1
|
Zhu N, Huang B, Zhu L, Wang Y. Potential Mechanisms of Triptolide against Diabetic Cardiomyopathy Based on Network Pharmacology Analysis and Molecular Docking. J Diabetes Res 2021; 2021:9944589. [PMID: 34926700 PMCID: PMC8672107 DOI: 10.1155/2021/9944589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/03/2021] [Accepted: 11/16/2021] [Indexed: 01/14/2023] Open
Abstract
The incidence of heart failure was significantly increased in patients with diabetic cardiomyopathy (DCM). The therapeutic effect of triptolide on DCM has been reported, but the underlying mechanisms remain to be elucidated. This study is aimed at investigating the potential targets of triptolide as a therapeutic strategy for DCM using a network pharmacology approach. Triptolide and its targets were identified by the Traditional Chinese Medicine Systems Pharmacology database. DCM-associated protein targets were identified using the comparative toxicogenomics database and the GeneCards database. The networks of triptolide-target genes and DCM-associated target genes were created by Cytoscape. The common targets and enriched pathways were identified by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The gene-gene interaction network was analyzed by the GeneMANIA database. The drug-target-pathway network was constructed by Cytoscape. Six candidate protein targets were identified in both triptolide target network and DCM-associated network: STAT3, VEGFA, FOS, TNF, TP53, and TGFB1. The gene-gene interaction based on the targets of triptolide in DCM revealed the interaction of these targets. Additionally, five key targets that were linked to more than three genes were determined as crucial genes. The GO analysis identified 10 biological processes, 2 cellular components, and 10 molecular functions. The KEGG analysis identified 10 signaling pathways. The docking analysis showed that triptolide fits in the binding pockets of all six candidate targets. In conclusion, the present study explored the potential targets and signaling pathways of triptolide as a treatment for DCM. These results illustrate the mechanism of action of triptolide as an anti-DCM agent and contribute to a better understanding of triptolide as a transcriptional regulator of cytokine mRNA expression.
Collapse
Affiliation(s)
- Ning Zhu
- Department of Cardiology, The Third Affiliated Hospital of Shanghai University (Wenzhou People's Hospital), No. 299 Guan Road, Wenzhou, 325000 Zhejiang Province, China
| | - Bingwu Huang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325000 Zhejiang Province, China
| | - Liuyan Zhu
- Department of General Practice, The Third Affiliated Hospital of Shanghai University (Wenzhou People's Hospital), No. 299 Guan Road, Wenzhou, 325000 Zhejiang Province, China
| | - Yi Wang
- Department of Cardiology, The Third Affiliated Hospital of Shanghai University (Wenzhou People's Hospital), No. 299 Guan Road, Wenzhou, 325000 Zhejiang Province, China
| |
Collapse
|
2
|
Uehara H, Muddana SK, Zhang X, Das SK, Bhuvanagiri S, Liu J, Wu Y, Choi S, Carroll LS, Archer B, Ambati BK. Targeted Delivery of FLT-Morpholino Using Cyclic RGD Peptide. Transl Vis Sci Technol 2017; 6:9. [PMID: 28553563 PMCID: PMC5444505 DOI: 10.1167/tvst.6.3.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/09/2017] [Indexed: 11/24/2022] Open
Abstract
Purpose We previously showed that intravitreal injection of the sFLT morpholino-oligomer (FLT-MO) suppresses laser-induced choroidal neovascularization (CNV) in mice by decreasing the membrane bound form of Flt-1 while increasing the soluble form of Flt-1 via alternative splicing shift. In this study, we examined whether cyclic RGD peptide (cRGD) can promote morpholino-oligomer accumulation in CNV following tail vein injection, and whether systemic cRGD conjugated FLT-MO (cRGD-FLT-MO) suppresses CNV growth. Methods cRGD conjugated fluorescent morpholino-oligomer (cRGD-F-MO) was injected via tail vein into mice with previous retinal laser photocoagulation and examined for cRGD-F-MO accumulation in CNV. To examine whether cRGD-FLT-MO suppresses CNV growth, mice were tail-vein injected with cRGD-FLT-MO, cRGD conjugated standard morpholino-oligomer (cRGD-STD-MO), or Dulbecco's Phosphate-Buffered Saline (DPBS) 1 and 4 days postlaser photocoagulation. Seven days postlaser photocoagulation, eyes were harvested and laser CNV was stained with isolectin GS-IB4, allowing quantification of CNV size by confocal microscopy. Results cRGD-F-MO accumulation in CNV commenced immediately after tail vein injection and could be observed even 1 day after injection. cRGD-FLT-MO tail vein injection significantly suppressed CNV size (2.7 × 105 ± 0.3 × 105 μm3, P < 0.05 by Student's t-test) compared with controls (DPBS: 5.1 × 105 ± 0.6 × 105 μm3 and cRGD-STD-MO: 5.5 × 105 ± 0.8 × 105 μm3). Conclusions cRGD peptide facilitates morpholino-oligomer accumulation in CNV following systemic delivery. cRGD-FLT-MO suppressed CNV growth after tail-vein injection, demonstrating the potential utility of cRGD peptide for morpholino-oligomer delivery to CNV. Translational Relevance Current therapy for neovascular age-related macular degeneration involves intravitreal injection of anti-vascular endothelial growth factor drugs. Our results indicate that CNV can be treated systemically, thus eliminating risks and hazards associated with intravitreal injection.
