1
|
Kordek D, Young L, Voda P, Kremláček J. Motion onset VEPs can see through the blur. Sci Rep 2024; 14:21296. [PMID: 39266612 PMCID: PMC11393312 DOI: 10.1038/s41598-024-72483-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024] Open
Abstract
Motion-onset visual evoked potentials (MO VEPs) are robust to dioptric blur when low contrast and low spatial frequency patterns are used for stimulation. To reveal mechanisms of MO VEPs robustness, we studied whether the resistance to defocus persists even when using a high-contrast checkerboard using digital defocus in the emmetropic eyes of 13 subjects (males 20-60 years). We compared the dominant components of MO VEPs to pattern-reversal VEPs (PR VEP), which are sensitive to the blur. For stimulation, we used checkerboard patterns with 15´ and 60´ checks. To defocus the checkerboard, we rendered it with a second-order Zernike polynomial ( Z 2 0 ) with an equivalent defocus of 0, 2, or 4 D. For PR VEP, the checkerboards were reversed in terms of their contrast. To evoke MO VEP, the checkerboard of 60´ checks moved for 200 ms with a speed of 5 or 10 deg/s in the cardinal directions. The MO VEP did not change in peak time (P ≥ 0.0747) or interpeak amplitude (P > 0.0772) with digital blur. In contrast, for PR VEP, the results showed a decrease in interpeak amplitude (P ≤ 6.65ˑ10-4) and an increase in peak time (P ≤ 0.0385). Thus, we demonstrated that MO VEPs evoked by checkerboard, structure containing high spatial content, can be robust to defocus.
Collapse
Affiliation(s)
- D Kordek
- Department of Medical Biophysics, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czechia
| | - L Young
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - P Voda
- Department of Medical Biophysics, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czechia
| | - J Kremláček
- Department of Medical Biophysics, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czechia.
| |
Collapse
|
2
|
Greene HH, Diwadkar VA, Brown JM. Regularities in vertical saccadic metrics: new insights, and future perspectives. Front Psychol 2023; 14:1157686. [PMID: 37251031 PMCID: PMC10213562 DOI: 10.3389/fpsyg.2023.1157686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/11/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Asymmetries in processing by the healthy brain demonstrate regularities that facilitate the modeling of brain operations. The goal of the present study was to determine asymmetries in saccadic metrics during visual exploration, devoid of confounding clutter in the visual field. Methods Twenty healthy adults searched for a small, low-contrast gaze-contingent target on a blank computer screen. The target was visible, only if eye fixation was within a 5 deg. by 5 deg. area of the target's location. Results Replicating previously-reported asymmetries, repeated measures contrast analyses indicated that up-directed saccades were executed earlier, were smaller in amplitude, and had greater probability than down-directed saccades. Given that saccade velocities are confounded by saccade amplitudes, it was also useful to investigate saccade kinematics of visual exploration, as a function of vertical saccade direction. Saccade kinematics were modeled for each participant, as a square root relationship between average saccade velocity (i.e., average velocity between launching and landing of a saccade) and corresponding saccade amplitude (Velocity = S*[Saccade Amplitude]0.5). A comparison of the vertical scaling parameter (S) for up- and down-directed saccades showed that up-directed saccades tended to be slower than down-directed ones. Discussion To motivate future research, an ecological theory of asymmetric pre-saccadic inhibition was presented to explain the collection of vertical saccadic regularities. For example, given that the theory proposes strong inhibition for the releasing of reflexive down-directed prosaccades (cued by an attracting peripheral target below eye fixation), and weak inhibition for the releasing of up-directed prosaccades (cued by an attracting peripheral target above eye fixation), a prediction for future studies is longer reaction times for vertical anti-saccade cues above eye fixation. Finally, the present study with healthy individuals demonstrates a rationale for further study of vertical saccades in psychiatric disorders, as bio-markers for brain pathology.
Collapse
Affiliation(s)
- Harold H. Greene
- Department of Psychology, University of Detroit Mercy, Detroit, MI, United States
| | - Vaibhav A. Diwadkar
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University, Detroit, MI, United States
| | - James M. Brown
- Department of Psychology, University of Georgia, Athens, GA, United States
| |
Collapse
|
3
|
Abstract
INTRODUCTION We developed a new portable device called "VEPpeak" for the examination of visual evoked potentials (VEPs) to extend VEP examination beyond specialized electrophysiological laboratories and to simplify the use of this objective, noninvasive, and low-cost method for diagnostics of visual and central nervous system dysfunctions. METHODS VEPpeak consists of a plastic headset with a total weight of 390 g containing four EEG amplifiers, an A/D converter, a control unit, and a visual LED stimulator built in the front, vertically adjustable peak. The device is powered and controlled via USB connection from a standard PC/notebook using custom software for visual stimuli generation and for VEP recording and processing. Up to four electrodes can be placed at any scalp location or in combination with two dry electrodes incorporated into the headset. External visual stimulators, such as a tablet, can be used with synchronization. Feasibility and validation studies were conducted with 86 healthy subjects and 76 neuro-ophthalmological patients including 67 who were during the same session also tested with a conventional VEP system. RESULTS VEPpeak recordings to standard (pattern-reversal) and non-standard (motion-onset, red-green alternation) were robust and repeatable and obtained also in immobilized patients. Good comparability of results was achieved between VEPpeak and standard examination. Some systematic differences in peak latencies and amplitudes are consistent with differences in stimulus characteristics of the two compared systems. DISCUSSION VEPpeak provides an inexpensive system for clinical use requiring portability. In addition to ISCEV standard VEP protocols, free choice of stimuli and bio-signal recordings make the device universal for many electrophysiological purposes.
Collapse
|
4
|
Kordek D, Voda P, Young LK, Kremlacek J. Effect of Dioptric Blur on Pattern-Reversal and Motion-Onset VEPs as Used in Clinical Research. Transl Vis Sci Technol 2022; 11:7. [PMID: 36472879 PMCID: PMC9733653 DOI: 10.1167/tvst.11.12.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose To describe the effect of dioptric blur on visual evoked potentials (VEPs) induced by motion onset (MO-VEPs). Methods The effect of dioptric blur up to 4 D on MO-VEPs was tested on 12 subjects using central, peripheral, and full-field stimulation with a low-contrast structure of concentric circles with spatial frequency <1 c/°. The results were compared to VEPs evoked by 15' and 60' checkerboard pattern-reversal (PR-VEPs). The relationship between peak time and interpeak amplitude of the dominant components was related to the level of dioptric blur using linear regression. Results The MO-VEPs did not show a significant peak prolongation (P > 0.28) or amplitude attenuation (P > 0.14) with the blur, whereas for the PR-VEPs we observed a significant decrease in amplitude (P < 0.001) and increase in peak time (P < 0.001) for both checkerboard sizes. Conclusions For MO-VEPs induced by radial motion of low contrast and low spatial frequency pattern, the change in retinal blur does not affect the peak time or the interpeak amplitude of the dominant N2 component. Translational Relevance The resistance to retinal blur that we demonstrated for MO-VEP provides a diagnostic opportunity to test the integrity of the visual system and reveal a retrobulbar impairment even in uncorrected refractive errors.
