1
|
Nasr S, Skerswetat J, Gaier ED, Malladi SN, Kennedy B, Tootell RB, Bex P, Hunter DG. Using high-resolution functional MRI to differentiate impacts of strabismic and anisometropic amblyopia on evoked ocular dominance activity in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.11.579855. [PMID: 38405701 PMCID: PMC10888796 DOI: 10.1101/2024.02.11.579855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
We employed high-resolution functional MRI (fMRI) to distinguish the impacts of anisometropia and strabismus (the two most frequent causes of amblyopia) on the evoked ocular dominance (OD) response. Sixteen amblyopic participants (8 females), comprising 8 individuals with strabismus, 7 with anisometropia, 1 with deprivational amblyopia, along with 8 individuals with normal visual acuity (1 female), participated in this study for whom, we measured the difference between the response to stimulation of the two eyes, across early visual areas (V1-V4). In controls, as expected from the organization of OD columns, the evoked OD response formed a striped pattern that was mostly confined to V1. Compared to controls, the OD response in amblyopic participants formed larger fused patches that extended into downstream visual areas. Moreover, both anisometropic and strabismic participants showed stronger OD responses in V1, as well as in downstream visual areas V2-V4. Although this increase was most pronounced in V1, the correlation between the OD response level and the interocular visual acuity difference (measured behaviorally) was stronger in higher-level visual areas (V2-V4). Beyond these common effects, and despite similar densities of amblyopia between the anisometropic and strabismic participants, we found a greater increase in the size of V1 portion that responded preferentially to fellow eye stimulation in anisometropic compared to strabismic individuals. We also found a greater difference between the amplitudes of the response to binocular stimulation, in those regions that responded preferentially to the fellow vs. amblyopic eye, in anisometropic compared to strabismic subjects. In contrast, strabismic subjects demonstrated increased correlation between the OD responses evoked within V1 superficial and deep cortical depths, whereas anisometropic subjects did not. These results provide some of the first direct functional evidence for distinct impacts of strabismus and anisometropia on the mesoscale functional organization of the human visual system, thus extending what was inferred previously about amblyopia from animal models.
Collapse
Affiliation(s)
- Shahin Nasr
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Jan Skerswetat
- Department of Psychology, Northeastern University, Boston, MA, United States
| | - Eric D. Gaier
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
- Department of Ophthalmology, Boston’s Children Hospital, Boston, MA, United States
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Sarala N. Malladi
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Bryan Kennedy
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Roger B.H. Tootell
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Peter Bex
- Department of Psychology, Northeastern University, Boston, MA, United States
| | - David G. Hunter
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
- Department of Ophthalmology, Boston’s Children Hospital, Boston, MA, United States
| |
Collapse
|
2
|
Gurman D, Reynaud A. Measuring the Interocular Delay and its Link to Visual Acuity in Amblyopia. Invest Ophthalmol Vis Sci 2024; 65:2. [PMID: 38165706 PMCID: PMC10768699 DOI: 10.1167/iovs.65.1.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/07/2023] [Indexed: 01/04/2024] Open
Abstract
Purpose Research on interocular synchronicity in amblyopia has demonstrated a deficit in synchronization (i.e., a neural processing delay) between the two eyes. Current methods for assessing interocular delay are either costly or ineffective for assessments in severe amblyopia. In this study, we adapted a novel protocol developed by Burge and Cormack based on continuous target tracking to measure the interocular delay on a wide range of amblyopes. Our main aims were to assess the accessibility of this protocol and to investigate the relationship between interocular delay and visual acuity. Methods This protocol, which consists of tracking a target undergoing random lateral motion with the mouse cursor, is performed both binocularly and monocularly. The processing speed of a given eye is computed by comparing the changes in velocity of the target and mouse via cross-correlation. The difference in processing speed between the eyes defines the interocular delay. Results Cross-correlations revealed that the amblyopic eye tends to be delayed in time compared with the fellow eye. Interocular delays fell in the range of 0.6 to 114.0 ms. The magnitude of the delay was positively correlated with differences in interocular visual acuity (R2 = 0.484; P = 0.0002). Conclusions These results demonstrate the accessibility of this new protocol and further support the link between interocular synchronicity and amblyopia. Furthermore, we determine that the interocular delay in amblyopia is best explained by a deficit in the temporal integration of the amblyopic eye.
Collapse
Affiliation(s)
- Daniel Gurman
- McGill Vision Research Unit, Department of Ophthalmology & Visual Sciences, McGill University, Montreal, Quebec, Canada
| | - Alexandre Reynaud
- McGill Vision Research Unit, Department of Ophthalmology & Visual Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Grant S, Conway ML. Deficits in Reach Planning and On-Line Grasp Control in Adults With Amblyopia. Invest Ophthalmol Vis Sci 2023; 64:45. [PMID: 38032338 PMCID: PMC10691391 DOI: 10.1167/iovs.64.14.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Adults with amblyopia exhibit impairments when reaching to grasp three-dimensional objects. We examined whether their deficits derive from problems with feedforward planning of these prehension movements or in using visual feedback to control them on-line. Methods Twenty-one adults with mild to severe anisometropic and/or strabismic amblyopia and reduced binocularity participated, along with 21 normally sighted age- and gender-matched controls. Subjects used their preferred hand to reach for, precision grasp, and then lift cylindrical table-top objects (two sizes, two distances) using binocular, dominant eye, or amblyopic/non-sighting eye vision just to plan their movements during a 1-second task preview with vision then occluded so feedback was absent or to plan and execute them (i.e., with visual feedback fully available). Kinematic and error measures of the timing and accuracy of the reach and grasp were quantified by view and feedback and compared by ANOVA. Results The amblyopic adults performed generally worse than controls across all three views in both feedback conditions. With vision for planning only, their movement initiation and duration times were significantly increased, as were their initial reach times and error rates, especially when using the amblyopic eye alone, whatever its visual acuity loss. These relative planning deficits were only partially rectified with visual feedback available on-line. Relative grasp planning deficits were less evident in the amblyopia group, who instead produced significantly increased grip times and errors under binocular and amblyopic eye visual feedback conditions, although the subgroup with unmeasurable stereovision also formed wider (inaccurate) grasps across all conditions. Conclusions Adults with amblyopia seem to have problems constructing reliable internal spatial representations for the feedforward planning of prehension, particularly with their affected eye and mainly affecting their reach, with additional deficits in on-line grasp control related to poor binocularity.
Collapse
Affiliation(s)
- Simon Grant
- Centre for Applied Vision Research, School of Health & Psychological Sciences, City, University of London, London, United Kingdom
| | - Miriam L. Conway
- Centre for Applied Vision Research, School of Health & Psychological Sciences, City, University of London, London, United Kingdom
| |
Collapse
|
4
|
Niechwiej-Szwedo E, Colpa L, Wong A. The role of binocular vision in the control and development of visually guided upper limb movements. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210461. [PMID: 36511416 PMCID: PMC9745875 DOI: 10.1098/rstb.2021.0461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/16/2022] [Indexed: 12/15/2022] Open
Abstract
Vision provides a key sensory input for the performance of fine motor skills, which are fundamentally important to daily life activities, as well as skilled occupational and recreational performance. Binocular visual function is a crucial aspect of vision that requires the ability to combine inputs from both eyes into a unified percept. Summation and fusion are two aspects of binocular processing associated with performance advantages, including more efficient visuomotor control of upper limb movements. This paper uses the multiple processes model of limb control to explore how binocular viewing could facilitate the planning and execution of prehension movements in adults and typically developing children. Insight into the contribution of binocularity to visuomotor control also comes from examining motor performance in individuals with amblyopia, a condition characterized by reduced visual acuity and poor binocular function. Overall, research in this field has advanced our understanding of the role of binocular vision in the development and performance of visuomotor skills, the first step towards developing assessment tools and targeted rehabilitation for children with neurodevelopment disorders at risk of poor visuomotor outcomes. This article is part of a discussion meeting issue 'New approaches to 3D vision'.
Collapse
Affiliation(s)
- Ewa Niechwiej-Szwedo
- Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue, Waterloo, ON, Canada N2L 3G1
| | - Linda Colpa
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada M5G 1X8
| | - Agnes Wong
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada M5G 1X8
- University of Toronto, 27 King's College Circle, Toronto, ON, Canada M5S 1A4
| |
Collapse
|
5
|
Wang H, Liang M, Crewther SG, Yin Z, Wang J, Crewther DP, Yu T. Functional Deficits and Structural Changes Associated With the Visual Attention Network During Resting State in Adult Strabismic and Anisometropic Amblyopes. Front Hum Neurosci 2022; 16:862703. [PMID: 35664341 PMCID: PMC9157425 DOI: 10.3389/fnhum.2022.862703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/14/2022] [Indexed: 11/15/2022] Open
Abstract
Our previous study has shown impaired blood oxygen level-dependent (BOLD)/functional magnetic resonance imaging (fMRI) activation of the visual attention network in strabismic amblyopia (SA). However, there has been no comparison of resting state fMRI activation and functional connectivity (FC) in brain regions of interest (ROIs) along the visual attention network including visual cortex (V1), intraparietal sulcus (IPS), and frontal eye fields (FEFs) during closed eye resting across the SA (n = 20, 13LE), or anisometropic amblyopes (AA) (n = 20, 13LE) groups. Hence, we compared, gray matter volume (GMV), amplitude of low frequency fluctuations (ALFFs), regional homogeneity (ReHo), and FC in the left and right hemisphere ROIs of the visual attention network in SA, AA, and healthy controls (HCs) (n = 21). Correlation analyses of corrected visual acuity (cVA) of amblyopic eye and MRI results were also performed and showed that the LogMAR cVA of the amblyopic eye positively correlated with right zALFF and zReHo FEF of SA and right IPS of AA only. GMV of both left and right hemisphere V1 areas was significantly greater but ALFF was significantly lower for SA compared to AA and HC groups. zALFF and zReHo analyses in the AA and SA groups indicated significantly higher activation than that in the HC group in the right FEF and IPS but lower than that in the HC group in the left FEF, and only the SA group showed lower activation in both V1 areas than the HC group. FC values of the right FEF–left V1, right FEF–right V1, and right FEF–right IPS pathways in the SA and AA groups were also significantly higher than those in the HC group whereas all other FC values were non-significant. Thus, this study indicates that even during resting-state the visual attention network function is impaired in SA and AA participants with only right hemisphere FEF showing significant activation in SA and IPS in AA suggesting that the slower saccade activation times characteristic of amblyopic eyes lead to the dominant eye controlling activation of the visual attention network.