Collapse
Affiliation(s)
- Hironori Uehara
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | | | - Xiaohui Zhang
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Subrata Kumar Das
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Sai Bhuvanagiri
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Jinlu Liu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Wu
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Susie Choi
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Lara S Carroll
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Bonnie Archer
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
3
|
Paeng SH, Jung WK, Park WS, Lee DS, Kim GY, Choi YH, Seo SK, Jang WH, Choi JS, Lee YM, Park S, Choi IW. Caffeic acid phenethyl ester reduces the secretion of vascular endothelial growth factor through the inhibition of the ROS, PI3K and HIF-1α signaling pathways in human retinal pigment epithelial cells under hypoxic conditions. Int J Mol Med 2015; 35:1419-26. [PMID: 25738890 DOI: 10.3892/ijmm.2015.2116] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/24/2015] [Indexed: 11/06/2022] Open
Abstract
Choroidal neovascularization (CNV) can lead to progressive and severe visual loss. Vascular endothelial growth factor (VEGF) promotes the development of CNV. Caffeic acid phenethyl ester (CAPE), a biologically active component of the honeybee (Apis mellifera) propolis, has been demonstrated to have several interesting biological regulatory properties. The objective of this study was to determine whether treatment with CAPE results in the inhibition of the production of vascular endothelial growth factor (VEGF) in retinal pigment epithelial cells (RPE cells) under hypoxic conditions and to explore the possible underlying mechanisms. An in vitro experimental model of hypoxia was used to mimic an ischemic microenvironment for the RPE cells. Human RPE cells (ARPE-19) were exposed to hypoxia with or without CAPE pre-treatment. ARPE-19 cells were used to investigate the pathway involved in the regulation of VEGF production under hypoxic conditions, based on western blot analysis, enzyme-linked immunosorbent assay (ELISA) and electrophoretic mobility shift assay (EMSA). The amount of VEGF released from the hypoxia-exposed cells was significantly higher than that of the normoxic controls. Pre-treatment with CAPE suppressed the hypoxia-induced production of VEGF in the ARPE-19 cells, and this effect was inhibited through the attenuation of reactive oxygen species (ROS) production, and the inhibition of phosphoinositide 3-kinase (PI3K)/AKT and hypoxia-inducible factor-1α (HIF-1α) expression. These in vitro findings suggest that CAPE may prove to be a novel anti-angiogenic agent for the treatment of diseases associated with CNV.
