1
|
Goulart VDLR, Young RJ. Investigation through Animal-Computer Interaction: A Proof-of-Concept Study for the Behavioural Experimentation of Colour Vision in Zoo-Housed Primates. Animals (Basel) 2024; 14:1979. [PMID: 38998091 PMCID: PMC11240658 DOI: 10.3390/ani14131979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Zoos are an important repository of animals, which have a wide range of visual systems, providing excellent opportunities to investigate many comparative questions in sensory ecology. However, behavioural testing must be carried out in an animal welfare-friendly manner, which is practical for zoo staff. Here, we present a proof-of-concept study to facilitate behavioural research on the sensory ecology of captive primates. A system consisting of a tablet computer and an automated feeder connected wirelessly was developed and presented to captive primate species to evaluate interactions with and without previous training. A colour stimulus, analogous to the Ishihara test, was used to check the level of interaction with the device, supporting future studies on sensory ecology with zoo animals. Animals were able to use the system successfully and displayed signs of learning to discriminate between the visual stimuli presented. We identified no risk for small primates in their interactions with the experimental setup without the presence of keepers. The use of electronic devices should be approached with caution to prevent accidents, as a standard practice for environmental enrichment for larger animals (e.g., spider monkeys). In the long term, the system developed here will allow us to address complex comparative questions about the functions of different visual systems in captive animals (i.e., dichromatic, trichromatic, etc.).
Collapse
Affiliation(s)
- Vinícius Donisete Lima Rodrigues Goulart
- Transportation Research and Environmental Modelling Laboratory—TREM, Institute of Geosciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Robert John Young
- School of Science, Engineering and Environment, Peel Building, University of Salford Manchester, Salford M5 4WT, UK
| |
Collapse
|
2
|
Barros PKS, Castro FN, Pessoa DMA. Detection of conspicuous and cryptic food by common marmosets (Callithrix jacchus): An evaluation of the importance of color and shape cues. Behav Processes 2021; 192:104495. [PMID: 34487831 DOI: 10.1016/j.beproc.2021.104495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/21/2021] [Accepted: 09/01/2021] [Indexed: 11/25/2022]
Abstract
In primates, the advantage of trichromacy (i.e., color vision expressed by most humans) over dichromacy (i.e., color vision expressed by many colorblind humans) has been linked to the detection of yellowish/reddish targets against a background of mature green leaves. Nevertheless, mostly because of studies conducted in humans, we know that achromatic cues might also play an important role in object identification, particularly when camouflage is involved. For instance, dichromacy favors the detection of camouflaged targets by exploitation of shape cues. The present study sought to evaluate the relative importance of color and shape cues on the detection of food targets by female and male marmosets (Callithrix jacchus). Animals were observed with respect to their foraging behavior and the number of food targets captured. We confirmed that females are advantageous in detecting conspicuous food against a green background and revealed that females and males rely on shape cues to segregate cryptic food. Unexpectedly, males outperformed females in cryptic food foraging, while camouflage improved males' (but not females') performance. Here we show that dichromats could potentially benefit from a better segregation of green natural targets (e.g., immature fruits, green insects, and gum trees) when viewed against a green dappled background.
Collapse
Affiliation(s)
- Priscilla Kelly Silva Barros
- Laboratory of Sensory Ecology, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, 59072-970, Brazil; Primate Center, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, 59072-970, Brazil
| | - Felipe Nalon Castro
- Laboratory of Human Behavior Evolution, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, 59072-970, Brazil
| | - Daniel Marques Almeida Pessoa
- Laboratory of Sensory Ecology, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, 59072-970, Brazil; Primate Center, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, 59072-970, Brazil.
| |
Collapse
|
3
|
Hoover KC. Sensory disruption and sensory inequities in the Anthropocene. Evol Anthropol 2021; 30:128-140. [PMID: 33580579 DOI: 10.1002/evan.21882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 02/27/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022]
Abstract
Anthropogenic disruptions to animal sensory ecology are as old as our species. But what about the effect on human sensory ecology? Human sensory dysfunction is increasing globally at great economic and health costs (mental, physical, and social). Contemporary sensory problems are directly tied to human behavioral changes and activity as well as anthropogenic pollution. The evolutionary sensory ecology and anthropogenic disruptions to three human senses (vision, audition, olfaction) are examined along with the economic and health costs of functionally reduced senses and demographic risk factors contributing to impairment. The primary goals of the paper are (a) to sew an evolutionary and ecological thread through clinical narratives on sensory dysfunction that highlights the impact of the built environment on the senses, and (b) to highlight structural, demographic, and environmental injustices that create sensory inequities in risk and that promote health disparities.