Collapse
Affiliation(s)
- Hao Wang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Army Military Medical University, Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Minglong Liang
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, China
- Department of Radiology, Aviation Medical Evaluation and Training Center of Airforce in Hangzhou, Hangzhou, China
| | - Sheila G. Crewther
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
- *Correspondence: Sheila G. Crewther,
| | - Zhengqin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Army Military Medical University, Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, China
| | - David P. Crewther
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Tao Yu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Army Military Medical University, Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
- Tao Yu,
| |
Collapse
|
6
|
Tailor V, Ludden S, Bossi M, Bunce C, Greenwood JA, Dahlmann-Noor A. Binocular versus standard occlusion or blurring treatment for unilateral amblyopia in children aged three to eight years. Cochrane Database Syst Rev 2022; 2:CD011347. [PMID: 35129211 PMCID: PMC8819728 DOI: 10.1002/14651858.cd011347.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Current treatments for amblyopia, typically patching or pharmacological blurring, have limited success. Less than two-thirds of children achieve good acuity of 0.20 logMAR in the amblyopic eye, with limited improvement of stereopsis, and poor adherence to treatment. A new approach, based on presentation of movies or computer games separately to each eye, may yield better results and improve adherence. These treatments aim to balance the input of visual information from each eye to the brain. OBJECTIVES: To determine whether binocular treatments in children, aged three to eight years, with unilateral amblyopia result in better visual outcomes than conventional patching or pharmacological blurring treatment. SEARCH METHODS We searched CENTRAL (which contains the Cochrane Eyes and Vision Trials Register), MEDLINE, Embase, ISRCTN, ClinicalTrials.gov, and the WHO ICTRP to 19 November 2020, with no language restrictions. SELECTION CRITERIA Two review authors independently screened the results of the search for relevant studies. We included randomised controlled trials (RCTs) that enrolled children between the ages of three and eight years old with unilateral amblyopia. Amblyopia was classed as present when the best-corrected visual acuity (BCVA) was worse than 0.200 logMAR in the amblyopic eye, with BCVA 0.200 logMAR or better in the fellow eye, in the presence of an amblyogenic risk factor, such as anisometropia, strabismus, or both. To be eligible, children needed to have undergone cycloplegic refraction and ophthalmic examination, including fundal examination and optical treatment, if indicated, with stable BCVA in the amblyopic eye despite good adherence with wearing glasses. We included any type of binocular viewing intervention, on any device (e.g. computer monitors viewed with liquid-crystal display shutter glasses; hand-held screens, including mobile phones with lenticular prism overlay; or virtual reality displays). Control groups received standard amblyopia treatment, which could include patching or pharmacological blurring of the better-seeing eye. We included full-time (all waking hours) and part-time (between 1 and 12 hours a day) patching regimens. We excluded children who had received any treatment other than optical treatment; and studies with less than 8-week follow-up. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. The primary outcome of the review was the change from baseline of distance BCVA in the amblyopic eye after 16 (± 2) weeks of treatment, measured in logMAR units on an age-appropriate acuity test. MAIN RESULTS We identified one eligible RCT of conventional patching treatment versus novel binocular treatment, and analysed a subset of 68 children who fulfilled the age criterion of this review. We obtained data for the mean change in amblyopic eye visual acuity, adverse events (diplopia), and adherence to prescribed treatment at 8- and 16-week follow-up intervals, though no data were available for change in BCVA after 52 weeks. Risk of bias for the included study was considered to be low. The certainty of evidence for the visual acuity outcomes at 8 and 16 weeks of treatment and adherence to the study intervention was rated moderate using the GRADE criteria, downgrading by one level due to imprecision. The certainty of evidence was downgraded by two levels and rated low for the proportion of participants reporting adverse events due to the sample size. Acuity improved in the amblyopic eye in both the binocular and patching groups following 16 weeks of treatment (improvement of -0.21 logMAR in the binocular group and -0.24 logMAR in the patching group, mean difference (MD) 0.03 logMAR (95% confidence interval (CI) -0.10 to 0.04; 63 children). This difference was non-significant and the improvements in both the binocular and patching groups are also considered clinically similar. Following 8 weeks of treatment, acuity improved in both the binocular and patching groups (improvement of -0.18 logMAR in the patching group compared to -0.16 logMAR improvement in the binocular-treatment group) (MD 0.02, 95% CI -0.04 to 0.08). Again this difference was statistically non-significant, and the differences observed between the patching and binocular groups are also clinically non-significant. No adverse event of permanent diplopia was reported. Adherence was higher in the patching group (47% of participants in the iPad group achieved over 75% compliance compared with 90% of the patching group). Data were not available for changes in stereopsis nor for contrast sensitivity following treatment. AUTHORS' CONCLUSIONS Currently, there is only one RCT that offers evidence of the safety and effectiveness of binocular treatment. The authors are moderately confident that after 16 weeks of treatment, the gain in amblyopic eye acuity with binocular treatment is likely comparable to that of conventional patching treatment. However, due to the limited sample size and lack of long term (52 week) follow-up data, it is not yet possible to draw robust conclusions regarding the overall safety and sustained effectiveness of binocular treatment. Further research, using acknowledged methods of visual acuity and stereoacuity assessment with known reproducibility, is required to inform decisions about the implementation of binocular treatments for amblyopia in clinical practice, and should incorporate longer term follow-up to establish the effectiveness of binocular treatment. Randomised controlled trials should also include outcomes reported by users, adherence to prescribed treatment, and recurrence of amblyopia after cessation of treatment.
Collapse
Affiliation(s)
- Vijay Tailor
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
- Experimental Psychology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Siobhan Ludden
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- HSE DNCC Grangegorman Eye Clinic, Dublin, Ireland
| | - Manuela Bossi
- Department of Visual Neurosciences, UCL Institute of Ophthalmology, London, UK
| | - Catey Bunce
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | - Annegret Dahlmann-Noor
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
7
|
Chow A, Quan Y, Chui C, Itier RJ, Thompson B. Orienting of covert attention by neutral and emotional gaze cues appears to be unaffected by mild to moderate amblyopia. J Vis 2021; 21:5. [PMID: 34623398 PMCID: PMC8504194 DOI: 10.1167/jov.21.11.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Amblyopia is a developmental disorder of vision associated with higher-order visual attention deficits. We explored whether amblyopia affects the orienting of covert spatial attention by measuring the magnitude of the gaze cueing effect from emotional faces. Gaze and emotion cues are key components of social attention. Participants with normal vision (n = 30), anisometropic (n = 7) or strabismic/mixed (n = 5) amblyopia performed a cued peripheral target detection task under monocular and binocular viewing conditions. The cue consisted of a centrally presented face with left or right gaze (50% validity to target location) and a fearful, happy, or neutral expression. The magnitude of spatial cueing was computed as the reaction time difference between congruent and incongruent trials for each expression. Fearful facial expressions oriented spatial attention significantly more than happy or neutral expressions. The magnitude of the gaze cueing effect in our cohort of mild-to-moderate amblyopia was comparable to that in normal vision and was not correlated with the severity of amblyopia. There were no statistical group or amblyopia subtype differences for reaction time in any viewing condition. These results place constraints on the range of attentional mechanisms affected by amblyopia and possibly suggest normal covert processing of emotional face stimuli in mild and moderate amblyopia.
Collapse
Affiliation(s)
- Amy Chow
- Department of Optometry and Vision Science, University of Waterloo, Waterloo, Canada
| | - Yiwei Quan
- Department of Psychology, University of Waterloo, Waterloo, Canada
| | - Celine Chui
- Department of Psychology, University of Waterloo, Waterloo, Canada
| | - Roxane J Itier
- Department of Psychology, University of Waterloo, Waterloo, Canada
| | - Benjamin Thompson
- Department of Optometry and Vision Science, University of Waterloo, Waterloo, Canada
- Centre for Eye and Vision Research, 17W Science Park, Hong Kong
- Liggins Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Chakraborty A, Tran TT, Silva AE, Giaschi D, Thompson B. Continuous theta burst TMS of area MT+ impairs attentive motion tracking. Eur J Neurosci 2021; 54:7289-7300. [PMID: 34591329 DOI: 10.1111/ejn.15480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 11/28/2022]
Abstract
Attentive motion tracking deficits measured using multiple object tracking (MOT) tasks have been identified in a number of neurodevelopmental disorders such as amblyopia and autism. These deficits are often attributed to the abnormal development of high-level attentional networks. However, neuroimaging evidence from amblyopia suggests that reduced MOT performance can be explained by impaired function in motion-sensitive area MT+ alone. To test the hypothesis that a subtle disruption of MT+ function could cause MOT impairment, we assessed whether continuous theta burst stimulation (cTBS) of MT+ influenced MOT task accuracy in individuals with normal vision. The MOT stimulus consisted of four target and four distractor dots and was presented at ±10° eccentricity (right/left hemifield). fMRI-guided cTBS was applied to left MT+. Participants (n = 13, age: 27 ± 3) attended separate active and sham cTBS sessions where the MOT task was completed before, 5-min post- and 30-min post-cTBS. Active cTBS significantly impaired MOT task accuracy relative to baseline for the right (stimulated) hemifield 5-min (10 ± 2% reduction) and 30-min (14 ± 3% reduction) post-stimulation. No impairment occurred within the left (control) hemifield after active cTBS or for either hemifield after sham cTBS. These results highlight the importance of lower level motion processing for MOT, suggesting that a minor disruption of MT+ function alone is sufficient to cause a deficit in MOT performance.