Collapse
Affiliation(s)
- David Kordek
- Department of Biophysics, Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic
| | - Petr Voda
- Department of Biophysics, Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic
| | - Laura K. Young
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Jan Kremlacek
- Department of Biophysics, Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
5
|
Yue K, Guo M, Liu Y, Hu H, Lu K, Chen S, Wang D. Investigate the Neuro Mechanisms of Stereoscopic Visual Fatigue. IEEE J Biomed Health Inform 2022; 26:2963-2973. [PMID: 35316199 DOI: 10.1109/jbhi.2022.3161083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Stereoscopic visual fatigue (SVF) due to prolonged immersion in the virtual environment can lead to negative user experience, thus hindering the development of virtual reality (VR) industry. Previous studies have focused on investigating the evaluation indicators associated with SVF, while few studies have been conducted to reveal the underlying neural mechanism, especially in VR applications. In this paper, a modified Go/NoGo paradigm was adopted to induce SVF in VR environment with Go trials for maintaining participants' attention to experimental viewing tasks and NoGo trials for investigating the neural effects under SVF. Random dot stereograms (RDSs) with 11 disparities and 2 types of shapes (arrow and rectangle) were presented to evoke the depth-related visual evoked potentials (DVEPs) during 64-channel EEG recordings. EEG datasets collected from 15 participants in NoGo trials were selected to conduct individual processing and group analysis, in which the characteristics of the DVEPs components for various fatigue degrees were compared with one-way repeated-measurement ANOVA and independent components were clustered to explore the original cortex areas related to SVF. Point-by-point permutation statistics revealed that DVEPs sample points from 230ms to 280ms in most brain areas changed significantly with SVF. More specifically, we found that amplitudes of component P2 changed significantly when SVF increased. Additionally, independent component analysis (ICA) identified that component P2 which originated from posterior cingulate cortex and precuneus, was associated statistically with SVF. We believe that SVF is rather a conscious status concerning the changes of self-awareness or self-location awareness than the performance reduction of retinal image processing. Moreover, we suggest that indicators representing higher conscious state may be a better indicator for SVF evaluation in VR environments.
Collapse
|
6
|
Optical coherence tomography and visual evoked potentials in evaluation of optic chiasm decompression. Sci Rep 2022; 12:2102. [PMID: 35136174 PMCID: PMC8825827 DOI: 10.1038/s41598-022-06097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/17/2022] [Indexed: 11/09/2022] Open
Abstract
Chiasmal compression is a known cause of visual impairment, often leading to surgical decompression of the optic chiasm (OC). A prospective study was held at University Hospital in Hradec Králové to explore sensitivity of optical coherence tomography (OCT) and visual evoked potentials (VEPs) to OC compression and eventual changes after a decompression. 16 patients with OC compression, caused by different sellar pathologies, were included. The main inclusion criterion was the indication for decompressive surgery. Visual acuity (VA), visual field (VF), retinal nerve fibre layer (RNFL) and ganglion cell layer (GCL) thickness, and peak time and amplitude of pattern-reversal (P-VEPs) and motion-onset VEPs (M-VEPs) were measured pre- and postoperatively. The degree of OC compression was determined on preoperative magnetic resonance imaging. For M-VEPs, there was a significant postoperative shortening of the peak time (N160) (p < 0.05). P100 peak time and its amplitude did not change significantly. The M-VEPs N160 amplitude showed a close relationship to the VF improvement. Thinner preoperative RNFL does not present a statistically important limiting factor for better functional outcomes. The morphological status of the sellar region should be taken into consideration when one evaluates the chiasmal syndrome. M-VEPs enable detection of functional changes in the visual pathway better than P-VEPs.
Collapse
|
7
|
Rasulo S, Vilhelmsen K, van der Weel FRR, van der Meer ALH. Development of motion speed perception from infancy to early adulthood: a high-density EEG study of simulated forward motion through optic flow. Exp Brain Res 2021; 239:3143-3154. [PMID: 34420060 PMCID: PMC8536648 DOI: 10.1007/s00221-021-06195-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/11/2021] [Indexed: 12/19/2022]
Abstract
This study investigated evoked and oscillatory brain activity in response to forward visual motion at three different ecologically valid speeds, simulated through an optic flow pattern consisting of a virtual road with moving poles at either side of it. Participants were prelocomotor infants at 4–5 months, crawling infants at 9–11 months, primary school children at 6 years, adolescents at 12 years, and young adults. N2 latencies for motion decreased significantly with age from around 400 ms in prelocomotor infants to 325 ms in crawling infants, and from 300 and 275 ms in 6- and 12-year-olds, respectively, to 250 ms in adults. Infants at 4–5 months displayed the longest latencies and appeared unable to differentiate between motion speeds. In contrast, crawling infants at 9–11 months and 6-year-old children differentiated between low, medium and high speeds, with shortest latency for low speed. Adolescents and adults displayed similar short latencies for the three motion speeds, indicating that they perceived them as equally easy to detect. Time–frequency analyses indicated that with increasing age, participants showed a progression from low- to high-frequency desynchronized oscillatory brain activity in response to visual motion. The developmental differences in motion speed perception are interpreted in terms of a combination of neurobiological development and increased experience with self-produced locomotion. Our findings suggest that motion speed perception is not fully developed until adolescence, which has implications for children’s road traffic safety.
Collapse
Affiliation(s)
- Stefania Rasulo
- Developmental Neuroscience Laboratory, Department of Psychology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kenneth Vilhelmsen
- Developmental Neuroscience Laboratory, Department of Psychology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - F R Ruud van der Weel
- Developmental Neuroscience Laboratory, Department of Psychology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Audrey L H van der Meer
- Developmental Neuroscience Laboratory, Department of Psychology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|
8
|
Vision before and after scharioth macular lens implantation in patients with AMD: an electrophysiological study. Doc Ophthalmol 2021; 143:17-31. [PMID: 33392893 PMCID: PMC8266777 DOI: 10.1007/s10633-020-09814-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/11/2020] [Indexed: 11/09/2022]
Abstract
Background For patients with age-related macular degeneration (AMD), a special intraocular lens implantation partially compensates for the loss in the central part of the visual field. For six months, we evaluated changes in neurophysiological parameters in patients implanted with a “Scharioth macula lens” (SML; a center near high add + 10 D and peripheral plano carrier bifocal lens designed to be located between the iris and an artificial lens). Methods Fourteen patients (5 M, 9 F, 63–87 years) with dry AMD were examined prior to and at 3 days after, as well as 1, 2, and 6 months after, implantation using pattern-reversal, motion-onset, and cognitive evoked potentials, psychophysical tests evaluating distant and near visual acuity, and contrast sensitivity. Results Near visual acuity without an external aid was significantly better six months after implantation than before implantation (Jaeger table median (lower; upper quartile): 4 (1; 6) vs. 15 (13; 17)). Distant visual acuity was significantly altered between the pre- (0.7 (0.5; 0.8) logMAR) and last postimplantation visits (0.8 (0.7; 0.8) logMAR), which matched prolongation of the P100 peak time (147 (135; 151) ms vs. 161 (141; 166) ms) of 15 arc min pattern-reversal VEPs and N2 peak time (191.5 (186.5; 214.5) ms vs. 205 (187; 218) ms) of peripheral motion-onset VEPs. Conclusion SML implantation significantly improved near vision. We also observed a slight but significant decrease in distant and peripheral vision. The most efficient electrophysiological approach to test patients with SML was the peripheral motion-onset stimulation, which evoked repeatable and readable VEPs. Supplementary Information The online version
containssupplementary material available at (10.1007/s10633-020-09814-8).
