1
|
Hori T, Ikuta S, Hattori S, Takao K, Miyakawa T, Koike C. Mice with mutations in Trpm1, a gene in the locus of 15q13.3 microdeletion syndrome, display pronounced hyperactivity and decreased anxiety-like behavior. Mol Brain 2021; 14:61. [PMID: 33785025 PMCID: PMC8008678 DOI: 10.1186/s13041-021-00749-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/08/2021] [Indexed: 11/10/2022] Open
Abstract
The 15q13.3 microdeletion syndrome is a genetic disorder characterized by a wide spectrum of psychiatric disorders that is caused by the deletion of a region containing 7 genes on chromosome 15 (MTMR10, FAN1, TRPM1, MIR211, KLF13, OTUD7A, and CHRNA7). The contribution of each gene in this syndrome has been studied using mutant mouse models, but no single mouse model recapitulates the whole spectrum of human 15q13.3 microdeletion syndrome. The behavior of Trpm1-/- mice has not been investigated in relation to 15q13.3 microdeletion syndrome due to the visual impairment in these mice, which may confound the results of behavioral tests involving vision. We were able to perform a comprehensive behavioral test battery using Trpm1 null mutant mice to investigate the role of Trpm1, which is thought to be expressed solely in the retina, in the central nervous system and to examine the relationship between TRPM1 and 15q13.3 microdeletion syndrome. Our data demonstrate that Trpm1-/- mice exhibit abnormal behaviors that may explain some phenotypes of 15q13.3 microdeletion syndrome, including reduced anxiety-like behavior, abnormal social interaction, attenuated fear memory, and the most prominent phenotype of Trpm1 mutant mice, hyperactivity. While the ON visual transduction pathway is impaired in Trpm1-/- mice, we did not detect compensatory high sensitivities for other sensory modalities. The pathway for visual impairment is the same between Trpm1-/- mice and mGluR6-/- mice, but hyperlocomotor activity has not been reported in mGluR6-/- mice. These data suggest that the phenotype of Trpm1-/- mice extends beyond that expected from visual impairment alone. Here, we provide the first evidence associating TRPM1 with impairment of cognitive function similar to that observed in phenotypes of 15q13.3 microdeletion syndrome.
Collapse
Affiliation(s)
- Tesshu Hori
- Graduate School of Pharmacy, Ritsumeikan University, Kusatsu, Shiga, Japan
- Laboratory for Systems Neuroscience and Developmental Biology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Shohei Ikuta
- Laboratory for Systems Neuroscience and Developmental Biology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Satoko Hattori
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Keizo Takao
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Toyama, Japan
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Tsuyoshi Miyakawa
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama, Toyama, Japan
| | - Chieko Koike
- Graduate School of Pharmacy, Ritsumeikan University, Kusatsu, Shiga, Japan.
- Laboratory for Systems Neuroscience and Developmental Biology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan.
- Center for Systems Vision Science, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan.
- Ritsumeikan Global Innovation Research Organization (R-GIRO), Ritsumeikan University, Kusatsu, Shiga, Japan.
| |
Collapse
|
2
|
Suzuki T, Akimoto M, Imai H, Ueda Y, Mandai M, Yoshimura N, Swaroop A, Takahashi M. Chondroitinase ABC Treatment Enhances Synaptogenesis between Transplant and Host Neurons in Model of Retinal Degeneration. Cell Transplant 2017; 16:493-503. [PMID: 17708339 DOI: 10.3727/000000007783464966] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although recent studies revealed chondroitinase ABC (ChABC), an enzyme that degrades chondroitin sulfate proteoglycans, promotes CNS regeneration in vivo, the usefulness of its application for transplantation is not clear. We investigated if treatment with ChABC can promote synapse formation between graft and host neurons following retinal transplantation. Dissociated retinal cells were prepared from neonatal Nrl-GFP transgenic mice in which rod photoreceptors and their progenitor cells are labeled with GFP. Each cell suspension with or without ChABC (Nrl/ChABC group and Nrl group, respectively) was injected subretinally into the eyes of mice following chemically induced photoreceptor degeneration. The survival and functional integration of the transplanted photoreceptors were examined by histologically and electrophysio-logically. Up to 4 weeks after transplantation, almost all the grafted GFP+ photoreceptor cells were widely distributed at the outer margin of the host retina where the photoreceptor layer was located originally. In the Nrl/ChABC group, 33.6% of the GFP+ photoreceptors elaborated neurites horizontally or vertically, and 4.6% elaborated neurites toward the retina. These neurites extended over the glial seal at the graft–host interface, and established synaptic contacts with neurons in the host retina as determined by confocal microscopy and three-dimensional analysis. Although 30.7% cells (p = 0.68) elaborated neurites in the Nrl group, only 1.2% cells (p < 0.05) projected neurites towards the host tissue and synaptic contacts were rare. Our results illustrate the potential utility of ChABC for enhancing synaptogenesis between transplanted neurons and host retina.
