1
|
Gori S, Peverelli M, Bertoni S, Ruffino M, Ronconi L, Molteni F, Priftis K, Facoetti A. The engagement of temporal attention in left spatial neglect. Cortex 2024; 178:201-212. [PMID: 39024938 DOI: 10.1016/j.cortex.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/02/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024]
Abstract
Previous literature showed how left spatial neglect arises from an asymmetrical distribution of spatial attention. However, it was also suggested that left spatial neglect might be partially caused or at least worsened by non-spatial attention disorders of the right-lateralized stimulus-driven attentional fronto-parietal network. Here, we psychophysically tested the efficiency of temporal attentional engagement of foveal perception through meta-contrast (Experiment 1) and "attentional" masking (Experiment 2) tasks in patients with right-hemisphere stroke with left neglect (N+), without left neglect (N-) and matched healthy controls (C). In both experiments, N+ patients showed higher thresholds, not only than Cs, but also than N- patients. Temporal engagement was clinically impaired in all N+ patients and highly correlated with their typical inability to direct spatial attention towards stimuli on the left side. Our findings suggest that a temporal impairment of attentional engagement is a relevant deficit of left spatial neglect.
Collapse
Affiliation(s)
- Simone Gori
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy.
| | - Milena Peverelli
- "Villa Beretta" Rehabilitation Center, Costamasnaga (LC), "Valduce" Hospital (CO), Italy
| | - Sara Bertoni
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy; Developmental and Cognitive Neuroscience Lab, General Psychology Department, University of Padova, Italy
| | - Milena Ruffino
- Servizio di Neuropsichiatria dell'Infanzia e dell'Adolescenza, Saronno ASST Valle Olona (VA), Italy
| | - Luca Ronconi
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Franco Molteni
- "Villa Beretta" Rehabilitation Center, Costamasnaga (LC), "Valduce" Hospital (CO), Italy
| | - Konstantinos Priftis
- Human Inspired Technology Research Centre, University of Padova, Italy; General Psychology Department, University of Padova, Italy
| | - Andrea Facoetti
- Developmental and Cognitive Neuroscience Lab, General Psychology Department, University of Padova, Italy.
| |
Collapse
|
2
|
Boswell AM, Kohler PJ, McCarthy JD, Caplovitz GP. Perceived group size is determined by the centroids of the component elements. J Vis 2021; 21:1. [PMID: 34851391 PMCID: PMC8648053 DOI: 10.1167/jov.21.13.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
To accomplish the deceptively simple task of perceiving the size of objects in the visual scene, the visual system combines information about the retinal size of the object with several other cues, including perceived distance, relative size, and prior knowledge. When local component elements are perceptually grouped to form objects, the task is further complicated because a grouped object does not have a continuous contour from which retinal size can be estimated. Here, we investigate how the visual system solves this problem and makes it possible for observers to judge the size of perceptually grouped objects. We systematically vary the shape and orientation of the component elements in a two-alternative forced-choice task and find that the perceived size of the array of component objects can be almost perfectly predicted from the distance between the centroids of the component elements and the center of the array. This is true whether the global contour forms a circle or a square. When elements were positioned such that the centroids along the global contour were at different distances from the center, perceived size was based on the average distance. These results indicate that perceived size does not depend on the size of individual elements, and that smooth contours formed by the outer edges of the component elements are not used to estimate size. The current study adds to a growing literature highlighting the importance of centroids in visual perception and may have implications for how size is estimated for ensembles of different objects.