Collapse
Affiliation(s)
- Arijit Chakraborty
- School of Optometry and Vision Science, Faculty of Science, University of Waterloo, Waterloo, Ontario, Canada.,Chicago College of Optometry, Midwestern University, Downers Grove, Illinois, USA
| | - Tiffany T Tran
- School of Optometry and Vision Science, Faculty of Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Andrew E Silva
- School of Optometry and Vision Science, Faculty of Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Deborah Giaschi
- Department of Ophthalmology and Visual Sciences, University of British Columbia/B.C. Children's Hospital, Vancouver, British Columbia, Canada
| | - Benjamin Thompson
- School of Optometry and Vision Science, Faculty of Science, University of Waterloo, Waterloo, Ontario, Canada.,Centre for Eye and Vision Research (CEVR), Hong Kong, China.,Liggins Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Hou C, Acevedo Munares G. Feature Counting Is Impaired When Shifting Attention Between the Eyes in Adults With Amblyopia. Front Neurosci 2021; 15:674146. [PMID: 34093118 PMCID: PMC8174661 DOI: 10.3389/fnins.2021.674146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Feature counting requires rapid shifts of attention in the visual field and reflects higher-level cortical functions. This process is drastically impaired in the amblyopic eye of strabismic amblyopes. In this study, we hypothesized that feature counting performance in anisometropic and strabismic amblyopes is further impaired when shifts in attention is required between the eyes. MATERIALS AND METHODS Through a mirror stereoscope, highly visible Gabor patches were presented to the same eye within a block or randomly presented to the left eye or to the right eye with an equal probability within a block. The task was to report the number of Gabors (3 to 9) as accurately as possible. Counting performance was compared between the amblyopes and the normal-vision observers and between the viewing conditions (shifting attention between the eyes versus maintaining attention in the same eye). RESULTS When attention was maintained in the same eye, the amblyopic eye of both anisometropic and strabismic groups undercounted the number of Gabors, but achieved near-perfect performance with their fellow eye, compared to normal-vision observers. In contrast, when shifting attention randomly to the left or to the right eye, the amblyopic eye further undercounted the number of Gabors. Undercounting was also found in the fellow eye of strabismic amblyopes, but was not in the fellow eye of anisometropic amblyopes. Performance in normal-vision observers did not differ between shifting attention between the eyes and maintaining attention in the same eye. CONCLUSION Our data showed that the amblyopic eye of both anisometropic and strabismic amblyopes further undercounted features when shifting attention between the eyes, compared to when maintaining attention in the same eye. This suggests that the ability to quickly redirect attention, particularly under interocular suppression, is impaired in amblyopia. The fellow eye of strabismic amblyopes also undercounted features when shifting attention between the eyes. However, such fellow eye abnormality was not found in anisometropic amblyopes, suggesting that different patterns of visual deficits are associated with amblyopia of different etiologies. The inability to count multiple features accurately reflects dysfunctions of high-level cortices in the amblyopic brain.
Collapse
Affiliation(s)
- Chuan Hou
- Smith-Kettlewell Eye Research Institute, San Francisco, CA, United States
| | | |
Collapse
|
10
|
Black AA, Wood JM, Hoang S, Thomas E, Webber AL. Impact of Amblyopia on Visual Attention and Visual Search in Children. Invest Ophthalmol Vis Sci 2021; 62:15. [PMID: 33848323 PMCID: PMC8054626 DOI: 10.1167/iovs.62.4.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/19/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose The purpose of this study was to compare binocular visual attention, visual processing speeds, and visuo-cognitive search ability in children with and without amblyopia and investigate the association of visual acuity and binocular function with these measures. Methods Participants included 20 children with amblyopia (mean age = 9.0 ± 1.2 years; 15 anisometropic and 5 strabismic) and 20 children with normal vision development (9.5 ± 1.7 years). Vision assessment included visual acuity (monocular and binocular) and binocular function (Worth 4 Dot and Randot Preschool Stereotest). Visual attention and processing speeds were assessed using the three subtests of the Useful Field of View (UFOV; central processing, divided attention, and selective attention). Visuo-cognitive search was measured using static and dynamic presentations of the Trail Making Tests (TMTs), parts A and B, with increasing levels of executive function demand. All children performed these tasks binocularly. Results Children with amblyopia demonstrated slower visual processing times on the UFOV (P = 0.04), and slower completion times on the TMT search tests (P = 0.014), compared to controls. TMT performance for children with amblyopia was also more negatively impacted with increasing executive function demands on the TMT part B, compared to controls (P = 0.005). Binocular visual acuity was associated with TMT (P = 0.006) and UFOV (P = 0.07) performance, but none of the other visual function measures were related to performance on these tasks. Conclusions Children with amblyopia exhibit deficits in higher-order visual processing skills, including visual attention and visual search, particularly with increasing executive function demands. These findings have implications for understanding the impact of amblyopia on everyday function in children.
Collapse
Affiliation(s)
- Alex A. Black
- Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology, Kelvin Grove, Brisbane, Australia
| | - Joanne M. Wood
- Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology, Kelvin Grove, Brisbane, Australia
| | - Silvie Hoang
- Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology, Kelvin Grove, Brisbane, Australia
| | - Eloise Thomas
- Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology, Kelvin Grove, Brisbane, Australia
| | - Ann L. Webber
- Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology, Kelvin Grove, Brisbane, Australia
| |
Collapse
|
11
|
Abstract
Purpose Amblyopes suffer a defect in temporal processing, presumably because of a neural delay in their visual processing. By measuring flash-lag effect (FLE), we investigate whether the amblyopic visual system could compensate for the intrinsic neural delay due to visual information transmissions from the retina to the cortex. Methods Eleven adults with amblyopia and 11 controls with normal vision participated in this study. We assessed the monocular FLE magnitude for each subject by using a typical FLE paradigm: a bar moved horizontally, while a flashed bar briefly appeared above or below it. Three luminance contrasts of the flashed bar were tested: 0.2, 0.6, and 1. Results All participants, controls and those with amblyopia, showed a typical FLE. However, the FLE magnitude of participants with amblyopia was significantly shorter than that of the control participants, for both their amblyopic eye (AE) and fellow eye (FE). A nonsignificant difference was found in FLE magnitude between the AE and the FE. Conclusions We demonstrate a reduced FLE both in the AE as well as the FE of patients with amblyopia, suggesting a global visual processing deficit. We suggest it may be attributed to a more limited spatiotemporal extent of facilitatory anticipatory activity within the amblyopic primary visual cortex.
Collapse
Affiliation(s)
- Xi Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,McGill Vision Research Unit, Department of Ophthalmology, McGill University, Montreal, Quebec, Canada
| | - Alexandre Reynaud
- McGill Vision Research Unit, Department of Ophthalmology, McGill University, Montreal, Quebec, Canada
| | - Robert F Hess
- McGill Vision Research Unit, Department of Ophthalmology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
12
|
da Costa DR, Debert I, Susanna FN, Falabreti JG, Polati M, Susanna R. Vision for the Future Project: Screening impact on the prevention and treatment of visual impairments in public school children in São Paulo City, Brazil. Clinics (Sao Paulo) 2021; 76:e3062. [PMID: 34614115 PMCID: PMC8449928 DOI: 10.6061/clinics/2021/e3062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Uncorrected refractive errors are the leading cause of visual impairment in children. In this cross-sectional retrospective study, we analyzed a social visual screening program for school children in São Paulo, Brazil, evaluated its impact on the prevention and treatment of children's visual disabilities, and assessed its epidemiological outcomes to outline suggestions for its improvement. METHODS First-grade children from public schools were submitted to prior visual screening by their teachers. Selected children were forwarded to the hospital's campaigns for a second screening by ophthalmologists and treatment if needed. Data were analyzed for age, sex, visual acuity, biomicroscopy, refractive errors, ocular movement disorders, amblyopia, number of donated spectacles, and number of children forwarded to specialized care. RESULTS A total of 1080 children were included with mean age of 6.24±0.45 years. Children with normal ophthalmological exam, 591 (54.7%; 95% confidence interval [CI]: 51.7%-57.7%) were dismissed and considered false-positives. Myopia, hyperopia, and astigmatism components were found in 164 (15.2%; CI: 13.1%-17.4%), 190 (17.6%; CI: 15.3%-20.0%), and 330 (30.5%; CI: 27.8%-33.4%) children, respectively. Amblyopia was diagnosed in 54 (5%; CI: 3.5%-6.4%) children, and 117 (10.8%; CI: 9.8%-12.8%) presented ocular movement disorders. A total of 420 glasses were donated. CONCLUSION Epidemiological findings for amblyopia and refractive errors are consistent with those of similar studies. The expressive number of diagnoses performed and number of glasses donated to underprivileged children depict the importance of such projects. New guidelines to improve their cost-effectiveness, such as professional training and community sensitization, are imperative.
Collapse
|
13
|
Mortazavi M, Aigner KM, Antono JE, Gambacorta C, Nahum M, Levi DM, Föcker J. Neural correlates of visual spatial selective attention are altered at early and late processing stages in human amblyopia. Eur J Neurosci 2020; 53:1086-1106. [PMID: 33107117 DOI: 10.1111/ejn.15024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 11/28/2022]
Abstract
Amblyopia is a neurodevelopmental visual disorder which results in reduced visual acuity in one eye and impaired binocular interactions. Previous studies suggest attentional deficits in amblyopic individuals. However, spatial cues which orient attention to a visual field improved performance. Here, we investigate the neural correlates of auditory-visual spatial selective attention in amblyopia during EEG recording. An auditory cue, that was followed by the presentation of two Gabor patches presented in the lower left and right visual fields, indicated the most likely location of an upcoming target Gabor. The target Gabor differed in orientation from the more frequently presented non-target Gabor patches. Adults with amblyopia and neurotypical observers were asked to detect the target Gabor monocularly at the cued location, while withholding their response to targets presented at the uncued location and to all non-target Gabor patches. Higher response rates were observed for cued compared to uncued targets in both groups. However, amblyopic individuals detected targets less efficiently with their amblyopic eye as compared to their fellow eye. Correspondingly, event-related potentials (ERPs) recorded to the onset of the non-target Gabor patches were delayed at early processing stages (150-300 ms: posterior N100) and reduced in amplitude at later time windows (150-350 ms: P200, 300-500 ms: sustained activity) in the amblyopic eye compared to the fellow eye. Such interocular differences were not observed in neurotypical observers. These findings suggest that neural resources allocated to the early formation of visual discrimination as well as later stimulus recognition processes are altered in the amblyopic eye.
Collapse
Affiliation(s)
- Matin Mortazavi
- Department of Radiology, University Hospital LMU, Munich, Munich, Germany.,Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Munich, Germany
| | - Kiera M Aigner
- Faculty of Psychology and Educational Sciences, Ludwig-Maximilian University, Munich, Munich, Germany
| | - Jessica E Antono
- European Neuroscience Institute-Goettingen, A Joint Initiative of the University Medical Center Goettingen and the Max Planck Society, Goettingen, Germany
| | - Christina Gambacorta
- School of Optometry, Graduate Group in Vision Science and Helen Wills Neuroscience Institute, University of California, Berkley, Berkley, CA, USA
| | - Mor Nahum
- School of Occupational Therapy, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Dennis M Levi
- School of Optometry, Graduate Group in Vision Science and Helen Wills Neuroscience Institute, University of California, Berkley, Berkley, CA, USA
| | - Julia Föcker
- School of Psychology, College of Social Sciences, University of Lincoln, Lincoln, UK
| |
Collapse
|
14
|
Wong-Kee-You AMB, Wei H, Hou C. Feature Counting Under Dichoptic Viewing in Anisometropic and Strabismic Amblyopia. Transl Vis Sci Technol 2020; 9:13. [PMID: 32821510 PMCID: PMC7408935 DOI: 10.1167/tvst.9.6.13] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/25/2020] [Indexed: 02/05/2023] Open
Abstract
Purpose While using their amblyopic eye, individuals with strabismic amblyopia count inaccurately and underestimate the number of features. These deficits are attributed to limitations in high-level cortical functions and attention. In the current study, we examined whether feature counting is affected in strabismic and anisometropic amblyopia during dichoptic viewing, a setup that can better capture binocular function disruptions. Methods Through a mirror stereoscope, Gabor patches were presented for 200 msec (Experiment 1) or 350 msec (Experiment 2) in both the left eye and the right eye of observers, who were required to combine the percepts and report the total number of patches. Counting performance and errors were compared across amblyopic groups and normal-sighted observers. The contribution and relation of each eye to performance was also evaluated. Results Anisometropic and strabismic amblyopia groups counted inaccurately and underestimated the number of features compared to the normal-sighted group. In both amblyopic groups, the amblyopic eye contributed less in comparison to the fellow eye. The strabismic group exhibited worse performance, and a more pronounced difference in eye contribution, in comparison to the anisometropic group. Conclusions Overall, our results support the view of higher-level cortical and binocular function deficits in amblyopia. Translational Relevance The current study bridges the gap between research on high-cortical function deficits and clinical binocular function disruptions in amblyopia, which can help us better understand the neural mechanism of amblyopia and inform clinical therapeutic tasks and strategies.