Collapse
|
9
|
Solf B, Schramm S, Blum MC, Klee S. The Influence of the Stimulus Design on the Harmonic Components of the Steady-State Visual Evoked Potential. Front Hum Neurosci 2020; 14:343. [PMID: 33033476 PMCID: PMC7509136 DOI: 10.3389/fnhum.2020.00343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/03/2020] [Indexed: 01/23/2023] Open
Abstract
Steady-state visual evoked potentials (ssVEPs) are commonly used for functional objective diagnostics. In general, the main response at the stimulation frequency is used. However, some studies reported the main response at the second harmonic of the stimulation frequency. The aim of our study was to analyze the influence of the stimulus design on the harmonic components of ssVEPs. We studied 22 subjects (8 males, mean age ± SD = 27 ± 4.8 years) using a circular layout (r1 = 0–1.6°, r2 = 1.6–3.5°, r3 = 3.5–6.4°, r4 = 6.4–10.9°, and r5 = 10.9–18°). At a given eccentricity, the stimulus was presented according to a 7.5 Hz square wave with 50% duty cycle. To analyze the influence of the stimulus eccentricity, a background luminance of 30 cd/m2 was added to suppress foveal stray light effects; to analyze the influence of simultaneous foveal and peripheral stimulations, stimulations are performed without stray light suppression. For statistical analysis, medians M of the amplitude ratios for amplitudes at the second harmonic to the first harmonic and the probability of the occurrence of the main response at the second harmonic P(MCSH) are calculated. For stimulations with foveal stray light suppression, the medians were M0–1.6° = 0.45, M1.6–3.5° = 0.45, M3.5–6.4° = 0.76, M6.4–10.9° = 0.72, and M10.9–18° = 0.48, and the probabilities were P0–1.6°(MCSH) = 0.05, P1.6–3.5°(MCSH) = 0.05, P3.5–6.4°(MCSH) = 0.32, P6.4–10.9°(MCSH) = 0.29, and P10.9–18°(MCSH) = 0.30. For stimulations without foveal stray light suppression, the medians M were M0–1.6° = 0.29, M1.6–3.5° = 0.37, M3.5–6.4° = 0.98, M6.4–10.9° = 1.08, and M10.9–18° = 1.24, and the probabilities were P0–1.6°(MCSH) = 0.09, P1.6–3.5°(MCSH) = 0.05, P3.5–6.4°(MCSH) = 0.50, P6.4–10.9°(MCSH) = 0.55, and P10.9–18°(MCSH) = 0.55. In conclusion, the stimulus design has an influence on the harmonic components of ssVEPs. An increase in stimulation eccentricity during extrafoveal stimulation leads to a transition of the main response to the second harmonic. The effect is enhanced by a simultaneous foveal stimulation.
Collapse
|
10
|
Greene HH, Brown JM, Strauss GP. Shorter fixation durations for up-directed saccades during saccadic exploration: A meta-analysis. J Eye Mov Res 2020; 12:10.16910/jemr.12.8.5. [PMID: 33828778 PMCID: PMC7881898 DOI: 10.16910/jemr.12.8.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Utilizing 23 datasets, we report a meta-analysis of an asymmetry in presaccadic fixation durations for saccades directed above and below eye fixation during saccadic exploration. For inclusion in the meta-analysis, saccadic exploration of complex visual displays had to have been made without gaze-contingent manipulations. Effect sizes for the asymmetry were quantified as Hedge's g. Pooled effect sizes indicated significant asymmetries such that during saccadic exploration in a variety of tasks, presaccadic fixation durations for saccades directed into the upper visual field were reliably shorter than presaccadic fixation durations for saccades into the lower visual field. It is contended that the asymmetry is robust and important for efforts aimed at modelling when a saccade is initiated as a function of ensuing saccade direction.
Collapse
|
11
|
Chen J, Hong B, Wang Y, Gao X, Zhang D. Towards a fully spatially coded brain-computer interface: simultaneous decoding of visual eccentricity and direction. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:3091-3094. [PMID: 31946541 DOI: 10.1109/embc.2019.8856586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
By encoding visual targets with different locations relative to a stimulus, spatially coded brain-computer interface (BCI) has regained interest nowadays. Recent spatially coded BCI studies have demonstrated the feasibility of single-stimulus, multi-target BCIs, suggesting their potentials for simple and efficient applications. However, these studies have only decoded the visual direction information from the neural responses. To fully utilize the visual spatial information, it is necessary to include the visual eccentricity information as well. In the present study, the decodability of visual eccentricity information for BCI application was investigated for the first time. Sixteen targets were encoded simultaneously with eight directions and two eccentricities relative to a visual motion stimulus. Distinct neural spatial patterns and response strengths of motion-onset visual evoked potentials were elicited in the 16 attention conditions. The offline analysis reached an average classification accuracy of 63.1±11.5%, and the best-performing participant achieved an accuracy of 81.9%, well above the chance level (i.e., 6.25%) for 16-target classification. The results suggested the feasibility of simultaneous decoding of visual eccentricity and direction information towards a fully spatially coded BCI.
Collapse
|
12
|
Fujimoto K, Ashida H. Larger Head Displacement to Optic Flow Presented in the Lower Visual Field. Iperception 2019; 10:2041669519886903. [PMID: 31803463 PMCID: PMC6876183 DOI: 10.1177/2041669519886903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/14/2019] [Indexed: 11/15/2022] Open
Abstract
Optic flow that simulates self-motion often produces postural adjustment. Although literature has suggested that human postural control depends largely on visual inputs from the lower field in the environment, effects of the vertical location of optic flow on postural responses are not well investigated. Here, we examined whether optic flow presented in the lower visual field produces stronger responses than optic flow in the upper visual field. Either expanding or contracting optic flow was presented in upper, lower, or full visual fields through an Oculus Rift head-mounted display. Head displacement and vection strength were measured. Results showed larger head displacement under the optic flow presentation in the full visual field and the lower visual field than the upper visual field, during early period of presentation of the contracting optic flow. Vection was strongest in the full visual field and weakest in the upper visual field. Our findings of lower field superiority in head displacement and vection support the notion that ecologically relevant information has a particularly important role in human postural control and self-motion perception.