Collapse
Affiliation(s)
| | - Peter J Kohler
- Department of Psychology, York University, Toronto, Ontario, Canada.,Centre for Vision Research, York University, Toronto, Ontario, Canada.,
| | | | | |
Collapse
|
3
|
Jüttner M, Strasburger H, Treutwein B, Landis T, Rentschler I. Complementary deficits in perceptual classification in pure alexia and acquired prosopagnosia - New insights from two classic cases. Neuropsychologia 2021; 155:107820. [PMID: 33676958 DOI: 10.1016/j.neuropsychologia.2021.107820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/24/2021] [Accepted: 03/02/2021] [Indexed: 11/30/2022]
Abstract
Pure alexia and prosopagnosia traditionally have been seen as prime examples of dissociated, category-specific agnosias affecting reading and face recognition, respectively. More recent accounts have moved towards domain-independent explanations that postulate potential cross-links between different types of visual agnosia. According to one proposal, abnormal crowding, i.e. the impairment of recognition when features of adjacent objects are positioned too closely to each other, might provide a unified account for the perceptual deficits experienced by an agnosic patient. An alternative approach is based on the notion of complementary visual subsystems favouring the processing of abstract categories and specific exemplars, respectively. To test predictions of these two approaches with regard to pure alexia and prosopagnosia, we present previously unpublished data on digit recognition and visual crowding from two in the neuropsychological literature extensively studied patients, KD and MT (e.g., Campbell et al., 1986; Landis and Regard, 1988; Rentschler et al., 1994). Patient MT, diagnosed with pure alexia, showed pronounced abnormal foveal crowding, whereas KD, diagnosed with prosopagnosia, did not. These results form a distinct double dissociation with the performance of the two patients in other perceptual classification tasks involving Gabor micropatterns and textures, as well as Glass patterns, which revealed a significantly greater impairment in KD relative to MT. Based on an analysis of the specific task demands we argue that prosopagnosia and pure alexia may involve complementary deficits in instantiation and abstraction, respectively, during perceptual classification, beyond any category specificity. Such an explanation appears in line with previous distinctions between a predominantly left-hemispheric, abstract-category and a predominantly right-hemispheric, specific-exemplar subsystem underlying object recognition.
Collapse
Affiliation(s)
- Martin Jüttner
- School of Psychology, College of Health and Life Sciences, Aston University, Birmingham, UK.
| | | | | | | | - Ingo Rentschler
- Institute of Medical Psychology, University of Munich, Germany
| |
Collapse
|
4
|
Izakson L, Zeevi Y, Levy DJ. Attraction to similar options: The Gestalt law of proximity is related to the attraction effect. PLoS One 2020; 15:e0240937. [PMID: 33112897 PMCID: PMC7592845 DOI: 10.1371/journal.pone.0240937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/05/2020] [Indexed: 11/18/2022] Open
Abstract
Previous studies have suggested that there are common mechanisms between perceptual and value-based processes. For instance, both perceptual and value-based choices are highly influenced by the context in which the choices are made. However, the mechanisms which allow context to influence our choice process as well as the extent of the similarity between the perceptual and preferential processes are still unclear. In this study, we examine a within-subject relation between the attraction effect, which is a well-known effect of context on preferential choice, and the Gestalt law of proximity. Then, we aim to use this link to better understand the mechanisms underlying the attraction effect. We conducted one study followed by an additional pre-registered replication study, where subjects performed a Gestalt-psychophysical task and a decoy task. Comparing the behavioral sensitivity of each subject in both tasks, we found that the more susceptible a subject is to the proximity law, the more she displayed the attraction effect. These results demonstrate a within-subject relation between a perceptual phenomenon (proximity law) and a value-based bias (attraction effect) which further strengthens the notion of common rules between perceptual and value-based processing. Moreover, this suggests that the mechanism underlying the attraction effect is related to grouping by proximity with attention as a mediator.