Collapse
Affiliation(s)
- Kara C Hoover
- Department of Anthropology, University of Alaska, Fairbanks, Alaska, USA
| |
Collapse
|
4
|
Caro T, Mallarino R. Coloration in Mammals. Trends Ecol Evol 2020; 35:357-366. [PMID: 31980234 PMCID: PMC10754262 DOI: 10.1016/j.tree.2019.12.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022]
Abstract
Mammalian colors and color patterns are some of the most diverse and conspicuous traits found in nature and have been widely studied from genetic/developmental and evolutionary perspectives. In this review we first discuss the proximate causes underlying variation in pigment type (i.e., color) and pigment distribution (i.e., color pattern) and highlight both processes as having a distinct developmental basis. Then, using multiple examples, we discuss ultimate factors that have driven the evolution of coloration differences in mammals, which include background matching, intra- and interspecific signaling, and physiological influences. Throughout, we outline bridges between developmental and functional investigatory approaches that help broaden knowledge of mammals' memorable external appearances, and we point out areas for future interdisciplinary research.
Collapse
Affiliation(s)
- Tim Caro
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS81TQ, UK; Center for Population Biology, 1 Shields Avenue, University of California, Davis, CA 95616, USA.
| | - Ricardo Mallarino
- Department of Molecular Biology, Princeton University, 119 Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| |
Collapse
|
5
|
Schnaitmann C, Pagni M, Reiff DF. Color vision in insects: insights from Drosophila. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:183-198. [PMID: 32020291 PMCID: PMC7069916 DOI: 10.1007/s00359-019-01397-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
Color vision is an important sensory capability that enhances the detection of contrast in retinal images. Monochromatic animals exclusively detect temporal and spatial changes in luminance, whereas two or more types of photoreceptors and neuronal circuitries for the comparison of their responses enable animals to differentiate spectral information independent of intensity. Much of what we know about the cellular and physiological mechanisms underlying color vision comes from research on vertebrates including primates. In insects, many important discoveries have been made, but direct insights into the physiology and circuit implementation of color vision are still limited. Recent advances in Drosophila systems neuroscience suggest that a complete insect color vision circuitry, from photoreceptors to behavior, including all elements and computations, can be revealed in future. Here, we review fundamental concepts in color vision alongside our current understanding of the neuronal basis of color vision in Drosophila, including side views to selected other insects.
Collapse
Affiliation(s)
- Christopher Schnaitmann
- Department for Animal Physiology and Neurobiology, Institute of Biology I, Albert-Ludwigs-University Freiburg, Freiburg, 79104, Germany
| | - Manuel Pagni
- Department for Animal Physiology and Neurobiology, Institute of Biology I, Albert-Ludwigs-University Freiburg, Freiburg, 79104, Germany
| | - Dierk F Reiff
- Department for Animal Physiology and Neurobiology, Institute of Biology I, Albert-Ludwigs-University Freiburg, Freiburg, 79104, Germany.