Collapse
Affiliation(s)
- Kanon Fujimoto
- Department of Psychology, Graduate School of Letters, Kyoto University, Japan
| | - Hiroshi Ashida
- Department of Psychology, Graduate School of Letters, Kyoto University, Japan
| |
Collapse
|
13
|
Solf B, Schramm S, Link D, Klee S. Objective measurement of forward-scattered light in the human eye: An electrophysiological approach. PLoS One 2019; 14:e0214850. [PMID: 30947303 PMCID: PMC6448911 DOI: 10.1371/journal.pone.0214850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 03/21/2019] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Psychophysical measurements are used to examine the perception of ocular stray light, for example, with C-Quant. These measurements are subjective due to their principles. This work aims to determine ocular stray light objectively; thus, a psychophysical method is transferred into an electrophysiological setup. METHODS Stray light perception was measured using steady-state visual evoked potentials (VEPs) in 10 healthy subjects (7 males, 3 females, mean age ± SD: 29.6 ± 4.1 years). Stray light emulating filters (Tiffen Black Pro Mist 2) were used for simulating the effect of cataracts to validate the results for increased scattered light conditions. Based on the direct compensation method, the stimulus consisted of a central test field (radius = 2°) with a luminance adjustable compensation light and surrounding ring-shaped stray light source (radius = 5 to 10°). Both flickered in the counter phase at a frequency of 7.5 Hz. The stimuli were presented for 15 luminance levels of the compensation light. The recorded steady-state VEPs at Oz channel were transformed by means of Fourier analysis. The magnitudes at the evoked frequency were plotted against the measured brightness levels of the compensation light. By fitting two linear functions to the resulting data points, a robust minimum log(Leq) was determined, which was correlated with the amount of stray light perception. We measured the stray light parameter log(sc) using C-Quant. For comparison, our results were converted into the C-Quant equivalent parameter log(sepm) and paired t-tests were performed for normal distributed results. RESULTS A significant difference is observed between log(sepm) (without filter) and log(sepm) (with BPM 2 Filter) (p>0.05). No significant difference is observed between log(sepm) (without filter) and log(sc) (without filter) (p > 0.05) and between log(sepm) (with BPM 2 filter) and log(sc) (with BPM 2 filter) (p > 0.05). CONCLUSION The electrophysiological approach offers the ability to measure stray light perception in an objective manner.
Collapse
Affiliation(s)
- Benjamin Solf
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Stefan Schramm
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Dietmar Link
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Sascha Klee
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| |
Collapse
|
14
|
Chen J, Li Z, Hong B, Maye A, Engel AK, Zhang D. A Single-Stimulus, Multitarget BCI Based on Retinotopic Mapping of Motion-Onset VEPs. IEEE Trans Biomed Eng 2019; 66:464-470. [DOI: 10.1109/tbme.2018.2849102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Vilhelmsen K, Agyei SB, van der Weel FRR, van der Meer ALH. A high-density EEG study of differentiation between two speeds and directions of simulated optic flow in adults and infants. Psychophysiology 2018; 56:e13281. [PMID: 30175487 DOI: 10.1111/psyp.13281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 06/07/2018] [Accepted: 07/18/2018] [Indexed: 12/24/2022]
Abstract
A high-density EEG study was carried out to investigate cortical activity in response to forward and backward visual motion at two different driving speeds, simulated through optic flow. Participants were prelocomotor infants at the age of 4-5 months and infants with at least 3 weeks of crawling experience at the age of 8-11 months, and adults. Adults displayed shorter N2 latencies in response to forward as opposed to backward visual motion and differentiated significantly between low and high speeds, with shorter latencies for low speeds. Only infants at 8-11 months displayed similar latency differences between motion directions, and exclusively in response to low speed. The developmental differences in latency between infant groups are interpreted in terms of a combination of increased experience with self-produced locomotion and neurobiological development. Analyses of temporal spectral evolution (TSE, time-dependent amplitude changes) were also performed to investigate nonphase-locked changes at lower frequencies in underlying neuronal networks. TSE showed event-related desynchronization activity in response to visual motion for infants compared to adults. The poorer responses in infants are probably related to immaturity of the dorsal visual stream specialized in the processing of visual motion and could explain the observed problems in infants with differentiating high speeds of up to 50 km/h.
Collapse
Affiliation(s)
- Kenneth Vilhelmsen
- Developmental Neuroscience Laboratory, Department of Psychology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Seth B Agyei
- Developmental Neuroscience Laboratory, Department of Psychology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - F R Ruud van der Weel
- Developmental Neuroscience Laboratory, Department of Psychology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Audrey L H van der Meer
- Developmental Neuroscience Laboratory, Department of Psychology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
16
|
Fornaciai M, Brannon EM, Woldorff MG, Park J. Numerosity processing in early visual cortex. Neuroimage 2017; 157:429-438. [PMID: 28583882 DOI: 10.1016/j.neuroimage.2017.05.069] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/26/2017] [Accepted: 05/31/2017] [Indexed: 10/19/2022] Open
Abstract
While parietal cortex is thought to be critical for representing numerical magnitudes, we recently reported an event-related potential (ERP) study demonstrating selective neural sensitivity to numerosity over midline occipital sites very early in the time course, suggesting the involvement of early visual cortex in numerosity processing. However, which specific brain area underlies such early activation is not known. Here, we tested whether numerosity-sensitive neural signatures arise specifically from the initial stages of visual cortex, aiming to localize the generator of these signals by taking advantage of the distinctive folding pattern of early occipital cortices around the calcarine sulcus, which predicts an inversion of polarity of ERPs arising from these areas when stimuli are presented in the upper versus lower visual field. Dot arrays, including 8-32dots constructed systematically across various numerical and non-numerical visual attributes, were presented randomly in either the upper or lower visual hemifields. Our results show that neural responses at about 90ms post-stimulus were robustly sensitive to numerosity. Moreover, the peculiar pattern of polarity inversion of numerosity-sensitive activity at this stage suggested its generation primarily in V2 and V3. In contrast, numerosity-sensitive ERP activity at occipito-parietal channels later in the time course (210-230ms) did not show polarity inversion, indicating a subsequent processing stage in the dorsal stream. Overall, these results demonstrate that numerosity processing begins in one of the earliest stages of the cortical visual stream.
Collapse
Affiliation(s)
- Michele Fornaciai
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, USA.
| | | | | | - Joonkoo Park
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, USA; Commonwealth Honors College, University of Massachusetts Amherst, USA.
| |
Collapse
|
17
|
Neural correlates for task-relevant facilitation of visual inputs during visually-guided hand movements. Neuroimage 2015; 121:39-50. [DOI: 10.1016/j.neuroimage.2015.07.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/26/2015] [Accepted: 07/12/2015] [Indexed: 11/23/2022] Open
|
18
|
Abstract
Behavioral responses to visual stimuli exhibit visual field asymmetries, but cortical folding and the close proximity of visual cortical areas make electrophysiological comparisons between different stimulus locations problematic. Retinotopy-constrained source estimation (RCSE) uses distributed dipole models simultaneously constrained by multiple stimulus locations to provide separation between individual visual areas that is not possible with conventional source estimation methods. Magnetoencephalography and RCSE were used to estimate time courses of activity in V1, V2, V3, and V3A. Responses to left and right hemifield stimuli were not significantly different. Peak latencies for peripheral stimuli were significantly shorter than those for perifoveal stimuli in V1, V2, and V3A, likely related to the greater proportion of magnocellular input to V1 in the periphery. Consistent with previous results, sensor magnitudes for lower field stimuli were about twice as large as for upper field, which is only partially explained by the proximity to sensors for lower field cortical sources in V1, V2, and V3. V3A exhibited both latency and amplitude differences for upper and lower field responses. There were no differences for V3, consistent with previous suggestions that dorsal and ventral V3 are two halves of a single visual area, rather than distinct areas V3 and VP.