Collapse
Affiliation(s)
- Liz Izakson
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Coller School of Management, Tel Aviv University, Tel Aviv, Israel
| | - Yoav Zeevi
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv, Israel
| | - Dino J. Levy
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Coller School of Management, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Mascheretti S, Gori S, Trezzi V, Ruffino M, Facoetti A, Marino C. Visual motion and rapid auditory processing are solid endophenotypes of developmental dyslexia. GENES BRAIN AND BEHAVIOR 2017; 17:70-81. [PMID: 28834383 DOI: 10.1111/gbb.12409] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/19/2017] [Accepted: 08/14/2017] [Indexed: 12/18/2022]
Abstract
Although a genetic component is known to have an important role in the etiology of developmental dyslexia (DD), we are far from understanding the molecular etiopathogenetic pathways. Reduced measures of neurobiological functioning related to reading (dis)ability, i.e. endophenotypes (EPs), are promising targets for gene finding and the elucidation of the underlying mechanisms. In a sample of 100 nuclear families with DD (229 offspring) and 83 unrelated typical readers, we tested whether a set of well-established, cognitive phenotypes related to DD [i.e. rapid auditory processing (RAP), rapid automatized naming (RAN), multisensory nonspatial attention and visual motion processing] fulfilled the criteria of the EP construct. Visual motion and RAP satisfied all testable criteria (i.e. they are heritable, associate with the disorder, co-segregate with the disorder within a family and represent reproducible measures) and are therefore solid EPs of DD. Multisensory nonspatial attention satisfied three of four criteria (i.e. it associates with the disorder, co-segregates with the disorder within a family and represents a reproducible measure) and is therefore a potential EP for DD. Rapid automatized naming is heritable but does not meet other criteria of the EP construct. We provide the first evidence of a methodologically and statistically sound approach for identifying EPs for DD to be exploited as a solid alternative basis to clinical phenotypes in neuroscience.
Collapse
Affiliation(s)
- S. Mascheretti
- Child Psychopathology Unit; Scientific Institute, IRCCS Eugenio Medea; Bosisio Parini Italy
| | - S. Gori
- Child Psychopathology Unit; Scientific Institute, IRCCS Eugenio Medea; Bosisio Parini Italy
- Department of Human and Social Sciences; University of Bergamo; Bergamo Italy
| | - V. Trezzi
- Child Psychopathology Unit; Scientific Institute, IRCCS Eugenio Medea; Bosisio Parini Italy
| | - M. Ruffino
- Child Psychopathology Unit; Scientific Institute, IRCCS Eugenio Medea; Bosisio Parini Italy
| | - A. Facoetti
- Child Psychopathology Unit; Scientific Institute, IRCCS Eugenio Medea; Bosisio Parini Italy
- Developmental Cognitive Neuroscience Lab, Department of General Psychology; University of Padua; Padua Italy
| | - C. Marino
- Child Psychopathology Unit; Scientific Institute, IRCCS Eugenio Medea; Bosisio Parini Italy
- Centre for Addiction and Mental Health; University of Toronto; ON Canada
| |
Collapse
|
6
|
Lezama J, Randall G, Morel JM, Grompone von Gioi R. Good continuation in dot patterns: A quantitative approach based on local symmetry and non-accidentalness. Vision Res 2016; 126:183-191. [DOI: 10.1016/j.visres.2015.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 06/18/2015] [Accepted: 09/18/2015] [Indexed: 11/16/2022]
|
7
|
Yong K, Rajdev K, Warrington E, Nicholas J, Warren J, Crutch S. A longitudinal investigation of the relationship between crowding and reading: A neurodegenerative approach. Neuropsychologia 2016; 85:127-36. [PMID: 26926579 PMCID: PMC4863520 DOI: 10.1016/j.neuropsychologia.2016.02.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 02/23/2016] [Accepted: 02/26/2016] [Indexed: 11/24/2022]
Abstract
We have previously documented two patients (FOL and CLA) with posterior cortical atrophy who achieved accurate and rapid reading despite deficits in ten measures of visual processing, with two notable exceptions: (1) a measure of visual acuity, (2) a measure of visual crowding. Subsequent longitudinal investigation of these patients was carried out, involving annual tests of early visual, visuoperceptual and visuospatial processing and assessment of reading ability. Follow-up assessments identified the evolution of a particular early visual processing deficit, excessive visual crowding; this deficit has been previously implicated in forms of dyslexia. Consistent with the link between crowding and reading dysfunction, follow-up assessments also revealed deterioration in both patients' reading ability. The current findings demonstrate a neurodegenerative approach towards understanding the relationship between visual crowding and the reading system, and suggest possible mechanisms for how excessive crowding may disrupt word recognition.