Collapse
Affiliation(s)
- Takuya Suzuki
- Department of Opthalmology and Visual Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Identifying cell class specific losses from serially generated electroretinogram components. BIOMED RESEARCH INTERNATIONAL 2013; 2013:796362. [PMID: 24089688 PMCID: PMC3781995 DOI: 10.1155/2013/796362] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/08/2013] [Indexed: 11/18/2022]
Abstract
Purpose. Processing of information through the cellular layers of the retina occurs in a serial manner. In the electroretinogram (ERG), this complicates interpretation of inner retinal changes as dysfunction may arise from “upstream” neurons or may indicate a direct loss to that neural generator. We propose an approach that addresses this issue by defining ERG gain relationships. Methods. Regression analyses between two serial ERG parameters in a control cohort of rats are used to define gain relationships. These gains are then applied to two models of retinal disease. Results. The PIIIamp to PIIamp gain is unity whereas the PIIamp to pSTRamp and PIIamp to nSTRamp gains are greater than unity, indicating “amplification” (P < 0.05). Timing relationships show amplification between PIIIit to PIIit and compression for PIIit to pSTRit and PIIit to nSTRit, (P < 0.05). Application of these gains to ω-3-deficiency indicates that all timing changes are downstream of photoreceptor changes, but a direct pSTR amplitude loss occurs (P < 0.05). Application to diabetes indicates widespread inner retinal dysfunction which cannot be attributed to outer retinal changes (P < 0.05). Conclusions. This simple approach aids in the interpretation of inner retinal ERG changes by taking into account gain characteristics found between successive ERG components of normal animals.
Collapse
|
4
|
Maddox DM, Vessey KA, Yarbrough GL, Invergo BM, Cantrell DR, Inayat S, Balannik V, Hicks WL, Hawes NL, Byers S, Smith RS, Hurd R, Howell D, Gregg RG, Chang B, Naggert JK, Troy JB, Pinto LH, Nishina PM, McCall MA. Allelic variance between GRM6 mutants, Grm6nob3 and Grm6nob4 results in differences in retinal ganglion cell visual responses. J Physiol 2008; 586:4409-24. [PMID: 18687716 DOI: 10.1113/jphysiol.2008.157289] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
An electroretinogram (ERG) screen identified a mouse with a normal a-wave but lacking a b-wave, and as such it was designated no b-wave3 (nob3). The nob3 phenotype mapped to chromosome 11 in a region containing the metabotropic glutamate receptor 6 gene (Grm6). Sequence analyses of cDNA identified a splicing error in Grm6, introducing an insertion and an early stop codon into the mRNA of affected mice (designated Grm6(nob3)). Immunohistochemistry of the Grm6(nob3) retina showed that GRM6 was absent. The ERG and visual behaviour abnormalities of Grm6(nob3) mice are similar to Grm6(nob4) animals, and similar deficits were seen in compound heterozygotes (Grm6(nob4/nob3)), indicating that Grm6(nob3) is allelic to Grm6(nob4). Visual responses of Grm6(nob3) retinal ganglion cells (RGCs) to light onset were abnormal. Grm6(nob3) ON RGCs were rarely recorded, but when they were, had ill-defined receptive field (RF) centres and delayed onset latencies. When Grm6(nob3) OFF-centre RGC responses were evoked by full-field stimulation, significantly fewer converted that response to OFF/ON compared to Grm6(nob4) RGCs. Grm6(nob4/nob3) RGC responses verified the conclusion that the two mutants are allelic. We propose that Grm6(nob3) is a new model of human autosomal recessive congenital stationary night blindness. However, an allelic difference between Grm6(nob3) and Grm6(nob4) creates a disparity in inner retinal processing. Because the localization of GRM6 is limited to bipolar cells in the On pathway, the observed difference between RGCs in these mutants is likely to arise from differences in their inputs.
Collapse
|
5
|
Koyasu T, Kondo M, Miyata K, Ueno S, Miyata T, Nishizawa Y, Terasaki H. Photopic electroretinograms of mGluR6-deficient mice. Curr Eye Res 2008; 33:91-9. [PMID: 18214746 DOI: 10.1080/02713680701823232] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE To study the properties of the photopic electroretinograms (ERGs) of the metabotropic glutamate receptor subtype 6 (mGluR6)-deficient mice and to investigate the contribution of cone ON-and OFF-pathways to the mouse photopic ERGs. METHODS Photopic ERGs were recorded from mGluR6-deficient and wild-type mice. Photopic ERGs were also recorded after an intravitreous injection of cis-2,3 piperidine dicarboxylic acid (PDA) to block the transmission of signals from the photoreceptors to the OFF-bipolar cells, horizontal cells, and other inner retinal neurons. RESULTS The amplitude of the b-wave of the photopic ERG was severely reduced in mGluR6-deficient mice, but a small, slow, positive component was seen after the a-wave. Intravitreous injection of PDA eliminated this positive component. CONCLUSIONS The mGluR6-deficient mouse is a useful animal model to study the contribution of the ON-and OFF-pathways to the mouse ERG.