| |
Collapse
|
6
|
Moreira LAA, Duytschaever G, Higham JP, Melin AD. Platyrrhine color signals: New horizons to pursue. Evol Anthropol 2019; 28:236-248. [PMID: 31609040 PMCID: PMC6865018 DOI: 10.1002/evan.21798] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 06/17/2019] [Accepted: 08/07/2019] [Indexed: 01/26/2023]
Abstract
Like catarrhines, some platyrrhines show exposed and reddish skin, raising the possibility that reddish signals have evolved convergently. This variation in skin exposure and color combined with sex-linked polymorphic color vision in platyrrhines presents a unique, and yet underexplored, opportunity to investigate the relative importance of chromatic versus achromatic signals, the influence of color perception on signal evolution, and to understand primate communication broadly. By coding the facial skin exposure and color of 96 platyrrhines, 28 catarrhines, 7 strepsirrhines, 1 tarsiiform, and 13 nonprimates, and by simulating the ancestral character states for these traits, we provide the first analysis of the distribution and evolution of facial skin exposure and color in platyrrhini. We highlight ways in which studying the presence and use of color signals by platyrrhines and other primates will enhance our understanding of the evolution of color signals, and the forces shaping color vision.
Collapse
Affiliation(s)
- Laís A. A. Moreira
- Department of Anthropology & ArchaeologyUniversity of CalgaryCalgaryAlbertaCanada
| | - Gwen Duytschaever
- Department of Anthropology & ArchaeologyUniversity of CalgaryCalgaryAlbertaCanada
| | | | - Amanda D. Melin
- Department of Anthropology & ArchaeologyUniversity of CalgaryCalgaryAlbertaCanada
- Department of Medical GeneticsUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteCalgaryAlbertaCanada
| |
Collapse
|
7
|
Kane SA, Wang Y, Fang R, Lu Y, Dakin R. How conspicuous are peacock eyespots and other colorful feathers in the eyes of mammalian predators? PLoS One 2019; 14:e0210924. [PMID: 31017903 PMCID: PMC6481771 DOI: 10.1371/journal.pone.0210924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
Colorful feathers have long been assumed to be conspicuous to predators, and hence likely to incur costs due to enhanced predation risk. However, many mammals that prey on birds have dichromatic visual systems with only two types of color-sensitive visual receptors, rather than the three and four photoreceptors characteristic of humans and most birds, respectively. Here, we use a combination of multispectral imaging, reflectance spectroscopy, color vision modelling and visual texture analysis to compare the visual signals available to conspecifics and to mammalian predators from multicolored feathers from the Indian peacock (Pavo cristatus), as well as red and yellow parrot feathers. We also model the effects of distance-dependent blurring due to visual acuity. When viewed by birds against green vegetation, most of the feathers studied are estimated to have color and brightness contrasts similar to values previously found for ripe fruit. On the other hand, for dichromat mammalian predators, visual contrasts for these feathers were only weakly detectable and often below detection thresholds for typical viewing distances. We also show that for dichromat mammal vision models, the peacock's train has below-detection threshold color and brightness contrasts and visual textures that match various foliage backgrounds. These findings are consistent with many feathers of similar hue to those studied here being inconspicuous, and in some cases potentially cryptic, in the eyes of common mammalian predators of adult birds. Given that birds perform many conspicuous motions and behaviors, this study suggests that mammalian predators are more likely to use other sensory modalities (e.g., motion detection, hearing, and olfaction), rather than color vision, to detect avian prey. This suggests new directions for future behavioral studies and emphasizes the importance of understanding the influence of the sensory ecology of predators in the evolution of animal coloration.
Collapse
Affiliation(s)
- Suzanne Amador Kane
- Physics & Astronomy Department, Haverford College, Haverford, Pennsylvania, United States of America
- * E-mail:
| | - Yuchao Wang
- Physics & Astronomy Department, Haverford College, Haverford, Pennsylvania, United States of America
| | - Rui Fang
- Physics & Astronomy Department, Haverford College, Haverford, Pennsylvania, United States of America
| | - Yabin Lu
- Physics & Astronomy Department, Haverford College, Haverford, Pennsylvania, United States of America
| | - Roslyn Dakin
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington DC, United States of America
| |
Collapse
|
8
|
Thorstenson CA, Pazda AD, Elliot AJ. Social Perception of Facial Color Appearance for Human Trichromatic Versus Dichromatic Color Vision. PERSONALITY AND SOCIAL PSYCHOLOGY BULLETIN 2019; 46:51-63. [DOI: 10.1177/0146167219841641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Typical human color vision is trichromatic, on the basis that we have three distinct classes of photoreceptors. A recent evolutionary account posits that trichromacy facilitates detecting subtle skin color changes to better distinguish important social states related to proceptivity, health, and emotion in others. Across two experiments, we manipulated the facial color appearance of images consistent with a skin blood perfusion response and asked participants to evaluate the perceived attractiveness, health, and anger of the face (trichromatic condition). We additionally simulated what these faces would look like for three dichromatic conditions (protanopia, deuteranopia, tritanopia). The results demonstrated that flushed (relative to baseline) faces were perceived as more attractive, healthy, and angry in the trichromatic and tritanopia conditions, but not in the protanopia and deuteranopia conditions. The results provide empirical support for the social perception account of trichromatic color vision evolution and lead to systematic predictions of social perception based on ecological social perception theory.