Collapse
Affiliation(s)
- Keir Yong
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, UK.
| | - Kishan Rajdev
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, UK
| | - Elizabeth Warrington
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, UK
| | - Jennifer Nicholas
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, UK
| | - Jason Warren
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, UK
| | - Sebastian Crutch
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, UK
| |
Collapse
|
8
|
Gori S, Molteni M, Facoetti A. Visual Illusions: An Interesting Tool to Investigate Developmental Dyslexia and Autism Spectrum Disorder. Front Hum Neurosci 2016; 10:175. [PMID: 27199702 PMCID: PMC4842763 DOI: 10.3389/fnhum.2016.00175] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 04/06/2016] [Indexed: 11/13/2022] Open
Abstract
A visual illusion refers to a percept that is different in some aspect from the physical stimulus. Illusions are a powerful non-invasive tool for understanding the neurobiology of vision, telling us, indirectly, how the brain processes visual stimuli. There are some neurodevelopmental disorders characterized by visual deficits. Surprisingly, just a few studies investigated illusory perception in clinical populations. Our aim is to review the literature supporting a possible role for visual illusions in helping us understand the visual deficits in developmental dyslexia and autism spectrum disorder. Future studies could develop new tools - based on visual illusions - to identify an early risk for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Simone Gori
- Department of Human and Social Sciences, University of BergamoBergamo, Italy
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio MedeaBosisio Parini, Italy
| | - Massimo Molteni
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio MedeaBosisio Parini, Italy
| | - Andrea Facoetti
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio MedeaBosisio Parini, Italy
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of PadovaPadua, Italy
| |
Collapse
|
9
|
Gori S, Seitz AR, Ronconi L, Franceschini S, Facoetti A. Multiple Causal Links Between Magnocellular-Dorsal Pathway Deficit and Developmental Dyslexia. Cereb Cortex 2015; 26:4356-4369. [PMID: 26400914 DOI: 10.1093/cercor/bhv206] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although impaired auditory-phonological processing is the most popular explanation of developmental dyslexia (DD), the literature shows that the combination of several causes rather than a single factor contributes to DD. Functioning of the visual magnocellular-dorsal (MD) pathway, which plays a key role in motion perception, is a much debated, but heavily suspected factor contributing to DD. Here, we employ a comprehensive approach that incorporates all the accepted methods required to test the relationship between the MD pathway dysfunction and DD. The results of 4 experiments show that (1) Motion perception is impaired in children with dyslexia in comparison both with age-match and with reading-level controls; (2) pre-reading visual motion perception-independently from auditory-phonological skill-predicts future reading development, and (3) targeted MD trainings-not involving any auditory-phonological stimulation-leads to improved reading skill in children and adults with DD. Our findings demonstrate, for the first time, a causal relationship between MD deficits and DD, virtually closing a 30-year long debate. Since MD dysfunction can be diagnosed much earlier than reading and language disorders, our findings pave the way for low resource-intensive, early prevention programs that could drastically reduce the incidence of DD.