Collapse
Affiliation(s)
- Toshiyuki Koyasu
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Shirato S, Maeda H, Miura G, Frishman LJ. Postreceptoral contributions to the light-adapted ERG of mice lacking b-waves. Exp Eye Res 2008; 86:914-28. [PMID: 18440505 DOI: 10.1016/j.exer.2008.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 03/02/2008] [Accepted: 03/08/2008] [Indexed: 01/19/2023]
Abstract
The purpose of this study was to determine the contributions of postreceptoral neurons to the light-adapted ERG of the Nob mouse, a model for complete-type congenital stationary night blindness (CSNB1) that lacks a b-wave from depolarizing bipolar cells. Ganzfeld ERGs were recorded from anesthetized adult control mice, control mice injected intravitreally with L-2-amino-4-phosphonobutyric acid (Control APB mice) to remove On pathway activity, and Nob mice. ERGs also were recorded after PDA (cis-2,3-piperidine-dicarboxylic acid, 3-5mM) was injected to block transmission to hyperpolarizing (Off) bipolar and horizontal cells, and all third-order neurons. Stimuli were brief (<4ms, 0.4-2.5log sc td s) and long (200ms, 2.5-4.6log sc td) LED flashes (lambda(max)=513nm, on a rod suppressing background (2.6log sc td). Sinusoidal modulation of the LEDs (mean, 2.6log sc td; contrast, 100%; 3-36Hz) was used to study flicker ERGs. Brief-flash ERGs of Nob mice presented as long-lasting negative waves with a positive-going intrusion that started about 50ms after the flash and peaked around 120ms. Control APB mice had similar responses, and in both cases, PDA removed the positive-going intrusion. For long flashes, PDA removed a small, slow "d-wave" after light offset. With sinusoidal stimulation, the fundamental (F1) amplitude of control mice ERG peaked at 8Hz ( approximately 70microV). For Nob mice the peak was approximately 20microV at 6Hz before PDA and approximately 10muV at 3Hz or lower after PDA. F1 responses were present up to 21Hz in control and Nob eyes and 15Hz in Nob eyes after PDA. Between 3 and 6Hz, F1 phase was 170-210 degrees more delayed in Nob than control mice; phase was hardly altered by PDA. With vector analysis, a substantial postreceptoral input to the Nob flicker ERG was revealed. In control mice, the second harmonic (F2) response showed peaks of approximately 10mocrpV at 3Hz and 13Hz. Nob mice showed almost no F2. In summary, in this study it was found that in Nob mice, postreceptoral neurons from the Off pathway make a positive-going contribution to the light-adapted flash ERG, and contribute substantially to sinusoidal flicker ERG.
Collapse
Affiliation(s)
- Suguru Shirato
- University of Houston College of Optometry, 4901 Calhoun Road, 505 J. Davis Armistead Bldg., Houston, TX 77204-2020, USA
| | | | | | | |
Collapse
|
7
|
DeMarco PJ, Katagiri Y, Enzmann V, Kaplan HJ, McCall MA. An adaptive ERG technique to measure normal and altered dark adaptation in the mouse. Doc Ophthalmol 2007; 115:155-63. [PMID: 17891429 DOI: 10.1007/s10633-007-9078-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 08/06/2007] [Indexed: 10/22/2022]
Abstract
The time-course of dark adaptation provides valuable insights into the function and interactions between the rod and cone pathways in the retina. Here we describe a technique that uses the flash electroretinogram (ERG) response to probe the functional integrity of the cone and rod pathways during the dynamic process of dark adaptation in the mouse. Retinal sensitivity was estimated from the stimulus intensity required to maintain a 30 microV criterion b-wave response during a 40 min period of dark adaptation. When tracked in this manner, dark adaptation functions in WT mice depended upon the bleaching effects of initial background adaptation conditions. Altered dark adaptation functions, commensurate with the functional deficit were recorded in pigmented mice that lacked cone function (Gnat2 ( cplf3 )) and in WT mice injected with a toxin, sodium iodate (NaIO(3)), which targets the retinal pigment epithelium and also has downstream effects on photoreceptors. These data demonstrate that this adaptive tracking procedure measures retinal sensitivity and the contributions of the rod and/or cone pathways during dark adaptation in both WT control and mutant mice.
Collapse
Affiliation(s)
- Paul J DeMarco
- Louisville VA Medical Center, Department of Psychological and Brain Sciences, University of Louisville, 317 Life Sciences Bldg., Louisville, KY, USA.
| | | | | | | | | |
Collapse
|