Collapse
Affiliation(s)
- Sung Hwa Paeng
- Department of Neurosurgery, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, Gangwon, Republic of Korea
| | - Dae-Sung Lee
- Marine Biodiversity Institute of Korea, Seocheon, Chungcheongnam-do, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan, Republic of Korea
| | - Su-Kil Seo
- Department of Microbiology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Won Hee Jang
- Department of Biochemistry, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Jung Sik Choi
- Department of Internal Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Young-Min Lee
- Department of Internal Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Saegwang Park
- Department of Microbiology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Il-Whan Choi
- Department of Microbiology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
4
|
Sobeih D, Hussein KA, Said N, Motamed K, Al-Shabrawey M. Deletion of SPARC Enhances Retinal Vaso-Obliteration in Mouse Model of Oxygen-Induced Retinopathy. HSOA JOURNAL OF OPHTHALMOLOGY & CLINICAL RESEARCH 2014; 1:002. [PMID: 26636134 PMCID: PMC4665627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
BACKGROUND Secreted Protein Acidic and Rich in Cysteine (SPARC) is a matricellular protein which is implicated in regulation of angiogenesis. PURPOSE To characterize the changes in SPARC expression and effect of its deletion in a mouse model Oxygen Induced Retinopathy (OIR). MATERIALS AND METHODS Wild type (wt) and SPARC-deficient mice were subjected to high oxygen (75%) for 5 days (p7-p12) before room air for additional 5 days (p12-p17). Retinas from both groups were flat mounted and retinal vessels were labeled with Isolectin-B4. Areas of Retinal Neovascularization (RNV) and vaso-obliteration were measured by Image-J and normalized to total retinal areas. SPARC expression was analyzed in both groups at p14 and p17 in retinal homogenates and sections by Western Blotting (WB) and immunofluorescence respectively. Human Retinal Endothelial Cells (HRECs) were exposed to hypoxia (1% O2) for 6 hours then SPARC was measured in cell lysate and condition medium by WB and ELISA. Moreover, HRECs were treated with VEGF or SPARC to study their mutual regulatory effect. RESULTS SPARC-deficient mice demonstrated significant increase in the vaso-obliteration (p=0.03) and modest increase in RNV compared to the wt control. Retinal levels of SPARC was significantly decreased during OIR at p14 (p=0.01) and partially restored to normal level by p17. Moreover, hypoxia significantly reduced SPARC expression and secretion in HRECs (p=0.001). We noticed a mutual positive regulatory feedback between SPARC and VEGF. CONCLUSION SPARC deletion enhances ischemic retinopathy, thus modulation of SPARC expression could be a novel therapeutic approach to prevent pathological RNV.
Collapse
Affiliation(s)
- Doaa Sobeih
- Oral Biology/Anatomy, College of Dental Medicine, Georgia Regents University (GRU), Augusta, GA, USA ; James & Jean Culver Vision Discovery Institute, GRU, USA ; Ophthalmology, Medical College of Georgia (MCG), GRU, USA
| | - Khaled A Hussein
- Oral Biology/Anatomy, College of Dental Medicine, Georgia Regents University (GRU), Augusta, GA, USA ; James & Jean Culver Vision Discovery Institute, GRU, USA ; Ophthalmology, Medical College of Georgia (MCG), GRU, USA
| | - Neveen Said
- Department of Radiation Oncology, University of Virginia School of Medicine, USA
| | | | - Mohamed Al-Shabrawey
- Oral Biology/Anatomy, College of Dental Medicine, Georgia Regents University (GRU), Augusta, GA, USA ; James & Jean Culver Vision Discovery Institute, GRU, USA ; Ophthalmology, Medical College of Georgia (MCG), GRU, USA ; Cellular Biology and Anatomy, MCG, GRU, USA
| |
Collapse
|
5
|
SPARC/osteonectin is involved in metastatic process to the lung during melanoma progression. Virchows Arch 2014; 465:331-8. [PMID: 24993904 DOI: 10.1007/s00428-014-1616-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/08/2014] [Accepted: 06/20/2014] [Indexed: 02/04/2023]
Abstract
The existence of a "metastasis gene signature" that predisposes primary breast cancer cells to metastasize to the lungs has been recently highlighted by gene expression profiling studies. The combination of genes responsible for this process includes genes encoding several metalloproteinases as well as the gene encoding SPARC (secreted protein acidic and rich in cysteine)/osteonectin. SPARC is involved in normal tissue remodeling as it regulates the deposition of extracellular matrix, but also plays a role in neoplastic transformation. Aberrant SPARC expression has been detected both in stromal cells associated with cancer and in cancer cells. The main aim of this study was to investigate whether or not SPARC might be involved in directing metastasis of other types of cancer to the lung. We constructed a tissue microarray containing lung metastases from a variety of primary tumors in different organs and used immunohistochemistry to assess SPARC expression. We found SPARC overexpressed mainly in lung metastases from melanoma. We then assessed the expression of SPARC mRNA and protein in metastatic melanoma from different anatomic sites and in their corresponding primary tumors, and found that it is overexpressed in lung metastases. Our data strongly support the hypothesis that SPARC is involved in directing melanoma metastases specifically to the lung, which underpins its potential as prognostic marker and novel target for specific therapy.