Collapse
Affiliation(s)
- Simone Gori
- Department of Human and Social Sciences, University of Bergamo, Bergamo 24129, Italy Child Psychopathology Unit, Scientific Institute "E. Medea", Bosisio Parini, Lecco 23842, Italy
| | - Aaron R Seitz
- Department of Psychology, University of California - Riverside, Riverside, CA, USA
| | - Luca Ronconi
- Child Psychopathology Unit, Scientific Institute "E. Medea", Bosisio Parini, Lecco 23842, Italy Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Padova 35131, Italy
| | - Sandro Franceschini
- Child Psychopathology Unit, Scientific Institute "E. Medea", Bosisio Parini, Lecco 23842, Italy Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Padova 35131, Italy
| | - Andrea Facoetti
- Child Psychopathology Unit, Scientific Institute "E. Medea", Bosisio Parini, Lecco 23842, Italy Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Padova 35131, Italy
| |
Collapse
|
10
|
Gori S, Mascheretti S, Giora E, Ronconi L, Ruffino M, Quadrelli E, Facoetti A, Marino C. The DCDC2 Intron 2 Deletion Impairs Illusory Motion Perception Unveiling the Selective Role of Magnocellular-Dorsal Stream in Reading (Dis)ability. Cereb Cortex 2014; 25:1685-95. [PMID: 25270309 DOI: 10.1093/cercor/bhu234] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Simone Gori
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, 35131 Padua, Italy Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Lecco, Italy
| | - Sara Mascheretti
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Lecco, Italy
| | - Enrico Giora
- Faculty of Psychology, "Vita-Salute" San Raffaele University, 20132 Milan, Italy
| | - Luca Ronconi
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, 35131 Padua, Italy Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Lecco, Italy
| | - Milena Ruffino
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Lecco, Italy
| | - Ermanno Quadrelli
- Department of Psychology, University of Milan-Bicocca, 20126 Milan, Italy
| | - Andrea Facoetti
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, 35131 Padua, Italy Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Lecco, Italy
| | - Cecilia Marino
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Lecco, Italy Centre de Recherche de L'Institut Universitaire en Santé Mentale de Québec, Québec, QC, Canada G1J 2G3 Département de Psychiatrie et Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada G1V 0A6
| |
Collapse
|
11
|
Gori S, Cecchini P, Bigoni A, Molteni M, Facoetti A. Magnocellular-dorsal pathway and sub-lexical route in developmental dyslexia. Front Hum Neurosci 2014; 8:460. [PMID: 25009484 PMCID: PMC4068287 DOI: 10.3389/fnhum.2014.00460] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 06/05/2014] [Indexed: 11/13/2022] Open
Abstract
Although developmental dyslexia (DD) is frequently associate with a phonological deficit, the underlying neurobiological cause remains undetermined. Recently, a new model, called "temporal sampling framework" (TSF), provided an innovative prospect in the DD study. TSF suggests that deficits in syllabic perception at a specific temporal frequencies are the critical basis for the poor reading performance in DD. This approach was presented as a possible neurobiological substrate of the phonological deficit of DD but the TSF can also easily be applied to the visual modality deficits. The deficit in the magnocellular-dorsal (M-D) pathway - often found in individuals with DD - fits well with a temporal oscillatory deficit specifically related to this visual pathway. This study investigated the visual M-D and parvocellular-ventral (P-V) pathways in dyslexic and in chronological age and IQ-matched normally reading children by measuring temporal (frequency doubling illusion) and static stimuli sensitivity, respectively. A specific deficit in M-D temporal oscillation was found. Importantly, the M-D deficit was selectively shown in poor phonological decoders. M-D deficit appears to be frequent because 75% of poor pseudo-word readers were at least 1 SD below the mean of the controls. Finally, a replication study by using a new group of poor phonological decoders and reading level controls suggested a crucial role of M-D deficit in DD. These results showed that a M-D deficit might impair the sub-lexical mechanisms that are critical for reading development. The possible link between these findings and TSF is discussed.