Collapse
Affiliation(s)
- Donald J Hagler
- Department of Radiology, University of California-San Diego, La Jolla, CA, USA
| |
Collapse
|
19
|
Kuldkepp N, Kreegipuu K, Raidvee A, Näätänen R, Allik J. Unattended and attended visual change detection of motion as indexed by event-related potentials and its behavioral correlates. Front Hum Neurosci 2013; 7:476. [PMID: 23966932 PMCID: PMC3743214 DOI: 10.3389/fnhum.2013.00476] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/29/2013] [Indexed: 12/03/2022] Open
Abstract
Visual mismatch negativity (vMMN) is a negative-going component amongst cognitive event-related potentials. It reflects an automatic change-detection process that occurs when an infrequent stimulus is presented that is incongruent with the representation of a frequent (standard) event. In our research we use visual motion (more specifically motion direction changes) to study vMMN. Since movement in the visual field is quite irresistible to our brain, the question in hand is, if the detection of motion direction changes is dependent on attention directed to the stimulus. We present a new continuous whole-display stimulus configuration, where the attention capturing primary task of motion onset detection is in the central part of the visual display and visual oddball sequence on the background. The visual oddball paradigm consisted of 85% standard and 15% deviant events, motion direction change being the deviant. We show that even though the unattended visual oddball sequence does not affect the performance in the demanding behavioral primary task, the differences appearing in that sequence are noticed by our brain and reflected in two distinguishable vMMN components in occipital and parietal scalp locations. When attention is directed toward the visual oddball sequence, we only see different processing of standards and deviants in later time-windows and task-related activity in frontal scalp location. Our results are obtained under strict attention manipulation conditions.
Collapse
Affiliation(s)
- Nele Kuldkepp
- Institute of Psychology, University of Tartu Tartu, Estonia ; Doctoral School of Behavioural, Social and Health Sciences, University of Tartu Tartu, Estonia
| | | | | | | | | |
Collapse
|
20
|
Pitzalis S, Fattori P, Galletti C. The functional role of the medial motion area V6. Front Behav Neurosci 2013; 6:91. [PMID: 23335889 PMCID: PMC3546310 DOI: 10.3389/fnbeh.2012.00091] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/19/2012] [Indexed: 11/13/2022] Open
Abstract
In macaque, several visual areas are devoted to analyze motion in the visual field, and V6 is one of these areas. In macaque, area V6 occupies the ventral part of the anterior bank of the parieto-occipital sulcus (POs), is retinotopically-organized and contains a point-to-point representation of the retinal surface. V6 is a motion sensitive area that largely represents the peripheral part of the visual field and whose cells are very sensitive to translational motion. Based on the fact that macaque V6 contains many real-motion cells, it has been suggested that V6 is involved in object-motion recognition. Recently, area V6 has been recognized also in the human brain by neuroimaging and electrophysiological methods. Like macaque V6, human V6 is located in the POs, is retinotopically organized, and represents the entire contralateral hemifield up to the far periphery. Human V6, like macaque V6, is a motion area that responds to unidirectional motion. It has a strong preference for coherent motion and a recent combined VEPs/fMRI work has shown that area V6 is even one of the most early stations coding the motion coherence. Human V6 is highly sensitive to flow field and is also able to distinguish between different 3D flow fields being selective to translational egomotion. This suggests that this area processes visual egomotion signals to extract information about the relative distance of objects, likely in order to act on them, or to avoid them. The view that V6 is involved in the estimation of egomotion has been tested also in other recent fMRI studies. Thus, taken together, human and macaque data suggest that V6 is involved in both object and self-motion recognition. Specifically, V6 could be involved in "subtracting out" self-motion signals across the whole visual field and in providing information about moving objects, particularly during self-motion in a complex and dynamically unstable environment.
Collapse
Affiliation(s)
- Sabrina Pitzalis
- Department of Education in Sport and Human Movement, University of Rome "Foro Italico" Rome, Italy ; Laboratory of Neuropsychology, Santa Lucia Foundation Rome, Italy
| | | | | |
Collapse
|
21
|
Pitzalis S, Bozzacchi C, Bultrini A, Fattori P, Galletti C, Di Russo F. Parallel motion signals to the medial and lateral motion areas V6 and MT+. Neuroimage 2012. [PMID: 23186916 DOI: 10.1016/j.neuroimage.2012.11.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
MT+ and V6 are key motion areas of the dorsal visual stream in both macaque and human brains. In the present study, we combined electrophysiological and neuroimaging methods (including retinotopic brain mapping) to find the electrophysiological correlates of V6 and to define its temporal relationship with the activity observed in MT+. We also determined the spatio-temporal profile of the motion coherency effect on visual evoked potentials (VEPs), and localized its neural generators. We found that area V6 participates in the very early phase of the coherent motion processing and that its electroencephalographic activity is almost simultaneous with that of MT+. We also found a late second activity in V6 that we interpret as a re-entrant feedback from extrastriate visual areas (e.g. area V3A). Three main cortical sources were differently modulated by the motion coherence: while V6 and MT+ showed a preference for the coherent motion, area V3A preferred the random condition. The response timing of these cortical sources indicates that motion signals flow in parallel from the occipital pole to the medial and lateral motion areas V6 and MT+, suggesting the view of a differential functional role.
Collapse
Affiliation(s)
- Sabrina Pitzalis
- Dept. of Education for Motor Activity and Sport, University of Roma Foro Italico, Roma, Italy
| | | | | | | | | | | |
Collapse
|
22
|
Impact of lower- vs. upper-hemifield presentation on automatic colour-deviance detection: a visual mismatch negativity study. Brain Res 2012; 1472:89-98. [PMID: 22820304 DOI: 10.1016/j.brainres.2012.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 07/04/2012] [Accepted: 07/10/2012] [Indexed: 11/22/2022]
Abstract
The automatic processing of deviances from the temporal context of the visual environment has become an important topic in visual cognitive sciences, which is often investigated using the visual mismatch negativity (vMMN). This event-related potential (ERP) component is elicited by an irregular stimulus (e.g., a red disc) presented in a series of stimuli (e.g., green discs) comprising a temporal regularity (e.g., colour repetition). We determined the influence of lower- vs. upper-hemifield presentation of the irregular stimulus on the vMMN while using whole-field stimulus displays controlling for sustained shifts in spatial attention. Deviances presented in the lower hemifield elicited a larger vMMN than the ones presented in the upper hemifield at a latency of 200-280ms. However, this asymmetry was preceded by deviance-related hemifield effects already emerging at an earlier latency (110-150ms), where upper-hemifield deviances elicited a positive potential but lower-hemifield deviances did not. With variable resolution electromagnetic tomography (VARETA) early deviance-related activity was localised to retinotopically organised regions of the visual cortex (BA 17/18) and vMMN-sources were localised to the middle/superior occipital gyrus, to higher areas along the temporal visual stream, but also to BA 17/18. We argue that the upper/lower-hemifield vMMN asymmetry relies at least partially on the hemifield-dependent differential sensitivity of early deviance-related activity generated in retinotopically organised regions of the visual cortex. However, a superior automatic processing of deviances presented in the lower visual hemifield may also contribute to the effect.
