponent, with circular receptive-field centers and crescent-shaped surrounds (0.63 degree offset) that had opposite chromatic tuning to the centers and a time-to-peak 11 ms later than the centers. The remaining cone-opponent cells were either spatially opponent in only one cone system (20 of 83) or lacked spatial opponency (15 of 83). Cells lacking spatial opponency had smaller receptive fields (0.5-0.7 degrees) than spatial-opponent cell centers (approximately 1 degree). We found that red-green cells received S-cone input, which aligned with M input, and, unlike blue-yellow cells, red-green cells gave push-pull responses: receptive-field centers of red-ON cells were excited by both L increments (bright red) and M decrements (dark red) and were suppressed by both L decrements (dark green) and M increments (bright green). Excitatory responses to decrements were slightly larger than to increments, which may account for the lower detection and discrimination thresholds of decrements shown psychophysically. By virtue of their specialized receptive fields, the neurons described here spatially transform the cone signals and represent the first stage in the visual system at which spatially opponent color calculations are made.
Collapse
Affiliation(s)
- Bevil R Conway
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
40
|
Abstract
Destruction of the occipital cortex presumably leads to permanent blindness in the contralateral visual field. Residual abilities to respond to visual stimuli in the blind field without consciously experiencing them have, however, been described in cortically blind patients and are termed 'blindsight'. Although the neuronal basis of blindsight remains unknown, possible neuronal correlates have been proposed based on the nature of the residual vision observed. The most prominent but still controversial hypothesis postulates the involvement of the superior colliculi in blindsight. Here we demonstrate, using a computer-based reaction time test in a group of hemispherectomized subjects, that human 'attention-blindsight' can be measured for achromatic stimuli but disappears for stimuli that solely activate S-cones. Given that primate data have shown that the superior colliculi lacks input from S-cones, our results lend strong support to the hypothesis that 'attention-blindsight' is mediated through a collicular pathway. The contribution of a direct geniculo-extrastriate-koniocellular projection was ruled out by testing hemispherectomized subjects in whom a whole hemisphere has been removed or disconnected for the treatment of epilepsy. A direct retino-pulvinar-cortical connection is also unlikely as the pulvinar nucleus is known to receive input from S-cones as well as from L/M-cone-driven colour-opponent ganglion cells.
Collapse
Affiliation(s)
- Sandra E Leh
- Neuropsychology/Cognitive Neuroscience Unit, Montreal Neurological Institute, 3801 University Street, Montreal, Quebec, Canada H3A 2B4.
| | | | | |
Collapse
|
41
|
Characterising mesopic spectral sensitivity from reaction times. Vision Res 2006; 46:4232-43. [PMID: 17014885 DOI: 10.1016/j.visres.2006.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2006] [Revised: 08/06/2006] [Accepted: 08/08/2006] [Indexed: 11/21/2022]
Abstract
The spectral sensitivity of the eye was investigated using reaction times to broadband chromatic stimuli over a range of background luminances. Relative sensitivity was determined from the nonlinear reaction time curve by converting reaction times to a linear measure that was independent of spectral sensitivity. Two models for mesopic spectral sensitivity were compared. The first was a linear combination of V(lambda) and V'(lambda), and the second included input from the L-M colour-opponent mechanism and the S-cones. The second model produced a significantly better fit to the data. The chromatic mechanisms appear to contribute to reaction time when there is an appreciable chromatic signal but luminance contrast is low.