Collapse
Affiliation(s)
- Simone Gori
- Developmental and Cognitive Neuroscience Laboratory, Dipartimento di Psicologia Generale, Università degli Studi di Padova Padova, Italy ; Developmental Neuropsychology Unit, Istituto Scientifico "E. Medea" di Bosisio Parini Lecco, Italy
| | - Paolo Cecchini
- Ophthalmological Unit, Istituto Scientifico "E. Medea" di San Vito al Tagliamento Pordenone, Italy
| | - Anna Bigoni
- Ophthalmological Unit, Istituto Scientifico "E. Medea" di San Vito al Tagliamento Pordenone, Italy
| | - Massimo Molteni
- Developmental Neuropsychology Unit, Istituto Scientifico "E. Medea" di Bosisio Parini Lecco, Italy
| | - Andrea Facoetti
- Developmental and Cognitive Neuroscience Laboratory, Dipartimento di Psicologia Generale, Università degli Studi di Padova Padova, Italy ; Developmental Neuropsychology Unit, Istituto Scientifico "E. Medea" di Bosisio Parini Lecco, Italy
| |
Collapse
|
12
|
Erlikhman G, Keane BP, Mettler E, Horowitz TS, Kellman PJ. Automatic feature-based grouping during multiple object tracking. J Exp Psychol Hum Percept Perform 2013; 39:1625-1637. [PMID: 23458095 PMCID: PMC3901520 DOI: 10.1037/a0031750] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Contour interpolation automatically binds targets with distractors to impair multiple object tracking (Keane, Mettler, Tsoi, & Kellman, 2011). Is interpolation special in this regard or can other features produce the same effect? To address this question, we examined the influence of eight features on tracking: color, contrast polarity, orientation, size, shape, depth, interpolation, and a combination (shape, color, size). In each case, subjects tracked 4 of 8 objects that began as undifferentiated shapes, changed features as motion began (to enable grouping), and returned to their undifferentiated states before halting. We found that intertarget grouping improved performance for all feature types except orientation and interpolation (Experiment 1 and Experiment 2). Most importantly, target-distractor grouping impaired performance for color, size, shape, combination, and interpolation. The impairments were, at times, large (>15% decrement in accuracy) and occurred relative to a homogeneous condition in which all objects had the same features at each moment of a trial (Experiment 2), and relative to a "diversity" condition in which targets and distractors had different features at each moment (Experiment 3). We conclude that feature-based grouping occurs for a variety of features besides interpolation, even when irrelevant to task instructions and contrary to the task demands, suggesting that interpolation is not unique in promoting automatic grouping in tracking tasks. Our results also imply that various kinds of features are encoded automatically and in parallel during tracking.
Collapse
Affiliation(s)
- Gennady Erlikhman
- Department of Psychology, University of California, Los Angeles, USA
| | - Brian P. Keane
- Rutgers University Center for Cognitive Science, Piscataway, NJ, USA
- UMDNJ—Robert Wood Johnson Medical School, Piscataway, USA
| | - Everett Mettler
- Department of Psychology, University of California, Los Angeles, USA
| | - Todd S. Horowitz
- Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Philip J. Kellman
- Department of Psychology, University of California, Los Angeles, USA
| |
Collapse
|
13
|
Huang LT, Wong AMK, Chen CPC, Chang WH, Cheng JW, Lin YR, Pei YC. Global motion percept mediated through integration of barber poles presented in bilateral visual hemifields. PLoS One 2013; 8:e74032. [PMID: 24009764 PMCID: PMC3756956 DOI: 10.1371/journal.pone.0074032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 08/01/2013] [Indexed: 11/21/2022] Open
Abstract
How is motion information that has been obtained through multiple viewing apertures integrated to form a global motion percept? We investigated the mechanisms of motion integration across apertures in two hemifields by presenting gratings through two rectangles (that form the dual barber poles) and recording the perceived direction of motion by human observers. To this end, we presented dual barber poles in conditions with various inter-component distances between the apertures and evaluated the degree to which the hemifield information was integrated by measuring the magnitude of the perceived barber pole illusion. Surprisingly, when the inter-component distance between the two apertures was short, the perceived direction of motion of the dual barber poles was similar to that of a single barber pole formed by the concatenation of the two component barber poles, indicating motion integration is achieved through a simple concatenation mechanism. We then presented dual barber poles in which the motion and contour properties of the two component barber poles differed to characterize the constraints underlying cross-hemifield integration. We found that integration is achieved only when phase, speed, wavelength, temporal frequency, and duty cycle are identical in the two barber poles, but can remain robust when the contrast of the two component barber poles differs substantially. We concluded that a motion stimulus presented in bilateral hemifields tends to be integrated to yield a global percept with a substantial tolerance for spatial distance and contrast difference.