Collapse
Affiliation(s)
| | - Hong Wei
- Department of Ophthalmology and Vision Research Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Chuan Hou
- Smith-Kettlewell Eye Research Institute, San Francisco, CA, USA
| |
Collapse
|
15
|
Abstract
Amblyopia is a cortical visual disorder caused by unequal visual input to the brain from the two eyes during development. Amblyopes show reduced visual acuity and contrast sensitivity and abnormal binocularity, as well as more “global” perceptual losses, such as figure-ground segregation and global form integration. Currently, there is no consensus on the neural basis for these higher-order perceptual losses. One contributing factor could be that amblyopes have deficiencies in attention, such that the attentional processes that control the selection of information favor the better eye. Previous studies in amblyopic adults are conflicting as to whether attentional deficits exist. However, studies where intact attentional ability has been shown to exist were conducted in adults; it is possible that it was acquired through experience. To test this hypothesis, we studied attentional processing in amblyopic children. We examined covert endogenous attention using a classical spatial cueing paradigm in amblyopic and visually typical 5- to 10-year old children. We found that all children, like adults, independently of visual condition, benefited from attentional cueing: They performed significantly better on trials with an informative (valid) cue than with the uninformative (neutral) cue. Response latencies were also significantly shorter for the valid cue condition. No statistically significant difference was found between the performance of the amblyopic and the visually typical children or between dominant and nondominant eyes of all children. The results showed that covert spatial attention is intact in amblyopic and visually typical children and is therefore not likely to account for higher-order perceptual losses in amblyopic children.
Collapse
|
16
|
Verghese P, McKee SP, Levi DM. Attention deficits in Amblyopia. Curr Opin Psychol 2019; 29:199-204. [PMID: 31030000 PMCID: PMC6755070 DOI: 10.1016/j.copsyc.2019.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 11/22/2022]
Abstract
Amblyopia is a neuro-developmental abnormality associated with deficits in a broad range of both low-level and high-level visual tasks. This is particularly true in strabismic amblyopia where fixation is unstable and there is an increased frequency of microsaccades. In light of the close association between eye movements and attention, we propose a novel hypothesis: that the cost of unstable fixation in amblyopia is a deficit in selective attention. The increased latency for saccades and manual response time with amblyopic-eye viewing is consistent with attention being distracted by unwanted fixational eye movements. We review other attention deficits in amblyopia and discuss whether they are explained by fixation instability, or whether they involve a form of neglect or suppression of the visual input from the amblyopic eye.
Collapse
Affiliation(s)
- Preeti Verghese
- The Smith Kettlewell Eye Research Institute, San Francisco CA ()
| | - Suzanne P McKee
- The Smith Kettlewell Eye Research Institute, San Francisco CA ()
| | - Dennis M Levi
- Optometry and Vision Science, University of California Berkeley, CA ()
| |
Collapse
|
17
|
Tang S, Skelly P, Otero-Millan J, Jacobs J, Murray J, Shaikh AG, Ghasia FF. Effects of visual blur on microsaccades during visual exploration. J Eye Mov Res 2019; 12. [PMID: 33828759 PMCID: PMC7962686 DOI: 10.16910/jemr.12.6.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Microsaccades shift the image on the fovea and counteract visual fading. They also serve as an optimal
sampling strategy while viewing complex visual scenes. Microsaccade production relies on the amount of
retinal error or acuity demand of a visual task. The goal of this study was to assess the effects of blur induced by uncorrected refractive error on visual search. Eye movements were recorded in fourteen healthy
subjects with uncorrected and corrected refractive error while they performed a) visual fixation b) blankscene viewing c) visual search (spot the difference) tasks. Microsaccades, saccades, correctly identified
differences and reaction times were analyzed. The frequency of microsaccades and correctly identified
differences were lower in the uncorrected refractive error during visual search. No similar change in microsaccades was seen during blank-scene viewing and gaze holding tasks. These findings suggest that visual
blur, hence the precision of an image on the fovea, has an important role in calibrating the amplitude of
microsaccades during visual scanning.
Collapse
Affiliation(s)
- Sherry Tang
- Case Western Reserve University School of Medicine, USA
| | | | - Jorge Otero-Millan
- Vestibular and Ocular Motor Research Laboratory, Johns Hopkins University, USA
| | | | | | | | | |
Collapse
|
18
|
Birch EE, Kelly KR, Giaschi DE. Fellow Eye Deficits in Amblyopia. J Binocul Vis Ocul Motil 2019; 69:116-125. [PMID: 31161888 PMCID: PMC6673659 DOI: 10.1080/2576117x.2019.1624440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 10/26/2022]
Abstract
Amblyopia is a neurodevelopmental disorder of the visual system, as a result of discordant visual experience during infancy or early childhood. Because amblyopia is typically defined as monocularly reduced visual acuity accompanied by one or more known amblyogenic factors, it is often assumed that the fellow eye is normal and sufficient for tasks like reading and eye-hand coordination. Recent scientific evidence of ocular motor, visual, and visuomotor deficits that are present with fellow eye monocular viewing and with binocular viewing calls this assumption into question. This clinical update reviews the research that has revealed fellow ocular motor and visual deficits and the effect that these deficits have on an amblyopic child's visuomotor and visuocognitive skills. We need to understand how to prevent and rehabilitate the effects of amblyopia not only on the nonpreferred eye but also on the fellow eye.
Collapse
Affiliation(s)
- Eileen E Birch
- Crystal Charity Ball Pediatric Vision Laboratory, Retina Foundation of the Southwest, Dallas, TX, USA
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, 11 USA
| | - Krista R Kelly
- Crystal Charity Ball Pediatric Vision Laboratory, Retina Foundation of the Southwest, Dallas, TX, USA
| | - Deborah E Giaschi
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
Richards MD, Goltz HC, Wong AM. Audiovisual perception in amblyopia: A review and synthesis. Exp Eye Res 2019; 183:68-75. [DOI: 10.1016/j.exer.2018.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 11/15/2022]
|
20
|
Chen D, Otero-Millan J, Kumar P, Shaikh AG, Ghasia FF. Visual Search in Amblyopia: Abnormal Fixational Eye Movements and Suboptimal Sampling Strategies. Invest Ophthalmol Vis Sci 2019; 59:4506-4517. [PMID: 30208418 DOI: 10.1167/iovs.18-24794] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Microsaccades shift the image on the fovea and counteract visual fading. They are also thought to serve as an optimal sampling strategy while viewing complex visual scenes. The goal of our study was to assess visual search in amblyopic children. Methods Twenty-one amblyopic children with varying severity of amblyopia and 10 healthy controls were recruited. Eye movements were recorded using infrared video-oculography during amblyopic and fellow eye viewing while the subjects performed (1) visual fixation, (2) exploration of a blank scene, and (3) visual search task (spot the difference between two images). The number of correctly identified picture differences and reaction time were recorded. Microsaccade, saccades, and intersaccadic drifts were analyzed in patients without latent nystagmus (LN). Slow phase velocities were computed for patients with LN. Results Both patients with and without LN were able to spot the same number of differences but took longer during fellow eye viewing compared to controls. The ability to identify differences was diminished during amblyopic eye viewing particularly those with LN and severe amblyopia. We found reduced frequencies of microsaccades and saccades in both amblyopic and fellow eyes during fixation and visual search but not during exploration of blank scene. Across all tasks, amblyopes with LN had increased intersaccadic drifts. Conclusions Our findings suggest that deficient microsaccade and saccadic activity contributes to poorer sampling strategy in amblyopia, which is seen in both amblyopic and fellow eye. These deficits are more notable among subjects who experienced binocular decorrelation earlier in life, with subsequent development of LN.
Collapse
Affiliation(s)
- Dinah Chen
- Department of Ophthalmology, New York University School of Medicine, New York, New York, United States.,Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Jorge Otero-Millan
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, United States
| | - Priyanka Kumar
- Department of Ophthalmology, the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Aasef G Shaikh
- Department of Neurology, University Hospitals, Case Western Reserve University, Cleveland, Ohio, United States.,Daroff-Dell'Osso Ocular Motility Laboratory, Cleveland VA Medical Center, Cleveland, Ohio, United States
| | - Fatema F Ghasia
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Daroff-Dell'Osso Ocular Motility Laboratory, Cleveland VA Medical Center, Cleveland, Ohio, United States
| |
Collapse
|
21
|
Kugathasan L, Partanen M, Chu V, Lyons C, Giaschi D. Reading ability of children treated for amblyopia. Vision Res 2019; 156:28-38. [PMID: 30633876 DOI: 10.1016/j.visres.2019.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 01/01/2019] [Accepted: 01/03/2019] [Indexed: 10/27/2022]
Abstract
Previous studies have reported compromised reading ability in children with amblyopia. Standardized psychoeducational test norms have not been used; therefore, the practical consequences of poor reading ability, such as eligibility for reading supports at school, have not been assessed. Furthermore, several studies have used atypical reading conditions such as monocular or distant viewing. It is also not clear how amblyopia treatment impacts reading ability. Thus, the goal of this study was to use standardized tests to compare binocular reading performance in children treated for amblyopia to that of a large normative sample, as well as to the types of control groups used in previous studies. Children treated for strabismic or anisometropic amblyopia (N = 14) were compared to children treated for strabismus without amblyopia (N = 12) and to children with healthy vision (N = 39). Visual acuity, stereoacuity, interocular suppression, intellectual functioning, oral single-word reading (TOWRE-2), and oral paragraph reading (GORT-5) were assessed. The control group showed significantly higher single-word reading accuracy than the amblyopia and strabismus groups. However, mean performance for all groups was within the average range of the normative sample. While mean scores were in the average range, six children (four amblyopia, two strabismus) performed below average on the single-word reading task; four of these children also showed below average paragraph reading. Reading scores were not correlated with visual acuity in the patient groups. The results raise the possibility that both strabismus and amblyopia can disrupt reading ability, even following successful treatment, to an extent that might benefit from reading supports at school.