Collapse
|
42
|
Sumner P. Inhibition versus attentional momentum in cortical and collicular mechanisms of IOR. Cogn Neuropsychol 2006; 23:1035-48. [DOI: 10.1080/02643290600588350] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Autrusseau F, Shevell SK. Temporal nulling of induction from spatial patterns modulated in time. Vis Neurosci 2006; 23:479-82. [PMID: 16961983 DOI: 10.1017/s0952523806233534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 04/25/2006] [Indexed: 11/07/2022]
Abstract
Temporally varying chromatic-inducing light was used to infer receptive-field organization. Time-varying shifts in color appearance within a test field were induced by a surrounding chromatic pattern; the shifts were then nulled by adding a time-varying stimulus to the test area so the observer perceived a steady test. This method measured chromatic induction without requiring an observer to judge the color appearance of the test. The induced color shifts were consistent with a +s/-s spatially antagonistic neural receptive field, which also accounts for color shifts induced by static chromatic patterns (Monnier & Shevell, 2003, Monnier & Shevell, 2004). The response of this type of receptive-field, which is found only in the visual cortex, increases with S-cone stimulation at its center and decreases with S-cone stimulation within its surround. The measurements also showed a negligible influence of temporal inducing frequency in the range 0.5-4 Hz.
Collapse
Affiliation(s)
- Florent Autrusseau
- Visual Science Laboratories, University of Chicago, Chicago, Illinois, USA.
| | | |
Collapse
|
44
|
Danilova M, Mollon J. The gap effect is exaggerated in parafovea. Vis Neurosci 2006; 23:509-17. [PMID: 16961988 PMCID: PMC2648725 DOI: 10.1017/s0952523806233327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 01/27/2005] [Indexed: 11/06/2022]
Abstract
In central vision, the discrimination of colors lying on a tritan line is improved if a small gap is introduced between the two stimulus fields. Boynton et al. (1977) called this a "positive gap effect." They found that the effect was weak or absent for discriminations based on the ratio of the signals of long-wave and middle-wave cones; and even for tritan stimuli, the gap effect was weakened when forced choice or brief durations were used. We here describe measurements of the gap effect in the parafovea. The stimuli were 1 deg of visual angle in width and were centered on an imaginary circle of radius 5 deg. They were brief (100 ms), and thresholds were measured with a spatial two-alternative forced choice. Under these conditions we find a clear gap effect, which is of similar magnitude for both the cardinal chromatic axes. It may be a chromatic analog of the crowding effect observed for parafoveal perception of form.
Collapse
Affiliation(s)
- Marina Danilova
- I P Pavlov Institute of Physiology, Laboratory of Visual Physiology, St. Petersburg, Russia.
| | | |
Collapse
|
45
|
Smithson HE, Khan SS, Sharpe LT, Stockman A. Transitions between color categories mapped with a reverse Stroop
task. Vis Neurosci 2006; 23:453-60. [PMID: 16961980 DOI: 10.1017/s0952523806233388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 02/21/2006] [Indexed: 11/07/2022]
Abstract
In the reverse Stroop task, observers are instructed to ignore the ink
color in which a color word is printed (the distractor color) and to
respond to the meaning of the color word (the target). Reaction times
(RTs) are faster with congruent combinations when the ink color matches
the word than with incongruent combinations when the ink color does not
match the word. We manipulated the distracting ink color from congruent to
incongruent and measured the transition from facilitation to interference.
In Experiment 1, we confirmed that this transition could be assessed
independently from the contextual influence of particular sets of stimuli
and responses, implying that the color space in which interference and
facilitation occurs is generalizable. In Experiment 2, we obtained reverse
Stroop data for transitions between red and yellow, yellow and green,
green and blue, and blue and red, and compared them with independent
estimates of color appearance obtained by hue scaling for the same
chromaticity samples. We find that the magnitude of the reverse Stroop
effect can provide a reliable index of the similarity of color appearance
between the distracting chromaticity and the color category represented by
the target color word. Moreover, it will allow us to quantify the mapping
between the chromaticity space defined at the cone photoreceptors and a
cognitive color space defined at an advanced level of neural
processing.