Collapse
Affiliation(s)
- Li-Ting Huang
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Alice M. K. Wong
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Carl P. C. Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Han Chang
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ju-Wen Cheng
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu-Ru Lin
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu-Cheng Pei
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
- * E-mail:
| |
Collapse
|
14
|
Muth C, Carbon CC. The aesthetic aha: on the pleasure of having insights into Gestalt. Acta Psychol (Amst) 2013; 144:25-30. [PMID: 23743342 DOI: 10.1016/j.actpsy.2013.05.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 04/24/2013] [Accepted: 05/03/2013] [Indexed: 10/26/2022] Open
Abstract
Are challenging stimuli appreciated due to perceptual insights during elaboration? Drawing on the literature regarding aesthetic appreciation, several approaches can be identified. For instance, fluency of processing as well as perceptual challenge are supposed to increase appreciation: One group (Reber, Schwarz, & Winkielman, 2004) claims that fluency of processing increases appreciation. Others link aesthetics to engagement: Creation and manipulation of sense itself should be rewarding (Ramachandran & Hirstein, 1999). We experimentally tested the influence of insights during elaboration on liking. Pairs of stimuli - hardly detectable two-tone images including a face (Mooney face) and meaningless stimuli matched for complexity - were presented repeatedly. Having an insight as well as the intensity of the insight predicted subsequent gains in liking. This paper qualifies the role of insight (-aha!) on aesthetic appreciation through the effects of elaboration and problem-solving on understanding the processing of modern art.
Collapse
|
15
|
Abstract
No previous research has tuned the temporal characteristics of light-emitting devices to enhance brightness perception in human vision, despite the potential for significant power savings. The role of stimulus duration on perceived contrast is unclear, due to contradiction between the models proposed by Bloch and by Broca and Sulzer over 100 years ago. We propose that the discrepancy is accounted for by the observer's "inherent expertise bias," a type of experimental bias in which the observer's life-long experience with interpreting the sensory world overcomes perceptual ambiguities and biases experimental outcomes. By controlling for this and all other known biases, we show that perceived contrast peaks at durations of 50-100 ms, and we conclude that the Broca-Sulzer effect best describes human temporal vision. We also show that the plateau in perceived brightness with stimulus duration, described by Bloch's law, is a previously uncharacterized type of temporal brightness constancy that, like classical constancy effects, serves to enhance object recognition across varied lighting conditions in natural vision-although this is a constancy effect that normalizes perception across temporal modulation conditions. A practical outcome of this study is that tuning light-emitting devices to match the temporal dynamics of the human visual system's temporal response function will result in significant power savings.
Collapse
|
16
|
Decreased coherent motion discrimination in autism spectrum disorder: the role of attentional zoom-out deficit. PLoS One 2012; 7:e49019. [PMID: 23139831 PMCID: PMC3490913 DOI: 10.1371/journal.pone.0049019] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 10/04/2012] [Indexed: 11/19/2022] Open
Abstract
Autism spectrum disorder (ASD) has been associated with decreased coherent dot motion (CDM) performance, a task that measures magnocellular sensitivity as well as fronto-parietal attentional integration processing. In order to clarify the role of spatial attention in CDM tasks, we measured the perception of coherently moving dots displayed in the central or peripheral visual field in ASD and typically developing children. A dorsal-stream deficit in children with ASD should predict a generally poorer performance in both conditions. In our study, however, we show that in children with ASD, CDM perception was selectively impaired in the central condition. In addition, in the ASD group, CDM efficiency was correlated to the ability to zoom out the attentional focus. Importantly, autism symptoms severity was related to both the CDM and attentional zooming-out impairment. These findings suggest that a dysfunction in the attentional network might help to explain decreased CDM discrimination as well as the “core” social cognition deficits of ASD.