Collapse
|
9
|
Abstract
Humans visually process human body images depending on the configuration of the parts. However, little is known about whether this function is evolutionarily shared with nonhuman animals. In this study, we examined the body posture discrimination performance of capuchin monkeys, a highly social platyrrhine primate, in comparison to humans. We demonstrate that, like humans, monkeys exhibit a body inversion effect: body posture discrimination is impaired by inversion, which disrupts the configural relationships of body parts. The inversion effect in monkeys was observed when human body images were used, but not when the body parts were replaced with cubic and cylindrical figures, the positions of the parts were scrambled, or only part of a body was presented. Results in human participants showed similar patterns, though they also showed the inversion effect when the cubic/cylindrical body images were used. These results provide the first evidence for configural processing of body forms in monkeys and suggest that the visual attunement to social signals mediated by body postures is conserved through the evolution of primate vision.
Collapse
|
10
|
Hogan JD, Fedigan LM, Hiramatsu C, Kawamura S, Melin AD. Trichromatic perception of flower colour improves resource detection among New World monkeys. Sci Rep 2018; 8:10883. [PMID: 30022096 PMCID: PMC6052032 DOI: 10.1038/s41598-018-28997-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/25/2018] [Indexed: 11/21/2022] Open
Abstract
Many plants use colour to attract pollinators, which often possess colour vision systems well-suited for detecting flowers. Yet, to isolate the role of colour is difficult, as flowers also produce other cues. The study of florivory by Neotropical primates possessing polymorphic colour vision provides an opportunity to investigate the importance of colour directly. Here we determine whether differences in colour vision within a mixed population of wild dichromatic and trichromatic white-faced capuchins (Cebus capucinus imitator) affect flower foraging behaviours. We collected reflectance data for flower foods and modelled their chromatic properties to capuchin colour vision phenotypes. We collected behavioural data over 22 months spanning four years, determined the colour vision phenotype of each monkey based on amino acid variation of the L/M opsin gene from fecal DNA, and compared foraging behaviours of dichromats and trichromats. Most flowers were more conspicuous to trichromats, and trichromats foraged in small flower patches significantly more often. These data demonstrate a difference in wild primate foraging patterns based on colour vision differences, supporting the hypothesis that trichromacy enhances detection of small, ephemeral resources. This advantage, which may also extend to other foods, likely contributes to the maintenance of colour vision polymorphism in Neotropical monkeys.
Collapse
Affiliation(s)
- J D Hogan
- University of Calgary, Calgary, Canada
| | | | | | - S Kawamura
- University of Tokyo, Kashiwa, Chiba, Japan
| | - A D Melin
- University of Calgary, Calgary, Canada.