Collapse
|
6
|
Loss of SPARC protects hematopoietic stem cells from chemotherapy toxicity by accelerating their return to quiescence. Blood 2014; 123:4054-63. [PMID: 24833352 DOI: 10.1182/blood-2013-10-533711] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Around birth, hematopoietic stem cells (HSCs) expanding in the fetal liver migrate to the developing bone marrow (BM) to mature and expand. To identify the molecular processes associated with HSCs located in the 2 different microenvironments, we compared the expression profiles of HSCs present in the liver and BM of perinatal mice. This revealed the higher expression of a cluster of extracellular matrix-related genes in BM HSCs, with secreted protein acidic and rich in cysteine (SPARC) being one of the most significant ones. This extracellular matrix protein has been described to be involved in tissue development, repair, and remodeling, as well as metastasis formation. Here we demonstrate that SPARC-deficient mice display higher resistance to serial treatment with the chemotherapeutic agent 5-fluorouracil (5-FU). Using straight and reverse chimeras, we further show that this protective effect is not due to a role of SPARC in HSCs, but rather is due to its function in the BM niche. Although the kinetics of recovery of the hematopoietic system is normal, HSCs in a SPARC-deficient niche show an accelerated return to quiescence, protecting them from the lethal effects of serial 5-FU treatment. This may become clinically relevant, as SPARC inhibition and its protective effect on HSCs could be used to optimize chemotherapy schemes.
Collapse
|
7
|
Botti G, Cerrone M, Scognamiglio G, Anniciello A, Ascierto PA, Cantile M. Microenvironment and tumor progression of melanoma: New therapeutic prospectives. J Immunotoxicol 2012; 10:235-52. [DOI: 10.3109/1547691x.2012.723767] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
8
|
Uehara H, Cho Y, Simonis J, Cahoon J, Archer B, Luo L, Das SK, Singh N, Ambati J, Ambati BK. Dual suppression of hemangiogenesis and lymphangiogenesis by splice-shifting morpholinos targeting vascular endothelial growth factor receptor 2 (KDR). FASEB J 2012; 27:76-85. [PMID: 22997228 DOI: 10.1096/fj.12-213835] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The KDR gene, which participates in angiogenesis and lymphangiogenesis, produces two functionally distinct protein products, membrane-bound KDR (mbKDR) and its isoform, soluble KDR (sKDR). Since sKDR does not have a tyrosine kinase domain and does not dimerize, it is principally an antagonist of lymphangiogenesis by sequestering VEGF-C. Alternative polyadenylation of exon 30 or intron 13 leads to the production of mbKDR or sKDR, respectively, yet the regulatory mechanisms are unknown. Here we show that an antisense morpholino oligomer directed against the exon 13-intron 13 junction increases sKDR (suppressing lymphangiogenesis) and decreases mbKDR (inhibiting hemangiogenesis). The latent polyadenylation site in intron 13 of KDR is activated by blocking the upstream 5' splicing site with an antisense morpholino oligomer. Intravitreal morpholino injection suppressed laser choroidal neovascularization while increasing sKDR. In the mouse cornea, subconjunctival injection of the morpholino-inhibited corneal angiogenesis and lymphangiogenesis, and suppressed graft rejection after transplantation. Thus, this morpholino can be used for concurrent suppression of hemangiogenesis and lymphangiogenesis. This study offers new insight into the mechanisms and potential therapeutic modulation of alternative polyadenylation.