Collapse
|
23
|
Kuba M, Kremláček J, Langrová J, Kubová Z, Szanyi J, Vít F. Aging effect in pattern, motion and cognitive visual evoked potentials. Vision Res 2012; 62:9-16. [PMID: 22503557 DOI: 10.1016/j.visres.2012.03.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 02/14/2012] [Accepted: 03/19/2012] [Indexed: 11/29/2022]
Abstract
An electrophysiological study on the effect of aging on the visual pathway and various levels of visual information processing (primary cortex, associate visual motion processing cortex and cognitive cortical areas) was performed. We examined visual evoked potentials (VEPs) to pattern-reversal, motion-onset (translation and radial motion) and visual stimuli with a cognitive task (cognitive VEPs - P300 wave) at luminance of 17 cd/m(2). The most significant age-related change in a group of 150 healthy volunteers (15-85 years of age) was the increase in the P300 wave latency (2 ms per 1 year of age). Delays of the motion-onset VEPs (0.47 ms/year in translation and 0.46 ms/year in radial motion) and the pattern-reversal VEPs (0.26 ms/year) and the reductions of their amplitudes with increasing subject age (primarily in P300) were also found to be significant. The amplitude of the motion-onset VEPs to radial motion remained the most constant parameter with increasing age. Age-related changes were stronger in males. Our results indicate that cognitive VEPs, despite larger variability of their parameters, could be a useful criterion for an objective evaluation of the aging processes within the CNS. Possible differences in aging between the motion-processing system and the form-processing system within the visual pathway might be indicated by the more pronounced delay in the motion-onset VEPs and by their preserved size for radial motion (a biologically significant variant of motion) compared to the changes in pattern-reversal VEPs.
Collapse
Affiliation(s)
- Miroslav Kuba
- Faculty of Medicine in Hradec Králové, Dept. of Pathophysiology, Electrophysiological Laboratory, Charles University in Prague, Hradec Králové, Czech Republic.
| | | | | | | | | | | |
Collapse
|
24
|
Zhang D, Song H, Xu H, Wu W, Gao S, Hong B. An N200 speller integrating the spatial profile for the detection of the non-control state. J Neural Eng 2012; 9:026016. [PMID: 22414615 DOI: 10.1088/1741-2560/9/2/026016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Zhang D, Xu H, Wu W, Gao S, Hong B. Integrating the spatial profile of the N200 speller for asynchronous brain-computer interfaces. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:4564-7. [PMID: 22255353 DOI: 10.1109/iembs.2011.6091130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The N200 speller is a novel brain-computer interface (BCI) paradigm utilizing the overt attention effects on motion onset visual evoked potentials (mVEP). However, the asynchronous performance of the N200 BCI has not been fully explored. In this paper, a novel algorithm was proposed, integrating the spatial profile of the visual speller to provide a more precise description of the mVEP responses. Most importantly, only control state data were used in the algorithm to train a classifier which can detect the non-control state effectively. Using offline recorded data, the asynchronous performance of the proposed algorithm was shown to be significantly better than that of a similar algorithm without using the spatial information. The proposed algorithm can be used for developing a practical, asynchronous N200 BCI system.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | | | | | | | | |
Collapse
|
26
|
Jiraskova N, Kuba M, Kremlacek J, Rozsival P. Normal sensory and absent cognitive electrophysiological responses in functional visual loss following chemical eye burn. Doc Ophthalmol 2011; 123:51-7. [PMID: 21647683 DOI: 10.1007/s10633-011-9275-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 05/10/2011] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To present a unique case of a 34-year-old patient with unilateral functional visual loss after chemical burn with normal visual evoked potentials (VEPs) and absent cognitive response (P300 wave). METHODS Visual functions, complete ophthalmic and neurologic examinations including computed tomography of the brain, electrophysiological testing of the visual pathway up to the cognitive brain cortex were evaluated. Data were collected prospectively during 1-year follow-up and compared with data from published case series and a literature review. RESULTS No abnormalities were found that could account for such a rapid monocular loss of vision with exception of absence of the P300 wave in the affected eye during cognitive tasks. Vision slowly improved during 1 year without any treatment. CONCLUSIONS Functional vision loss is a diagnosis of exclusion. In the event of reduced vision in the context of a normal ocular health examination, all other pathology must be ruled out before the diagnosis of functional visual loss is established. Complex visual electrophysiological testing is the preferred tool for objective examination of such disorders.
Collapse
Affiliation(s)
- Nada Jiraskova
- Department of Ophthalmology, Charles University in Prague, Hradec Kralove, Czech Republic.
| | | | | | | |
Collapse
|
27
|
The what and why of perceptual asymmetries in the visual domain. Adv Cogn Psychol 2010; 6:103-15. [PMID: 21228922 PMCID: PMC3019986 DOI: 10.2478/v10053-008-0080-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 06/19/2010] [Indexed: 11/20/2022] Open
Abstract
Perceptual asymmetry is one of the most important characteristics of our visual
functioning. We carefully reviewed the scientific literature in order to examine
such asymmetries, separating them into two major categories: within-visual field
asymmetries and between-visual field asymmetries. We explain these asymmetries
in terms of perceptual aspects or tasks, the what of the
asymmetries; and in terms of underlying mechanisms, the why of
the asymmetries. Tthe within-visual field asymmetries are fundamental to
orientation, motion direction, and spatial frequency processing. between-visual
field asymmetries have been reported for a wide range of perceptual phenomena.
foveal dominance over the periphery, in particular, has been prominent for
visual acuity, contrast sensitivity, and colour discrimination. Tthis also holds
true for object or face recognition and reading performance. upper-lower visual
field asymmetries in favour of the lower have been demonstrated for temporal and
contrast sensitivities, visual acuity, spatial resolution, orientation, hue and
motion processing. Iin contrast, the upper field advantages have been seen in
visual search, apparent size, and object recognition tasks. left-right visual
field asymmetries include the left field dominance in spatial (e.g.,
orientation) processing and the right field dominance in non-spatial (e.g.,
temporal) processing. left field is also better at low spatial frequency or
global and coordinate spatial processing, whereas the right field is better at
high spatial frequency or local and categorical spatial processing. All these
asymmetries have inborn neural/physiological origins, the primary
why, but can be also susceptible to visual experience, the
critical why (promotes or blocks the asymmetries by
altering neural functions).