| |
Collapse
|
11
|
May CA. Intrinsic Neurons and Nonvascular Smooth Muscle Cells in the Choroid of a Chimpanzee (Pan troglodytes). INT J PRIMATOL 2018. [DOI: 10.1007/s10764-018-0028-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Hiramatsu C, Melin AD, Allen WL, Dubuc C, Higham JP. Experimental evidence that primate trichromacy is well suited for detecting primate social colour signals. Proc Biol Sci 2018; 284:rspb.2016.2458. [PMID: 28615496 PMCID: PMC5474062 DOI: 10.1098/rspb.2016.2458] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 05/17/2017] [Indexed: 12/14/2022] Open
Abstract
Primate trichromatic colour vision has been hypothesized to be well tuned for detecting variation in facial coloration, which could be due to selection on either signal wavelengths or the sensitivities of the photoreceptors themselves. We provide one of the first empirical tests of this idea by asking whether, when compared with other visual systems, the information obtained through primate trichromatic vision confers an improved ability to detect the changes in facial colour that female macaque monkeys exhibit when they are proceptive. We presented pairs of digital images of faces of the same monkey to human observers and asked them to select the proceptive face. We tested images that simulated what would be seen by common catarrhine trichromatic vision, two additional trichromatic conditions and three dichromatic conditions. Performance under conditions of common catarrhine trichromacy, and trichromacy with narrowly separated LM cone pigments (common in female platyrrhines), was better than for evenly spaced trichromacy or for any of the dichromatic conditions. These results suggest that primate trichromatic colour vision confers excellent ability to detect meaningful variation in primate face colour. This is consistent with the hypothesis that social information detection has acted on either primate signal spectral reflectance or photoreceptor spectral tuning, or both.
Collapse
Affiliation(s)
- Chihiro Hiramatsu
- Department of Human Science, Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minamiku, Fukuoka 815-8540, Japan .,Physiological Anthropology Research Center, Kyushu University, 4-9-1 Shiobaru, Minamiku, Fukuoka 815-8540, Japan
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada.,Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - William L Allen
- Department of Anthropology, New York University, New York, NY, USA.,Department of Biosciences, Swansea University, Swansea, UK
| | - Constance Dubuc
- Department of Anthropology, New York University, New York, NY, USA.,Department of Zoology, University of Cambridge, Cambridge, UK
| | - James P Higham
- Department of Anthropology, New York University, New York, NY, USA
| |
Collapse
|
13
|
Trichromacy increases fruit intake rates of wild capuchins ( Cebus capucinus imitator). Proc Natl Acad Sci U S A 2017; 114:10402-10407. [PMID: 28894009 DOI: 10.1073/pnas.1705957114] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Intraspecific color vision variation is prevalent among nearly all diurnal monkeys in the neotropics and is seemingly a textbook case of balancing selection acting to maintain genetic polymorphism. Clear foraging advantages to monkeys with trichromatic vision over those with dichromatic "red-green colorblind" vision have been observed in captive studies; however, evidence of trichromatic advantage during close-range foraging has been surprisingly scarce in field studies, perhaps as a result of small sample sizes and strong impacts of environmental or individual variation on foraging performance. To robustly test the effects of color vision type on foraging efficiency in the wild, we conducted an extensive study of dichromatic and trichromatic white-faced capuchin monkeys (Cebus capucinus imitator), controlling for plant-level and monkey-level variables that may affect fruit intake rates. Over the course of 14 months, we collected behavioral data from 72 monkeys in Sector Santa Rosa, Costa Rica. We analyzed 19,043 fruit feeding events within 1,602 foraging bouts across 27 plant species. We find that plant species, color conspicuity category, and monkey age class significantly impact intake rates, while sex does not. When plant species and age are controlled for, we observe that trichromats have higher intake rates than dichromats for plant species with conspicuously colored fruits. This study provides clear evidence of trichromatic advantage in close-range fruit feeding in wild monkeys. Taken together with previous reports of dichromatic advantage for finding cryptic foods, our results illuminate an important aspect of balancing selection maintaining primate opsin polymorphism.
Collapse
|
14
|
Carvalho LS, Pessoa DMA, Mountford JK, Davies WIL, Hunt DM. The Genetic and Evolutionary Drives behind Primate Color Vision. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00034] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Abstract
Many techniques have been developed to visualize how an image would appear to an individual with a different visual sensitivity: e.g., because of optical or age differences, or a color deficiency or disease. This protocol describes a technique for incorporating sensory adaptation into the simulations. The protocol is illustrated with the example of color vision, but is generally applicable to any form of visual adaptation. The protocol uses a simple model of human color vision based on standard and plausible assumptions about the retinal and cortical mechanisms encoding color and how these adjust their sensitivity to both the average color and range of color in the prevailing stimulus. The gains of the mechanisms are adapted so that their mean response under one context is equated for a different context. The simulations help reveal the theoretical limits of adaptation and generate "adapted images" that are optimally matched to a specific environment or observer. They also provide a common metric for exploring the effects of adaptation within different observers or different environments. Characterizing visual perception and performance with these images provides a novel tool for studying the functions and consequences of long-term adaptation in vision or other sensory systems.