Collapse
|
17
|
Wagemans J, Elder JH, Kubovy M, Palmer SE, Peterson MA, Singh M, von der Heydt R. A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization. Psychol Bull 2012; 138:1172-217. [PMID: 22845751 DOI: 10.1037/a0029333] [Citation(s) in RCA: 529] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In 1912, Max Wertheimer published his paper on phi motion, widely recognized as the start of Gestalt psychology. Because of its continued relevance in modern psychology, this centennial anniversary is an excellent opportunity to take stock of what Gestalt psychology has offered and how it has changed since its inception. We first introduce the key findings and ideas in the Berlin school of Gestalt psychology, and then briefly sketch its development, rise, and fall. Next, we discuss its empirical and conceptual problems, and indicate how they are addressed in contemporary research on perceptual grouping and figure-ground organization. In particular, we review the principles of grouping, both classical (e.g., proximity, similarity, common fate, good continuation, closure, symmetry, parallelism) and new (e.g., synchrony, common region, element and uniform connectedness), and their role in contour integration and completion. We then review classic and new image-based principles of figure-ground organization, how it is influenced by past experience and attention, and how it relates to shape and depth perception. After an integrated review of the neural mechanisms involved in contour grouping, border ownership, and figure-ground perception, we conclude by evaluating what modern vision science has offered compared to traditional Gestalt psychology, whether we can speak of a Gestalt revival, and where the remaining limitations and challenges lie. A better integration of this research tradition with the rest of vision science requires further progress regarding the conceptual and theoretical foundations of the Gestalt approach, which is the focus of a second review article.
Collapse
Affiliation(s)
- Johan Wagemans
- University of Leuven (KU Leuven), Laboratory of Experimental Psychology, Tiensestraat 102, Box 3711, BE-3000 Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
18
|
Vezzani S, Marino BFM, Giora E. An early history of the Gestalt factors of organisation. Perception 2012; 41:148-67. [PMID: 22670344 DOI: 10.1068/p7122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Wertheimer's (1923, Psychologische Forschung 4 301 - 350) idea that the perceptual world is articulated according to factors of organisation is widely acknowledged as one of the most original contributions of Gestalt psychology and stands as a milestone in the history of vision research. An inquiry focused on the forerunners of some of Wertheimer's factors of perceptual organisation is documented here. In fact, in 1900 Schumann described grouping by proximity and by vertical symmetry, and in 1903 G E Müller identified the factors of sameness/similarity and contour. Other authors contributed to the early description of these factors, such as Rubin, who in 1922 originally illustrated grouping by similarity. Even though Wertheimer himself granted these authors due recognition, later psychologists have paid little attention to their contributions. Some possible reasons for this negligence are briefly discussed.
Collapse
|
19
|
Giora E, Gori S. The perceptual expansion of a filled area depends on textural characteristics. Vision Res 2010; 50:2466-75. [PMID: 20801140 DOI: 10.1016/j.visres.2010.08.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 08/21/2010] [Accepted: 08/23/2010] [Indexed: 12/01/2022]
Abstract
According to the Oppel-Kundt illusion, a filled space appears larger than an empty one. In the present research we studied how textural characteristics affect the perceived size of two-dimensional patterns. We investigated the perceived extension of square textures by manipulating spatial frequency and filling microelements' numerosity. Subjects compared the test stimuli with a uniform gray square varied in size and performed the task both with the adjustment and the constant stimuli methods. An illusory increment of area extension was generally found with textured stimuli. The illusory effect increased with spatial frequency and decreased with the microelements' number, indicating an independent processing of these two basic properties. Moreover, the smaller effect found when spatial frequency extraction became harder, confirmed that the illusion involves spatial frequency processing. Finally, the reduced overestimation of areas observed with a weaker subparts' articulation confirmed the relevance of clear distinguishable micropatterns at the basis of the phenomenon. Those results demonstrate the influence of textural statistical properties on perceiving the size of a visual object.
Collapse
Affiliation(s)
- Enrico Giora
- Department of Psychology, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1, 20126 Milano, Italy.
| | | |
Collapse
|