Collapse
|
28
|
Näätänen R, Kujala T, Winkler I. Auditory processing that leads to conscious perception: A unique window to central auditory processing opened by the mismatch negativity and related responses. Psychophysiology 2010; 48:4-22. [PMID: 20880261 DOI: 10.1111/j.1469-8986.2010.01114.x] [Citation(s) in RCA: 319] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Risto Näätänen
- Department of Psychology, University of Tartu, Tartu, Estonia.
| | | | | |
Collapse
|
29
|
Kubová Z, Kremlácek J, Valis M, Langrová J, Szanyi J, Vít F, Kuba M. Visual evoked potentials to pattern, motion and cognitive stimuli in Alzheimer's disease. Doc Ophthalmol 2010; 121:37-49. [PMID: 20524039 DOI: 10.1007/s10633-010-9230-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 03/22/2010] [Indexed: 10/19/2022]
Abstract
The aim of our study was to verify reported visual dysfunctions of patients with Alzheimer disease with the use of several variants of VEPs and visual ERPs and to learn whether these methods can be useful in diagnostics of AD. We tested 15 patients (6 women and 9 men, aged from 58 to 87) with mild to moderate Alzheimer disease (12-23 points of Mini Mental State Examination) and 15 age, gender and education level matched controls. The examination consisted of VEPs to pattern-reversal and motion-onset stimulation (to translational and radial movement) and of visual ERPs recorded during an odd-ball test. The subjects were instructed to signalize target stimuli by pressing of a button, which enabled to evaluate also the reaction time. While pattern-reversal VEPs were comparable in patients and controls, there were significantly smaller N2 peak amplitudes of motion-onset VEPs in patients with AD (in particular in radial moving stimuli outside the central 20 deg of the visual field), which suggests a dysfunction of the motion-processing (magnocellular) system or the dorsal cortical stream. ERPs, having significantly longer latencies in patients than in controls, distinguished well both groups. However, the individual AD diagnostics based on ERPs seems to be limited by rather high inter-individual variability of the ERP latencies. The ERPs might, however, be useful in disease progress and therapy effect estimation. Electrophysiological parameters did not correlate with neuropsychological ADAS cog test (Alzheimer Disease Assessment Scale--cognitive part).
Collapse
Affiliation(s)
- Z Kubová
- Department of Pathophysiology, Faculty of Medicine, Charles University, Simkova 870, 50038 Hradec Králové, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
30
|
Senot P, Baillet S, Renault B, Berthoz A. Cortical Dynamics of Anticipatory Mechanisms in Interception: A Neuromagnetic Study. J Cogn Neurosci 2008; 20:1827-38. [DOI: 10.1162/jocn.2008.20129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Humans demonstrate an amazing ability for intercepting and catching moving targets, most noticeably in fast-speed ball games. However, the few studies exploring the neural bases of interception in humans and the classical studies on visual motion processing and visuomotor interactions have reported rather long latencies of cortical activations that cannot explain the performances observed in most natural interceptive actions. The aim of our experiment was twofold: (1) describe the spatio-temporal unfolding of cortical activations involved in catching a moving target and (2) provide evidence that fast cortical responses can be elicited by a visuomotor task with high temporal constraints and decide if these responses are task or stimulus dependent. Neuromagnetic brain activity was recorded with whole-head coverage while subjects were asked to catch a free-falling ball or simply pay attention to the ball trajectory. A fast, likely stimulus-dependent, propagation of neural activity was observed along the dorsal visual pathway in both tasks. Evaluation of latencies of activations in the main cortical regions involved in the tasks revealed that this entire network of regions was activated within 40 msec. Moreover, comparison of experimental conditions revealed similar patterns of activation except in contralateral sensorimotor regions where common and catch-specific activations were differentiated.
Collapse
|
31
|
van der Meer ALH, Fallet G, van der Weel FRR. Perception of structured optic flow and random visual motion in infants and adults: a high-density EEG study. Exp Brain Res 2007; 186:493-502. [PMID: 18087695 DOI: 10.1007/s00221-007-1251-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 12/05/2007] [Indexed: 11/30/2022]
Abstract
Electroencephalogram (EEG) was used in 8-month-old infants and adults to study brain electrical activity as a function of perception of structured optic flow and random visual motion. A combination of visual evoked potential (VEP) analyses and analyses of temporal spectral evolution (TSE, time-dependent spectral power) was carried out. Significant differences were found for the N2 component of VEP for optic flow versus random visual motion within and between groups. Both adults and infants showed shorter latencies for structured optic flow than random visual motion, and infants showed longer latencies, particularly for random visual motion, and larger amplitudes than adults. Both groups also showed significant differences in induced activity when TSE of the two motion stimuli (optic flow and random visual motion) was compared with TSE of a static dot pattern. Infants showed an induced decrease in the amplitudes in theta-band frequency, while adults showed an induced increase in beta-band frequency. Differences in induced activity for the two motion stimuli could, however, not be observed. Brain activity related to motion stimuli is different for infants and adults and the differences are observed both in VEPs and in induced activity of the EEG. To investigate how changes in locomotor development are related to accompanying changes in brain activity associated with visual motion perception, more data of infants with different experiences in self-produced locomotion are required.
Collapse
Affiliation(s)
- Audrey L H van der Meer
- Developmental Neuroscience Laboratory, Department of Psychology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | | | | |
Collapse
|
32
|
Kremlácek J, Kuba M, Kubová Z, Langrová J, Vít F, Szanyi J. Within-session reproducibility of motion-onset VEPs: Effect of adaptation/habituation or fatigue on N2 peak amplitude and latency. Doc Ophthalmol 2007; 115:95-103. [PMID: 17541662 DOI: 10.1007/s10633-007-9063-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 04/04/2007] [Accepted: 05/02/2007] [Indexed: 10/23/2022]
Abstract
We explored the effect of repeated visual stimulation on motion-onset visual evoked potentials (M-VEPs) during 25 min recording sessions in 10 subjects. The aim of the experiment was to determine influence of global motion adaptation (without motion-aftereffect) on intra-individual variability of M-VEPs and to suggest an optimal recording design for clinical examination. In addition to well described middle-time sensory adaptation, we also observed a long-time effect on motion specific N2 peak (155 ms). The N2 peak exhibited a strong relationship between its latency and inter-peak amplitude to the duration of recording in occipito-parietal derivations. In addition to the middle-term adaptation, N2 peak latency was prolonged by 10 ms and amplitude was attenuated by 30% with respect to the start of the experiment. An exponential model was employed to describe the dependency. The model can be used to reduce intra-individual variability during examination. Observed resemblance between the measured electrophysiological values and already published metabolic changes (glucose and oxygen utilization) during brain processing of visual information is discussed.