Collapse
Affiliation(s)
- Hironori Uehara
- Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wei HY, Liu JL, Lv BJ, Xing L, Fu SY. SPARC modulates expression of extracellular matrix genes in human trabecular meshwork cells. Acta Ophthalmol 2012; 90:e138-43. [PMID: 22136411 DOI: 10.1111/j.1755-3768.2011.02283.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE To investigate the effects of secreted protein acidic and rich in cysteine (SPARC) on the expression of components of the extracellular matrix (ECM) in cultured human trabecular meshwork (TM) cells. METHODS Cultured human trabecular cells were transfected with small interfering RNAs (siRNAs) specific for the human SPARC gene. Protein and mRNA expressions of fibronectin (FN) and the α1chains of collagen I and collagen III were quantified. RESULTS After silencing of the SPARC gene by transfection of cells with SPARC siRNA, the expression of COL1A1 and COL3A1 mRNAs and proteins was significantly enhanced, as compared to that in the control group (all, p < 0.001). In contrast, SPARC siRNA significantly reduced the expression of FN and SPARC mRNAs and FN protein, as compared to that in the control group (all, p < 0.001.). CONCLUSIONS SPARC modulates the expression of several ECM genes in cultured human TM cells.
Collapse
Affiliation(s)
- Hai-Ying Wei
- Ophthalmology Department, the First Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150001, China
| | | | | | | | | |
Collapse
|
10
|
Lin Y, Jones BW, Liu A, Tucker JF, Rapp K, Luo L, Baehr W, Bernstein PS, Watt CB, Yang JH, Shaw MV, Marc RE. Retinoid receptors trigger neuritogenesis in retinal degenerations. FASEB J 2012; 26:81-92. [PMID: 21940995 PMCID: PMC3250249 DOI: 10.1096/fj.11-192914] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 09/01/2011] [Indexed: 12/25/2022]
Abstract
Anomalous neuritogenesis is a hallmark of neurodegenerative disorders, including retinal degenerations, epilepsy, and Alzheimer's disease. The neuritogenesis processes result in a partial reinnervation, new circuitry, and functional changes within the deafferented retina and brain regions. Using the light-induced retinal degeneration (LIRD) mouse model, which provides a unique platform for exploring the mechanisms underlying neuritogenesis, we found that retinoid X receptors (RXRs) control neuritogenesis. LIRD rapidly triggered retinal neuron neuritogenesis and up-regulated several key elements of retinoic acid (RA) signaling, including retinoid X receptors (RXRs). Exogenous RA initiated neuritogenesis in normal adult retinas and primary retinal cultures and exacerbated it in LIRD retinas. However, LIRD-induced neuritogenesis was partly attenuated in retinol dehydrogenase knockout (Rdh12(-/-)) mice and by aldehyde dehydrogenase inhibitors. We further found that LIRD rapidly increased the expression of glutamate receptor 2 and β Ca(2+)/calmodulin-dependent protein kinase II (βCaMKII). Pulldown assays demonstrated interaction between βCaMKII and RXRs, suggesting that CaMKII pathway regulates the activities of RXRs. RXR antagonists completely prevented and RXR agonists were more effective than RA in inducing neuritogenesis. Thus, RXRs are in the final common path and may be therapeutic targets to attenuate retinal remodeling and facilitate global intervention methods in blinding diseases and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yanhua Lin
- Department of Ophthalmology, John A. Moran Eye Center, School of Medicine
| | - Bryan W. Jones
- Department of Ophthalmology, John A. Moran Eye Center, School of Medicine
| | - Aihua Liu
- Department of Ophthalmology, John A. Moran Eye Center, School of Medicine
| | - James F. Tucker
- Department of Ophthalmology, John A. Moran Eye Center, School of Medicine
| | - Kevin Rapp
- Department of Ophthalmology, John A. Moran Eye Center, School of Medicine
| | - Ling Luo
- Department of Ophthalmology, John A. Moran Eye Center, School of Medicine
| | - Wolfgang Baehr
- Department of Ophthalmology, John A. Moran Eye Center, School of Medicine
- Department of Neurobiology and Anatomy, Health Science Center, and
- Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | - Paul S. Bernstein
- Department of Ophthalmology, John A. Moran Eye Center, School of Medicine
| | - Carl B. Watt
- Department of Ophthalmology, John A. Moran Eye Center, School of Medicine
| | - Jia-Hui Yang
- Department of Ophthalmology, John A. Moran Eye Center, School of Medicine
| | - Marguerite V. Shaw
- Department of Ophthalmology, John A. Moran Eye Center, School of Medicine
| | - Robert E. Marc
- Department of Ophthalmology, John A. Moran Eye Center, School of Medicine
| |
Collapse
|