Collapse
Affiliation(s)
- Laveniya Kugathasan
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marita Partanen
- Department of Educational and Counselling Psychology, and Special Education, University of British Columbia, Vancouver, British Columbia, Canada
| | - Violet Chu
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher Lyons
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Deborah Giaschi
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
22
|
Yang X, Zeng J, Wang J, Liu L. Temporal frequency discrimination in amblyopia. Exp Ther Med 2018; 16:4303-4307. [PMID: 30344704 DOI: 10.3892/etm.2018.6688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/28/2018] [Indexed: 02/05/2023] Open
Abstract
The present study aimed to explore temporal frequency discrimination in amblyopia, and the influence of attentional load on amblyopic temporal cognition. Twenty anisometropic amblyopes, 20 strabismic amblyopes and 20 normal subjects were recruited. A flickering disk was used for visual stimuli. A two-alternative, forced-choice staircase paradigm was used to measure the temporal frequency discrimination thresholds of amblyopic eyes, fellow eyes and normal dominant eyes under reference temporal frequencies of 5, 10 and 20 Hz. The just-noticeable differences data were analyzed statistically. In addition, the temporal frequency discrimination thresholds of the subjects were measured under different conditions of attentional load. The changes in temporal frequency discrimination thresholds were compared between amblyopic and normal eyes when attention was loaded. At the reference temporal frequencies of 5 and 10 Hz, temporal thresholds of amblyopic eyes were significantly increased compared with fellow eyes (P<0.05). Regarding strabismic amblyopia, temporal thresholds of fellow eyes were increased compared with normal eyes (P<0.05). However, no correlation was identified between the temporal-frequency discrimination thresholds and the LogMAR visual acuities in amblyopic eyes. In addition, higher attentional load caused greater changes in temporal thresholds in amblyopic eyes, but the situation was not the same for lower attentional load. In conclusion, in the present study a deficit of temporal frequency discrimination in amblyopic eyes and the fellow eyes of strabismic amblyopes was identified. Furthermore, the influence of attentional load on temporal frequency discrimination in amblyopic eyes was increased compared with normal eyes.
Collapse
Affiliation(s)
- Xubo Yang
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Optometry and Visual Science, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jihong Zeng
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jianglan Wang
- Department of Optometry and Visual Science, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Longqian Liu
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Optometry and Visual Science, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
23
|
Chow A, Giaschi D, Thompson B. Dichoptic Attentive Motion Tracking is Biased Toward the Nonamblyopic Eye in Strabismic Amblyopia. ACTA ACUST UNITED AC 2018; 59:4572-4580. [DOI: 10.1167/iovs.18-25236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Amy Chow
- Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Deborah Giaschi
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Benjamin Thompson
- Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
- Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
24
|
Milleret C, Bui Quoc E. Beyond Rehabilitation of Acuity, Ocular Alignment, and Binocularity in Infantile Strabismus. Front Syst Neurosci 2018; 12:29. [PMID: 30072876 PMCID: PMC6058758 DOI: 10.3389/fnsys.2018.00029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 06/15/2018] [Indexed: 11/13/2022] Open
Abstract
Infantile strabismus impairs the perception of all attributes of the visual scene. High spatial frequency components are no longer visible, leading to amblyopia. Binocularity is altered, leading to the loss of stereopsis. Spatial perception is impaired as well as detection of vertical orientation, the fastest movements, directions of movement, the highest contrasts and colors. Infantile strabismus also affects other vision-dependent processes such as control of postural stability. But presently, rehabilitative therapies for infantile strabismus by ophthalmologists, orthoptists and optometrists are restricted to preventing or curing amblyopia of the deviated eye, aligning the eyes and, whenever possible, preserving or restoring binocular vision during the critical period of development, i.e., before ~10 years of age. All the other impairments are thus ignored; whether they may recover after strabismus treatment even remains unknown. We argue here that medical and paramedical professionals may extend their present treatments of the perceptual losses associated with infantile strabismus. This hypothesis is based on findings from fundamental research on visual system organization of higher mammals in particular at the cortical level. In strabismic subjects (as in normal-seeing ones), information about all of the visual attributes converge, interact and are thus inter-dependent at multiple levels of encoding ranging from the single neuron to neuronal assemblies in visual cortex. Thus if the perception of one attribute is restored this may help to rehabilitate the perception of other attributes. Concomitantly, vision-dependent processes may also improve. This could occur spontaneously, but still should be assessed and validated. If not, medical and paramedical staff, in collaboration with neuroscientists, will have to break new ground in the field of therapies to help reorganize brain circuitry and promote more comprehensive functional recovery. Findings from fundamental research studies in both young and adult patients already support our hypothesis and are reviewed here. For example, presenting different contrasts to each eye of a strabismic patient during training sessions facilitates recovery of acuity in the amblyopic eye as well as of 3D perception. Recent data also demonstrate that visual recoveries in strabismic subjects improve postural stability. These findings form the basis for a roadmap for future research and clinical development to extend presently applied rehabilitative therapies for infantile strabismus.
Collapse
Affiliation(s)
- Chantal Milleret
- Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique, College de France, INSERM, PSL Research University, Paris, France
| | - Emmanuel Bui Quoc
- Department of Ophthalmology, Robert Debré University Hospital, Assistance Publique - Hôpitaux de Paris Paris, France
| |
Collapse
|
25
|
Abstract
Amblyopia, a developmental disorder of vision, affects many aspects of spatial vision as well as motion perception and some cognitive skills. Current models of amblyopic vision based on known neurophysiological deficiencies have yet to provide an understanding of the wide range of amblyopic perceptual losses. Visual spatial attention is known to enhance performance in a variety of detection and discrimination tasks in visually typical humans and nonhuman primates. We investigated whether and how voluntary spatial attention affected psychophysical performance in amblyopic macaques. Full-contrast response functions for motion direction discrimination were measured for each eye of six monkeys: five amblyopic and one control. We assessed whether the effect of a valid spatial cue on performance corresponded to a change in contrast gain, a leftward shift of the function, or response gain, an upward scaling of the function. Our results showed that macaque amblyopes benefit from a valid spatial cue. Performance with amblyopic eyes viewing showed enhancement of both contrast and response gain whereas fellow and control eyes' performance showed only contrast gain. Reaction time analysis showed no speed accuracy trade-off in any case. The valid spatial cue improved contrast sensitivity for the amblyopic eye, effectively eliminating the amblyopic contrast sensitivity deficit. These results suggest that engaging endogenous spatial attention may confer substantial benefit to amblyopic vision.
Collapse
Affiliation(s)
- Amelie Pham
- Center for Neural Science and Department of Psychology, New York University, New York, NY, USA
| | - Marisa Carrasco
- Center for Neural Science and Department of Psychology, New York University, New York, NY, USA
| | - Lynne Kiorpes
- Center for Neural Science and Department of Psychology, New York University, New York, NY, USA
| |
Collapse
|
26
|
Webber AL. The functional impact of amblyopia. Clin Exp Optom 2018; 101:443-450. [PMID: 29484704 DOI: 10.1111/cxo.12663] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 11/26/2022] Open
Abstract
Amblyopia is the most common disorder managed in paediatric ophthalmic practice in industrialised countries. Reports on the impact of amblyopia on tasks relevant to the activities of children, or on skills pertinent to their education and quality of life, is leading to greater understanding of the functional disabilities associated with the condition. This review considers the extent to which amblyopia affects the ability to carry out everyday tasks, with particular attention to studies of motor skills and reading proficiency in children. Collectively, these studies show that amblyopia results in poorer outcomes on tests of skills required for proficiency in everyday tasks and which relate to childhood academic performance. However, the relative contributions that the documented vision anomalies inherent in amblyopia contribute to various functional disabilities is not fully determined. Recent reports have demonstrated improvement following treatment in standardised measures of fine motor skills involved in practical, everyday tasks. Including measurement of functional performance skills in amblyopia treatment trials is desirable to show treatment effect on crucial, real-world activities.
Collapse
Affiliation(s)
- Ann L Webber
- School of Optometry and Vision Science, and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
27
|
Howard CJ, Arnold CPA, Belmonte MK. Slower resting alpha frequency is associated with superior localisation of moving targets. Brain Cogn 2017; 117:97-107. [PMID: 28669422 DOI: 10.1016/j.bandc.2017.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 11/19/2022]
Abstract
We examined the neurophysiological underpinnings of individual differences in the ability to maintain up-to-date representations of the positions of moving objects. In two experiments similar to the multiple object tracking (MOT) task, we asked observers to monitor continuously one or several targets as they moved unpredictably for a semi-random period. After all objects disappeared, observers were immediately prompted to report the perceived final position of one queried target. Precision of these position reports declined with attentional load, and reports tended to best resemble positions occupied by the queried target between 0 and 30ms in the past. Measurement of event-related potentials showed a contralateral delay activity over occipital scalp, maximal in the right hemisphere. The peak power-spectral frequency of observers' eyes-closed resting occipital alpha oscillations reliably predicted performance, such that lower-frequency alpha was associated with superior spatial localisation. Slower resting alpha might be associated with a cognitive style that depends less on memory-related processing and instead emphasises attention to changing stimuli.
Collapse
Affiliation(s)
| | - Craig P A Arnold
- Nottingham Trent University, Nottingham, UK; Royal Holloway, University of London, UK
| | - Matthew K Belmonte
- Nottingham Trent University, Nottingham, UK; The Com DEALL Trust, Bangalore, India; Centre for Autism, School of Psychology and Clinical Language Sciences, University of Reading, UK
| |
Collapse
|
28
|
Meier K, Giaschi D. Effect of spatial and temporal stimulus parameters on the maturation of global motion perception. Vision Res 2017; 135:1-9. [PMID: 28414023 DOI: 10.1016/j.visres.2017.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/31/2017] [Accepted: 04/11/2017] [Indexed: 02/03/2023]
Abstract
There are discrepancies with respect to the age at which adult-like performance is reached on tasks assessing global motion perception. This is in part because performance in children depends on stimulus parameters. We recently showed that five-year-olds demonstrated adult-like performance over a range of speeds when the speed ratio was comprised of longer spatial and temporal displacements; but displayed immature performance when the speed ratio was comprised of shorter displacements. The goal of the current study was to assess the effect of these global motion stimulus parameters across a broader age range in order to estimate the age at which mature performance is reached. Motion coherence thresholds were assessed in 182 children and adults aged 7-30years. Dot displacement (Δx) was 1, 5, or 30min of arc; frame duration (Δt) was 17 or 50ms. This created a total of six conditions. Consistent with our previous results, coherence thresholds in the youngest children assessed were adult-like at the two conditions with the largest Δx. Maturity was reached around age 12 for the medium Δx, and by age 16 for the smallest Δx. Performance did not appear to be affected by Δt. This late maturation may reflect a long developmental period for cortical networks underlying global motion perception. These findings resolve many of the discrepancies across previous studies, and should be considered when using global motion tasks to assess children with atypical development.