Collapse
Affiliation(s)
- Jan Kremlácek
- Department of Pathophysiology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Simkova 870, Hradec Kralove, 500 38, Czech Republic.
| | | | | | | | | | | |
Collapse
|
33
|
Amenedo E, Pazo-Alvarez P, Cadaveira F. Vertical asymmetries in pre-attentive detection of changes in motion direction. Int J Psychophysiol 2007; 64:184-9. [PMID: 17343941 DOI: 10.1016/j.ijpsycho.2007.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 01/30/2007] [Accepted: 02/01/2007] [Indexed: 11/17/2022]
Abstract
Stimulus localization affects visual motion processing. Vertical asymmetries favouring lower visual field have been reported in event-related potentials (ERPs) and behavioural studies under different attention conditions. However, there are no studies examining such asymmetries to non-attended motion changes. The present study investigated whether the asymmetry in processing information from the upper and lower visual fields also affects the automatic detection of motion-direction changes as indexed by visual Mismatch Negativity (vMMN). We recorded vMMN to changes in sinusoidal gratings differing in motion direction presented in the periphery of visual field in three different locations: upper and lower (ULVF), upper (UVF) and lower (LVF) along the vertical meridian. The N2 component elicited to peripheral motion presented lower amplitudes when the UVF was stimulated. The vMMN elicited to infrequent motion-direction changes was present in all stimulation conditions. However, it was reduced to UVF stimulation. These results suggest that the visual system automatically detects motion-direction changes presented at both upper-lower visual fields; however they also indicate that the process is favoured when stimuli are presented in the LVF alone.
Collapse
Affiliation(s)
- Elena Amenedo
- Department of Clinical Psychology and Psychobiology, Faculty of Psychology, University of Santiago de Compostela, Spain.
| | | | | |
Collapse
|
34
|
Heinrich SP. A primer on motion visual evoked potentials. Doc Ophthalmol 2007; 114:83-105. [PMID: 17431818 DOI: 10.1007/s10633-006-9043-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 11/28/2006] [Indexed: 12/18/2022]
Abstract
Motion visual evoked potentials (motion VEPs) have been used since the late 1960s to investigate the properties of human visual motion processing, and continue to be a popular tool with a possible future in clinical diagnosis. This review first provides a synopsis of the characteristics of motion VEPs and then summarizes important methodological aspects. A subsequent overview illustrates how motion VEPs have been applied to study basic functions of human motion processing and shows perspectives for their use as a diagnostic tool.
Collapse
Affiliation(s)
- Sven P Heinrich
- Sektion Funktionelle Sehforschung, Universitäts-Augenklinik, Freiburg, Germany.
| |
Collapse
|
35
|
Kuba M, Kubová Z, Kremlácek J, Langrová J. Motion-onset VEPs: Characteristics, methods, and diagnostic use. Vision Res 2007; 47:189-202. [PMID: 17129593 DOI: 10.1016/j.visres.2006.09.020] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 08/16/2006] [Accepted: 09/13/2006] [Indexed: 10/23/2022]
Abstract
This review article summarises the research on the motion-onset visual evoked potentials (VEPs) and important motion stimulus parameters which have been clarified. For activation of the visual motion processing system and evocation of the motion-onset specific N2 peak (with latency of 160-200ms) from the extra-striate temporo-occipital and/or parietal cortex, the following stimulus parameters can be recently recommended: low luminance (<ca. 20cd/m(2)) and low contrast (<ca. 10%-sinusoidally modulated) of a moving structure with low velocity and temporal frequency (<ca. 6Hz). A short (up to 200ms) duration of motion and a long (at least 1s) inter-stimulus interval reduce adaptation to motion and predominance of a pattern-related P1 peak. Radial motion (with increasing velocity and decreasing spatial frequency towards the periphery) produces larger reactions as compared to a unidirectional translation. In view of the slow maturation (up to the age of 18 years) and early ageing of the visual motion processing system, the use of age-dependent latency norms may be necessary. Since early or selective involvement of the motion processing system is suspected in some CNS disorders, we suggest an evaluation of the utility of motion-onset VEPs as part of the electrophysiological CNS examination since this method may recognise motion processing involvement better than other methods. Motion-onset VEPs might increase the sensitivity of this examination for diagnosing CNS diseases including Multiple Sclerosis, Neuroborreliosis, Glaucoma, Dyslexia and Encephalopathies.
Collapse
Affiliation(s)
- M Kuba
- Electrophysiological Laboratory, Department of Pathophysiology, Charles University in Prague, Faculty of Medicine in Hradec Králové, Simkova 870, 500 38 Hradec Králové, Czech Republic.
| | | | | | | |
Collapse
|
36
|
Langrová J, Kuba M, Kremlácek J, Kubová Z, Vít F. Motion-onset VEPs reflect long maturation and early aging of visual motion-processing system. Vision Res 2006; 46:536-44. [PMID: 16083936 DOI: 10.1016/j.visres.2005.06.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 06/10/2005] [Accepted: 06/20/2005] [Indexed: 11/23/2022]
Abstract
Pattern-reversal and motion-onset visual evoked potentials (VEPs) were simultaneously tested in a group of 70 healthy subjects between the ages of 6-60 years to verify suspected differences in maturation and aging dynamics of the pattern and motion processing subsystems of the visual pathway. The motion-onset VEPs displayed dramatic configuration development and shortening of latencies up to 18 years of age (correl. coeff. -0.85; p < 0.001) and systematic prolongation from about 20 years of age (correl. coeff. 0.70; p < 0.001). This confirms long-lasting maturation of the magnocellular system and/or motion processing cortex and their early age related changes. Less significant changes of pattern-reversal VEPs in the tested age range can be interpreted as a sign of early maturation of the parvocellular system and its enhanced functional endurance in the elderly.
Collapse
Affiliation(s)
- J Langrová
- Department of Pathophysiology, Charles University-Faculty of Medicine, Simkova 870, 500 38 Hradec Králové, Czech Republic.
| | | | | | | | | |
Collapse
|
37
|
Kremlácek J, Kuba M, Kubová Z, Langrová J. Visual mismatch negativity elicited by magnocellular system activation. Vision Res 2005; 46:485-90. [PMID: 16289272 DOI: 10.1016/j.visres.2005.10.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 09/05/2005] [Accepted: 10/04/2005] [Indexed: 11/24/2022]
Abstract
The processing of visual motion was tested by means of event related potentials recording (ERP) using a paradigm designed to produce a visual mismatch negativity effect. The stimuli were unattended and presented in the peripheral visual field (outside the central 15 degrees). The standard stimulus consisted of an up/down motion sequence, whilst the deviant stimulus of a down/up motion sequence. Significant ERP differences between the standard and deviant conditions were found in 8 out of 10 adult subjects already in 80 ms and prevailingly in interval 145-260 ms from the initial stimulus presentation. The results demonstrate that the magnocellular information undergoes processing capable of detecting differences in the sequence of unattended peripheral motion stimuli.
Collapse
Affiliation(s)
- J Kremlácek
- Department of Pathological Physiology, Charles University in Prague, Faculty of Medicine in Hradec Králové, Czech Republic.
| | | | | | | |
Collapse
|