Collapse
|
46
|
Medina JM, Díaz JA. Postreceptoral chromatic-adaptation mechanisms in the red-green and blue-yellow systems using simple reaction times. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2006; 23:993-1007. [PMID: 16642176 DOI: 10.1364/josaa.23.000993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Simple visual-reaction times (VRT) were measured for a variety of stimuli selected along red-green (L-M axis) and blue-yellow [S-(L + M) axis] directions in the isoluminant plane under different adaptation stimuli. Data were plotted in terms of the RMS cone contrast in contrast-threshold units. For each opponent system, a modified Piéron function was fitted in each experimental configuration and on all adaptation stimuli. A single function did not account for all the data, confirming the existence of separate postreceptoral adaptation mechanisms in each opponent system under suprathreshold conditions. The analysis of the VRT-hazard functions suggested that both color-opponent mechanisms present a well-defined, transient-sustained structure at marked suprathreshold conditions. The influence of signal polarity and chromatic adaptation on each color axis proves the existence of asymmetries in the integrated hazard functions, suggesting separate detection mechanisms for each pole (red, green, blue, and yellow detectors).
Collapse
Affiliation(s)
- José M Medina
- Física Aplicada, Universidad Miguel Hernández, Elche, Spain.
| | | |
Collapse
|
47
|
Sumner P, Nachev P, Castor-Perry S, Isenman H, Kennard C. Which visual pathways cause fixation-related inhibition? J Neurophysiol 2005; 95:1527-36. [PMID: 16319211 DOI: 10.1152/jn.00781.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Visual stimuli can both inhibit and activate motor mechanisms. In one well-known example, the latency of saccadic eye movements is prolonged in the presence of a fixation stimulus, relative to the case in which the fixation stimulus disappears before the target appears. This automatic sensory-motor effect, known as the gap effect or fixation-offset effect, has been associated with inhibitory connections within the superior colliculus (SC). Visual information is provided to the SC and other oculomotor areas, such as the frontal eye fields (FEF), mainly by the magnocellular geniculostriate pathway, and also by the retinotectal pathway. We tested whether signals in these pathways are necessary to create fixation-related inhibition, by using stimuli invisible to them. We found that such stimuli, visible only to short-wave-sensitive cones (S cones), do produce fixation-related inhibition (including when warning effects were equated). We also demonstrate that this fixation-related inhibition cannot be explained by residual activation of luminance pathways and must be caused by a route separate from that of luminance fixation signals. Thus there are at least two routes that cause fixation-related inhibition, and direct sensory input to the SC or FEF by the magnocellular or retinotectal pathways is not required. We discuss the implications that there may be both cortical and collicular mechanisms.
Collapse
Affiliation(s)
- Petroc Sumner
- Dept. of Visual Neuroscience (Room 10L15a Division of Neuroscience, Faculty of Medicine, Imperial College London, St Dunstan's Road, London W6 8RP, UK.
| | | | | | | | | |
Collapse
|
48
|
Sumner P, Nachev P, Vora N, Husain M, Kennard C. Distinct Cortical and Collicular Mechanisms of Inhibition of Return Revealed with S Cone Stimuli. Curr Biol 2004; 14:2259-63. [PMID: 15620653 DOI: 10.1016/j.cub.2004.12.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 10/21/2004] [Accepted: 10/21/2004] [Indexed: 11/30/2022]
Abstract
Visual orienting of attention and gaze are widely considered to be mediated by shared neural pathways, with automatic phenomena such as inhibition of return (IOR)--the bias against returning to recently visited locations--being generated via the direct pathway from retina to superior colliculus (SC). Here, we show that IOR occurs without direct access to the SC, by using a technique that employs stimuli visible only to short-wave-sensitive (S) cones. We found that these stimuli, to which the SC is blind , were quite capable of eliciting IOR, measured by traditional manual responses. Critically, however, we found that S cone stimuli did not cause IOR when saccadic eye movement responses were required. This demonstrates that saccadic IOR is not the same as traditional IOR, providing support for two separate cortical and collicular mechanisms of IOR. These findings represent a clear dissociation between visual orienting of attention and gaze.
Collapse
Affiliation(s)
- Petroc Sumner
- Department of Visual Neuroscience, Division of Neuroscience, Faculty of Medicine, Imperial College London, St. Dunstan's Road, London W6 8RP, UK.
| | | | | | | | | |
Collapse
|