Collapse
Affiliation(s)
- Kimberly Meier
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, B.C. V6T 1Z4, Canada.
| | - Deborah Giaschi
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Rm E300E, 4480 Oak Street, Vancouver, B.C. V6H 3V4, Canada.
| |
Collapse
|
29
|
Roberts M, Cymerman R, Smith RT, Kiorpes L, Carrasco M. Covert spatial attention is functionally intact in amblyopic human adults. J Vis 2016; 16:30. [PMID: 28033433 PMCID: PMC5215291 DOI: 10.1167/16.15.30] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/20/2016] [Indexed: 11/24/2022] Open
Abstract
Certain abnormalities in behavioral performance and neural signaling have been attributed to a deficit of visual attention in amblyopia, a neurodevelopmental disorder characterized by a diverse array of visual deficits following abnormal binocular childhood experience. Critically, most have inferred attention's role in their task without explicitly manipulating and measuring its effects against a baseline condition. Here, we directly investigate whether human amblyopic adults benefit from covert spatial attention-the selective processing of visual information in the absence of eye movements-to the same degree as neurotypical observers. We manipulated both involuntary (Experiment 1) and voluntary (Experiment 2) attention during an orientation discrimination task for which the effects of covert spatial attention have been well established in neurotypical and special populations. In both experiments, attention significantly improved accuracy and decreased reaction times to a similar extent (a) between the eyes of the amblyopic adults and (b) between the amblyopes and their age- and gender-matched controls. Moreover, deployment of voluntary attention away from the target location significantly impaired task performance (Experiment 2). The magnitudes of the involuntary and voluntary attention benefits did not correlate with amblyopic depth or severity. Both groups of observers showed canonical performance fields (better performance along the horizontal than vertical meridian and at the lower than upper vertical meridian) and similar effects of attention across locations. Despite their characteristic low-level vision impairments, covert spatial attention remains functionally intact in human amblyopic adults.
Collapse
Affiliation(s)
- Mariel Roberts
- Department of Psychology, New York University, New York, NY, USA
| | - Rachel Cymerman
- Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| | - R Theodore Smith
- Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| | - Lynne Kiorpes
- Department of Psychology, New York University, New York, NY, USACenter for Neural Science, New York University, New York, NY, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, USACenter for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
30
|
Meier K, Sum B, Giaschi D. Global motion perception in children with amblyopia as a function of spatial and temporal stimulus parameters. Vision Res 2016; 127:18-27. [PMID: 27426263 DOI: 10.1016/j.visres.2016.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/27/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023]
Abstract
Global motion sensitivity in typically developing children depends on the spatial (Δx) and temporal (Δt) displacement parameters of the motion stimulus. Specifically, sensitivity for small Δx values matures at a later age, suggesting it may be the most vulnerable to damage by amblyopia. To explore this possibility, we compared motion coherence thresholds of children with amblyopia (7-14years old) to age-matched controls. Three Δx values were used with two Δt values, yielding six conditions covering a range of speeds (0.3-30deg/s). We predicted children with amblyopia would show normal coherence thresholds for the same parameters on which 5-year-olds previously demonstrated mature performance, and elevated coherence thresholds for parameters on which 5-year-olds demonstrated immaturities. Consistent with this, we found that children with amblyopia showed deficits with amblyopic eye viewing compared to controls for small and medium Δx values, regardless of Δt value. The fellow eye showed similar results at the smaller Δt. These results confirm that global motion perception in children with amblyopia is particularly deficient at the finer spatial scales that typically mature later in development. An additional implication is that carefully designed stimuli that are adequately sensitive must be used to assess global motion function in developmental disorders. Stimulus parameters for which performance matures early in life may not reveal global motion perception deficits.
Collapse
Affiliation(s)
- Kimberly Meier
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Brian Sum
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Rm E300E, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada
| | - Deborah Giaschi
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Rm E300E, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada.
| |
Collapse
|
31
|
Hou C, Kim YJ, Lai XJ, Verghese P. Degraded attentional modulation of cortical neural populations in strabismic amblyopia. J Vis 2016; 16:16. [PMID: 26885628 PMCID: PMC4757464 DOI: 10.1167/16.3.16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Behavioral studies have reported reduced spatial attention in amblyopia, a developmental disorder of spatial vision. However, the neural populations in the visual cortex linked with these behavioral spatial attention deficits have not been identified. Here, we use functional MRI–informed electroencephalography source imaging to measure the effect of attention on neural population activity in the visual cortex of human adult strabismic amblyopes who were stereoblind. We show that compared with controls, the modulatory effects of selective visual attention on the input from the amblyopic eye are substantially reduced in the primary visual cortex (V1) as well as in extrastriate visual areas hV4 and hMT+. Degraded attentional modulation is also found in the normal-acuity fellow eye in areas hV4 and hMT+ but not in V1. These results provide electrophysiological evidence that abnormal binocular input during a developmental critical period may impact cortical connections between the visual cortex and higher level cortices beyond the known amblyopic losses in V1 and V2, suggesting that a deficit of attentional modulation in the visual cortex is an important component of the functional impairment in amblyopia. Furthermore, we find that degraded attentional modulation in V1 is correlated with the magnitude of interocular suppression and the depth of amblyopia. These results support the view that the visual suppression often seen in strabismic amblyopia might be a form of attentional neglect of the visual input to the amblyopic eye.
Collapse
|
32
|
Niechwiej-Szwedo E, Chin J, Wolfe PJ, Popovich C, Staines WR. Abnormal visual experience during development alters the early stages of visual-tactile integration. Behav Brain Res 2016; 304:111-9. [PMID: 26896697 DOI: 10.1016/j.bbr.2016.02.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/10/2016] [Accepted: 02/13/2016] [Indexed: 11/18/2022]
Abstract
Visual experience during the critical periods in early postnatal life is necessary for the normal development of the visual system. Disruption of visual input during this period results in amblyopia, which is associated with reduced activation of the striate and extrastriate cortices. It is well known that visual input converges with other sensory signals and exerts a significant influence on cortical processing in multiple association areas. Recent work in healthy adults has also shown that task-relevant visual input can modulate neural excitability at very early stages of information processing in the primary somatosensory cortex. Here we used electroencephalography to investigate visual-tactile interactions in adults with abnormal binocular vision due to amblyopia and strabismus. Results showed three main findings. First, in comparison to a visually normal control group, participants with abnormal vision had a significantly lower amplitude of the P50 somatosensory event related potential (ERP) when visual and tactile stimuli were presented concurrently. Second, the amplitude of the P100 somatosensory ERP was significantly greater in participants with abnormal vision. These results indicate that task relevant visual input does not significantly influence the excitability of the primary somatosensory cortex, instead, the excitability of the secondary somatosensory cortex is increased. Third, participants with abnormal vision had a higher amplitude of the P1 visual ERP when a tactile stimulus was presented concurrently. Importantly, these results were not modulated by viewing condition, which indicates that the impact of amblyopia on crossmodal interactions is not simply related to the reduced visual acuity as it was evident when viewing with the unaffected eye and binocularly. These results indicate that the consequences of abnormal visual experience on neurophysiological processing extend beyond the primary and secondary visual areas to other modality-specific areas.
Collapse
Affiliation(s)
| | - Jessica Chin
- Department of Kinesiology, University of Waterloo, Waterloo, Canada
| | - Paul J Wolfe
- Department of Kinesiology, University of Waterloo, Waterloo, Canada
| | | | | |
Collapse
|
33
|
Is the Cortical Deficit in Amblyopia Due to Reduced Cortical Magnification, Loss of Neural Resolution, or Neural Disorganization? J Neurosci 2016; 35:14740-55. [PMID: 26538646 DOI: 10.1523/jneurosci.1101-15.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The neural basis of amblyopia is a matter of debate. The following possibilities have been suggested: loss of foveal cells, reduced cortical magnification, loss of spatial resolution of foveal cells, and topographical disarray in the cellular map. To resolve this we undertook a population receptive field (pRF) functional magnetic resonance imaging analysis in the central field in humans with moderate-to-severe amblyopia. We measured the relationship between averaged pRF size and retinal eccentricity in retinotopic visual areas. Results showed that cortical magnification is normal in the foveal field of strabismic amblyopes. However, the pRF sizes are enlarged for the amblyopic eye. We speculate that the pRF enlargement reflects loss of cellular resolution or an increased cellular positional disarray within the representation of the amblyopic eye. SIGNIFICANCE STATEMENT The neural basis of amblyopia, a visual deficit affecting 3% of the human population, remains a matter of debate. We undertook the first population receptive field functional magnetic resonance imaging analysis in participants with amblyopia and compared the projections from the amblyopic and fellow normal eye in the visual cortex. The projection from the amblyopic eye was found to have a normal cortical magnification factor, enlarged population receptive field sizes, and topographic disorganization in all early visual areas. This is consistent with an explanation of amblyopia as an immature system with a normal complement of cells whose spatial resolution is reduced and whose topographical map is disordered. This bears upon a number of competing theories for the psychophysical defect and affects future treatment therapies.
Collapse
|
34
|
Giaschi D, Chapman C, Meier K, Narasimhan S, Regan D. The effect of occlusion therapy on motion perception deficits in amblyopia. Vision Res 2015; 114:122-34. [DOI: 10.1016/j.visres.2015.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 05/07/2015] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
|
35
|
Reach-to-precision grasp deficits in amblyopia: Effects of object contrast and low visibility. Vision Res 2015; 114:100-10. [DOI: 10.1016/j.visres.2014.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/24/2014] [Accepted: 11/24/2014] [Indexed: 11/19/2022]
|
36
|
Tailor V, Bossi M, Bunce C, Greenwood JA, Dahlmann‐Noor A. Binocular versus standard occlusion or blurring treatment for unilateral amblyopia in children aged three to eight years. Cochrane Database Syst Rev 2015; 2015:CD011347. [PMID: 26263202 PMCID: PMC6718221 DOI: 10.1002/14651858.cd011347.pub2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Current treatments for amblyopia in children, occlusion and pharmacological blurring, have had limited success, with less than two-thirds of children achieving good visual acuity of at least 0.20 logMAR in the amblyopic eye, limited improvement of stereopsis, and poor compliance. A new treatment approach, based on the dichoptic presentation of movies or computer games (images presented separately to each eye), may yield better results, as it aims to balance the input of visual information from each eye to the brain. Compliance may also improve with these more child-friendly treatment procedures. OBJECTIVES To determine whether binocular treatments in children aged three to eight years with unilateral amblyopia result in better visual outcomes than conventional occlusion or pharmacological blurring treatment. SEARCH METHODS We searched the Cochrane Eyes and Vision Group Trials Register (last date of searches: 14 April 2015), the Cochrane Central Register of Controlled Trials (CENTRAL; 2015, Issue 3), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to April 2015), EMBASE (January 1980 to April 2015), the ISRCTN registry (www.isrctn.com/editAdvancedSearch), ClinicalTrials.gov (www.clinicaltrials.gov), and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. SELECTION CRITERIA Two review authors independently screened the results of the search in order to identify studies that met the inclusion criteria of the review: randomised controlled trials (RCTs) that enrolled participants between the ages of three and eight years old with unilateral amblyopia, defined as best-corrected visual acuity (BCVA) worse than 0.200 logMAR in the amblyopic eye, and BCVA 0.200 logMAR or better in the fellow eye, in the presence of an amblyogenic risk factor such as anisometropia, strabismus, or both. Prior to enrolment, participants were to have undergone a cycloplegic refraction and comprehensive ophthalmic examination including fundal examination. In addition, participants had to have completed a period of optical treatment, if indicated, and BCVA in the amblyopic eye had to remain unchanged on two consecutive assessments despite reportedly good compliance with glasses wearing. Participants were not to have received any treatment other than optical treatment prior to enrolment. We planned to include any type of binocular viewing intervention; these could be delivered on different devices including computer monitors viewed with LCD shutter glasses or hand-held screens including mobile phone screens with lenticular prism overlay. Control groups were to have received standard amblyopia treatment; this could include occlusion or pharmacological blurring of the better-seeing eye. We planned to include full-time (all waking hours) and part-time (between 1 and 12 hours a day) occlusion regimens. DATA COLLECTION AND ANALYSIS We planned to use standard methodological procedures expected by The Cochrane Collaboration. We had planned to meta-analyse the primary outcome, that is mean distance BCVA in the amblyopic eye at 12 months after the cessation of treatment. MAIN RESULTS We could identify no RCTs in this subject area. AUTHORS' CONCLUSIONS Further research is required to allow decisions about implementation of binocular treatments for amblyopia in clinical practice. Currently there are no clinical trials offering standardised evidence of the safety and effectiveness of binocular treatments, but results from non-controlled cohort studies are encouraging. Future research should be conducted in the form of RCTs, using acknowledged methods of visual acuity and stereoacuity assessment with known reproducibility. Other important outcome measures include outcomes reported by users, compliance with treatment, and recurrence of amblyopia after cessation of treatment.
Collapse
Affiliation(s)
- Vijay Tailor
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology162 City RoadLondonUKEC1V 2PD
| | - Manuela Bossi
- UCL Institute of OphthalmologyDepartment of Visual NeurosciencesLondonUK
| | - Catey Bunce
- Moorfields Eye Hospital NHS Foundation TrustResearch and Development DepartmentCity RoadLondonUKEC1V 2PD
| | - John A Greenwood
- University College LondonExperimental Psychology26 Bedford WayLondonUKWC1H 0AP
| | - Annegret Dahlmann‐Noor
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology162 City RoadLondonUKEC1V 2PD
| |
Collapse
|
37
|
The role of eye movement driven attention in functional strabismic amblyopia. J Ophthalmol 2015; 2015:534719. [PMID: 25838941 PMCID: PMC4369901 DOI: 10.1155/2015/534719] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/23/2015] [Indexed: 11/17/2022] Open
Abstract
Strabismic amblyopia “blunt vision” is a developmental anomaly that affects binocular vision and results in lowered visual acuity. Strabismus is a term for a misalignment of the visual axes and is usually characterized by impaired ability of the strabismic eye to take up fixation. Such impaired fixation is usually a function of the temporally and spatially impaired binocular eye movements that normally underlie binocular shifts in visual attention. In this review, we discuss how abnormal eye movement function in children with misaligned eyes influences the development of normal binocular visual attention and results in deficits in visual function such as depth perception. We also discuss how eye movement function deficits in adult amblyopia patients can also lead to other abnormalities in visual perception. Finally, we examine how the nonamblyopic eye of an amblyope is also affected in strabismic amblyopia.
Collapse
|
38
|
González EG, Lillakas L, Greenwald N, Gallie BL, Steinbach MJ. Unaffected smooth pursuit but impaired motion perception in monocularly enucleated observers. Vision Res 2014; 101:151-7. [PMID: 25007713 DOI: 10.1016/j.visres.2014.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 11/17/2022]
Abstract
The objective of this paper was to study the characteristics of closed-loop smooth pursuit eye movements of 15 unilaterally eye enucleated individuals and 18 age-matched controls and to compare them to their performance in two tests of motion perception: relative motion and motion coherence. The relative motion test used a brief (150 ms) small stimulus with a continuously present fixation target to preclude pursuit eye movements. The duration of the motion coherence trials was 1s, which allowed a brief pursuit of the stimuli. Smooth pursuit data were obtained with a step-ramp procedure. Controls were tested both monocularly and binocularly. The data showed worse performance by the enucleated observers in the relative motion task but no statistically significant differences in motion coherence between the two groups. On the other hand, the smooth pursuit gain of the enucleated participants was as good as that of controls for whom we found no binocular advantage. The data show that enucleated observers do not exhibit deficits in the afferent or sensory pathways or in the efferent or motor pathways of the steady-state smooth pursuit system even though their visual processing of motion is impaired.
Collapse
Affiliation(s)
- Esther G González
- Vision Science Research Program, Toronto Western Hospital, Toronto M5T 2S8, Canada; Ophthalmology and Vision Sciences, University of Toronto, Toronto M5T 2S8, Canada; Centre for Vision Research, York University, Toronto M3J 1P3, Canada.
| | - Linda Lillakas
- Vision Science Research Program, Toronto Western Hospital, Toronto M5T 2S8, Canada; Centre for Vision Research, York University, Toronto M3J 1P3, Canada
| | - Naomi Greenwald
- Vision Science Research Program, Toronto Western Hospital, Toronto M5T 2S8, Canada
| | - Brenda L Gallie
- Ophthalmology and Vision Sciences, University of Toronto, Toronto M5T 2S8, Canada; Cancer Informatics, Princess Margaret Hospital, Toronto M5T 2M9, Canada
| | - Martin J Steinbach
- Vision Science Research Program, Toronto Western Hospital, Toronto M5T 2S8, Canada; Ophthalmology and Vision Sciences, University of Toronto, Toronto M5T 2S8, Canada; Centre for Vision Research, York University, Toronto M3J 1P3, Canada
| |
Collapse
|
39
|
Lev M, Gilaie-Dotan S, Gotthilf-Nezri D, Yehezkel O, Brooks JL, Perry A, Bentin S, Bonneh Y, Polat U. Training-induced recovery of low-level vision followed by mid-level perceptual improvements in developmental object and face agnosia. Dev Sci 2014; 18:50-64. [PMID: 24698161 PMCID: PMC4309467 DOI: 10.1111/desc.12178] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/11/2013] [Indexed: 12/03/2022]
Abstract
Long-term deprivation of normal visual inputs can cause perceptual impairments at various levels of visual function, from basic visual acuity deficits, through mid-level deficits such as contour integration and motion coherence, to high-level face and object agnosia. Yet it is unclear whether training during adulthood, at a post-developmental stage of the adult visual system, can overcome such developmental impairments. Here, we visually trained LG, a developmental object and face agnosic individual. Prior to training, at the age of 20, LG's basic and mid-level visual functions such as visual acuity, crowding effects, and contour integration were underdeveloped relative to normal adult vision, corresponding to or poorer than those of 5–6 year olds (Gilaie-Dotan, Perry, Bonneh, Malach & Bentin, 2009). Intensive visual training, based on lateral interactions, was applied for a period of 9 months. LG's directly trained but also untrained visual functions such as visual acuity, crowding, binocular stereopsis and also mid-level contour integration improved significantly and reached near-age-level performance, with long-term (over 4 years) persistence. Moreover, mid-level functions that were tested post-training were found to be normal in LG. Some possible subtle improvement was observed in LG's higher-order visual functions such as object recognition and part integration, while LG's face perception skills have not improved thus far. These results suggest that corrective training at a post-developmental stage, even in the adult visual system, can prove effective, and its enduring effects are the basis for a revival of a developmental cascade that can lead to reduced perceptual impairments.
Collapse
Affiliation(s)
- Maria Lev
- Faculty of Medicine, Goldschleger Eye Research Institute, Tel Aviv University, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Over the last 35 years or so, there has been substantial progress in revealing and characterizing the many interesting and sometimes mysterious sensory abnormalities that accompany amblyopia. A goal of many of the studies has been to try to make the link between the sensory losses and the underlying neural losses, resulting in several hypotheses about the site, nature, and cause of amblyopia. This article reviews some of these hypotheses, and the assumptions that link the sensory losses to specific physiological alterations in the brain. Despite intensive study, it turns out to be quite difficult to make a simple linking hypothesis, at least at the level of single neurons, and the locus of the sensory loss remains elusive. It is now clear that the simplest notion-that reduced contrast sensitivity of neurons in cortical area V1 explains the reduction in contrast sensitivity-is too simplistic. Considerations of noise, noise correlations, pooling, and the weighting of information also play a critically important role in making perceptual decisions, and our current models of amblyopia do not adequately take these into account. Indeed, although the reduction of contrast sensitivity is generally considered to reflect "early" neural changes, it seems plausible that it reflects changes at many stages of visual processing.
Collapse
Affiliation(s)
- Dennis M Levi
- School of Optometry & Helen Wills Neuroscience Institute, University of California, Berkeley, California
| |
Collapse
|
41
|
Shin YJ, Lee IB, Wee WR, Lee JH, Hwang JM. A novel computerized visual acuity test for children. KOREAN JOURNAL OF OPHTHALMOLOGY 2013; 27:194-8. [PMID: 23730112 PMCID: PMC3663062 DOI: 10.3341/kjo.2013.27.3.194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 07/18/2012] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the efficacy of a computerized visual acuity test, the SNU visual acuity test for children. Methods Fifty-six children, ranging from 1 to 5 years of age, were included. In a dark room, children gazed at and followed a circular dot with 50% contrast moving at a fixed velocity of 10 pixels/sec on a computer monitor. Eye movement was captured using a charge coupled device camera and was expressed as coordinates on a graph. Movements of the eye and dot were superimposed on a graph and analyzed. Minimum visualized dot diameters were compared to the Teller visual acuity. Results Ten eyes (8.9%) of six children failed to perform the Teller visual acuity test, and two eyes (1.8%) of one patient failed to perform the SNU visual acuity test. The observed Teller visual acuity and SNU visual acuity were significantly correlated (p < 0.001). Visual angle degrees converted from the Teller visual acuity and SNU visual acuity were also significantly correlated (p < 0.001). Conclusion The SNU visual acuity using moving targets correlated well with Teller visual acuity and was more applicable than the Teller acuity test. Therefore, the SNU visual acuity test has potential clinical applications for children.
Collapse
Affiliation(s)
- Young Joo Shin
- Department of Ophthalmology, Hallym University College of Medicine, Chuncheon, Korea
| | | | | | | | | |
Collapse
|
42
|
Luu JY, Levi DM. Sensitivity to synchronicity of biological motion in normal and amblyopic vision. Vision Res 2013; 83:9-18. [PMID: 23474301 DOI: 10.1016/j.visres.2013.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 02/05/2013] [Accepted: 02/15/2013] [Indexed: 11/26/2022]
Abstract
Amblyopia is a developmental disorder of spatial vision that results from abnormal early visual experience usually due to the presence of strabismus, anisometropia, or both strabismus and anisometropia. Amblyopia results in a range of visual deficits that cannot be corrected by optics because the deficits reflect neural abnormalities. Biological motion refers to the motion patterns of living organisms, and is normally displayed as points of lights positioned at the major joints of the body. In this experiment, our goal was twofold. We wished to examine whether the human visual system in people with amblyopia retained the higher-level processing capabilities to extract visual information from the synchronized actions of others, therefore retaining the ability to detect biological motion. Specifically, we wanted to determine if the synchronized interaction of two agents performing a dancing routine allowed the amblyopic observer to use the actions of one agent to predict the expected actions of a second agent. We also wished to establish whether synchronicity sensitivity (detection of synchronized versus desynchronized interactions) is impaired in amblyopic observers relative to normal observers. The two aims are differentiated in that the first aim looks at whether synchronized actions result in improved expected action predictions while the second aim quantitatively compares synchronicity sensitivity, or the ratio of desynchronized to synchronized detection sensitivities, to determine if there is a difference between normal and amblyopic observers. Our results show that the ability to detect biological motion requires more samples in both eyes of amblyopes than in normal control observers. The increased sample threshold is not the result of low-level losses but may reflect losses in feature integration due to undersampling in the amblyopic visual system. However, like normal observers, amblyopes are more sensitive to synchronized versus desynchronized interactions, indicating that higher-level processing of biological motion remains intact. We also found no impairment in synchronicity sensitivity in the amblyopic visual system relative to the normal visual system. Since there is no impairment in synchronicity sensitivity in either the non-amblyopic or amblyopic eye of amblyopes, our results suggest that the higher order processing of biological motion is intact.
Collapse
Affiliation(s)
- Jennifer Y Luu
- School of Optometry, University of California, Berkeley, Berkeley, CA 94720-2020, USA.
| | | |
Collapse
|
43
|
Wong AM. New concepts concerning the neural mechanisms of amblyopia and their clinical implications. Can J Ophthalmol 2012; 47:399-409. [DOI: 10.1016/j.jcjo.2012.05.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 05/09/2012] [Accepted: 05/22/2012] [Indexed: 11/29/2022]
|
44
|
Narasimhan S, Harrison ER, Giaschi DE. Quantitative measurement of interocular suppression in children with amblyopia. Vision Res 2012; 66:1-10. [PMID: 22750021 DOI: 10.1016/j.visres.2012.06.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 06/06/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
Abstract
In this study we explored the possibility of using a dichoptic global motion technique to measure interocular suppression in children with amblyopia. We compared children (5-16 years old) with unilateral anisometropic and/or strabismic amblyopia to age-matched control children. Under dichoptic viewing conditions, contrast interference thresholds were determined with a global motion direction-discrimination task. Using virtual reality goggles, high contrast signal dots were presented to the amblyopic eye, while low contrast noise dots were presented to the non-amblyopic fellow eye. The contrast of the noise dots was increased until discrimination of the motion direction of the signal dots reached chance performance. Contrast interference thresholds were significantly lower in the strabismic group than in the anisometropic and control group. Our results suggest that interocular suppression is stronger in strabismic than in anisometropic amblyopia.
Collapse
Affiliation(s)
- Sathyasri Narasimhan
- University of British Columbia, Department of Ophthalmology and Visual Sciences, Vancouver, BC, Canada
| | | | | |
Collapse
|
45
|
Narasimhan S, Giaschi D. The effect of dot speed and density on the development of global motion perception. Vision Res 2012; 62:102-7. [PMID: 22521660 DOI: 10.1016/j.visres.2012.02.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 02/03/2012] [Accepted: 02/04/2012] [Indexed: 10/28/2022]
Abstract
The purpose of this study was to investigate the effect of dot speed and dot density on the development of global motion perception by comparing the performance of adults and children (5-6years old) on a direction-discrimination task. Motion coherence thresholds were measured at two dot speeds (1 and 4deg/s) and three dot densities (1, 15, 30dots/deg(2)). Adult coherence thresholds were constant at approximately 9%, regardless of speed or density. Child coherence thresholds were significantly higher across conditions, and were most immature at the slow speed and at the sparse density. Thus, the development of global motion perception depends heavily on stimulus parameters. This finding can account for some of the discrepancy in the current developmental literature. Our results, however, caution against making general claims about motion deficits in clinical populations based on only a single measurement at a specific combination of speed and density.
Collapse
Affiliation(s)
- Sathyasri Narasimhan
- University of British Columbia, Department of Ophthalmology and Visual Sciences, Vancouver, BC, Canada.
| | | |
Collapse
|
46
|
Farzin F, Norcia AM. Impaired visual decision-making in individuals with amblyopia. J Vis 2011; 11:11.14.6. [PMID: 22147222 DOI: 10.1167/11.14.6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study examined the effects of amblyopia on perceptual decision-making processes to determine the consequences of visual deprivation on the development of higher level cortical networks outside of the visual cortex. A variant of the Eriksen flanker task was used to measure response time and accuracy for decisions made in the presence of response-selection conflict. Performance of adults with amblyopia was compared to that of neurotypical participants of the same age. Additionally, simple and choice reaction time tasks presented in the visual and the auditory modality were used to control for factors such as feature visibility, crowding, and motor execution speed. A selective deficit in response time for visual decisions was found when individuals with amblyopia used either the amblyopic or non-amblyopic (dominant) eye, and this deficit was independent of visual acuity, motor time, and performance accuracy. In trial conditions that provoked response-selection conflict, responses were significantly delayed in amblyopic relative to neurotypical participants and were not subject to standard trial sequence effects. Our results indicate that, beyond the known effects of abnormal visual experience on visual cortex, suboptimal binocular input during a developmental critical period may also impact cortical connections to downstream areas of the brain, including parietal and frontal cortices, that are believed to underlie decision and response-selection processes.
Collapse
Affiliation(s)
- Faraz Farzin
- Department of Psychology, Stanford University, Stanford, CA, USA.
| | | |
Collapse
|
47
|
Secen J, Culham J, Ho C, Giaschi D. Neural correlates of the multiple-object tracking deficit in amblyopia. Vision Res 2011; 51:2517-27. [DOI: 10.1016/j.visres.2011.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 10/16/2022]
|
48
|
Hayward J, Truong G, Partanen M, Giaschi D. Effects of speed, age, and amblyopia on the perception of motion-defined form. Vision Res 2011; 51:2216-23. [PMID: 21911002 DOI: 10.1016/j.visres.2011.08.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 12/01/2022]
Abstract
We determined the effect of dot speed on the typical and atypical development of motion-defined form perception. Monocular motion coherence thresholds for orientation discrimination of motion-defined rectangles were determined at slow (0.1 deg/s), medium (0.9 deg/s) and fast (5.0 deg/s) dot speeds. First we examined typical development from age 4 to 31 years. We found that performance was most immature at the slow speed and in the youngest group of children (4-6 years). Next we measured motion-defined form perception in the amblyopic and fellow eyes of patients with amblyopia. Deficits were found in both eyes and were most pronounced at the slow speed. These results demonstrate the importance of dot speed to the development of motion-defined form perception. Implications regarding sensitive periods and the neural correlates of motion-defined form perception are discussed.
Collapse
Affiliation(s)
- Jake Hayward
- University of British Columbia, Department of Ophthalmology and Visual Sciences, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
49
|
Thompson B, Richard A, Churan J, Hess RF, Aaen-Stockdale C, Pack CC. Impaired spatial and binocular summation for motion direction discrimination in strabismic amblyopia. Vision Res 2011; 51:577-84. [PMID: 21300079 DOI: 10.1016/j.visres.2011.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 02/01/2011] [Accepted: 02/01/2011] [Indexed: 10/18/2022]
Abstract
Amblyopia is characterised by visual deficits in both spatial vision and motion perception. While the spatial deficits are thought to result from deficient processing at both low and higher level stages of visual processing, the deficits in motion perception appear to result primarily from deficits involving higher level processing. Specifically, it has been argued that the motion deficit in amblyopia occurs when local motion information is pooled spatially and that this process is abnormally susceptible to the presence of noise elements in the stimulus. Here we investigated motion direction discrimination for abruptly presented two-frame Gabor stimuli in a group of five strabismic amblyopes and five control observers. Motion direction discrimination for this stimulus is inherently noisy and relies on the signal/noise processing of motion detectors. We varied viewing condition (monocular vs. binocular), stimulus size (5.3-18.5°) and stimulus contrast (high vs. low) in order to assess the effects of binocular summation, spatial summation and contrast on task performance. No differences were found for the high contrast stimuli; however the low contrast stimuli revealed differences between the control and amblyopic groups and between fellow fixing and amblyopic eyes. Control participants exhibited pronounced binocular summation for this task (on average a factor of 3.7), whereas amblyopes showed no such effect. In addition, the spatial summation that occurred for control eyes and the fellow eye of amblyopes was significantly attenuated for the amblyopic eyes relative to fellow eyes. Our results support the hypothesis that pooling of local motion information from amblyopic eyes is abnormal and highly sensitive to noise.
Collapse
Affiliation(s)
- Benjamin Thompson
- Department of Optometry and Vision Science, University of Auckland, New Zealand.
| | | | | | | | | | | |
Collapse
|
50
|
Mohr HM, Mues HT, Robol V, Sireteanu R. Altered mental number line in amblyopia—Reduced pseudoneglect corresponds to a decreased bias in number estimation. Neuropsychologia 2010; 48:1775-81. [DOI: 10.1016/j.neuropsychologia.2010.02.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 02/16/2010] [Accepted: 02/25/2010] [Indexed: 11/17/2022]
|