Collapse
|
16
|
Troscianko J, Wilson-Aggarwal J, Griffiths D, Spottiswoode CN, Stevens M. Relative advantages of dichromatic and trichromatic color vision in camouflage breaking. Behav Ecol 2017; 28:556-564. [PMID: 29622920 PMCID: PMC5873837 DOI: 10.1093/beheco/arw185] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 11/24/2016] [Accepted: 12/07/2016] [Indexed: 11/13/2022] Open
Abstract
There is huge diversity in visual systems and color discrimination abilities, thought to stem from an animal’s ecology and life history. Many primate species maintain a polymorphism in color vision, whereby most individuals are dichromats but some females are trichromats, implying that selection sometimes favors dichromatic vision. Detecting camouflaged prey is thought to be a task where dichromatic individuals could have an advantage. However, previous work either has not been able to disentangle camouflage detection from other ecological or social explanations, or did not use biologically relevant cryptic stimuli to test this hypothesis under controlled conditions. Here, we used online “citizen science” games to test how quickly humans could detect cryptic birds (incubating nightjars) and eggs (of nightjars, plovers and coursers) under trichromatic and simulated dichromatic viewing conditions. Trichromats had an overall advantage, although there were significant differences in performance between viewing conditions. When searching for consistently shaped and patterned adult nightjars, simulated dichromats were more heavily influenced by the degree of pattern difference than were trichromats, and were poorer at detecting prey with inferior pattern and luminance camouflage. When searching for clutches of eggs—which were more variable in appearance and shape than the adult nightjars—the simulated dichromats learnt to detect the clutches faster, but were less sensitive to subtle luminance differences. These results suggest there are substantial differences in the cues available under viewing conditions that simulate different receptor types, and that these interact with the scene in complex ways to affect camouflage breaking.
Collapse
Affiliation(s)
- Jolyon Troscianko
- University of Exeter, School of Biosciences, Penryn Campus, Penryn TR10 9FE, UK
| | | | - David Griffiths
- University of Exeter, School of Biosciences, Penryn Campus, Penryn TR10 9FE, UK.,FoAM - Kernow, Workshop E, Jubilee Warehouse, Commercial Road, Penryn TR10 8FG, UK
| | - Claire N Spottiswoode
- University of Cambridge, Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK, and.,DST-NRF Centre of Excellence at the FitzPatrick Institute, University of Cape Town, Rondebosch 7701, South Africa
| | - Martin Stevens
- University of Exeter, School of Biosciences, Penryn Campus, Penryn TR10 9FE, UK
| |
Collapse
|
17
|
Kawamura S, Melin AD. Evolution of Genes for Color Vision and the Chemical Senses in Primates. EVOLUTION OF THE HUMAN GENOME I 2017. [DOI: 10.1007/978-4-431-56603-8_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
18
|
Veilleux CC, Scarry CJ, Di Fiore A, Kirk EC, Bolnick DA, Lewis RJ. Group benefit associated with polymorphic trichromacy in a Malagasy primate (Propithecus verreauxi). Sci Rep 2016; 6:38418. [PMID: 27910919 PMCID: PMC5133583 DOI: 10.1038/srep38418] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/09/2016] [Indexed: 11/09/2022] Open
Abstract
In some primate lineages, polymorphisms in the X-linked M/LWS opsin gene have produced intraspecific variation in color vision. In these species, heterozygous females exhibit trichromacy, while males and homozygous females exhibit dichromacy. The evolutionary persistence of these polymorphisms suggests that balancing selection maintains color vision variation, possibly through a 'trichromat advantage' in detecting yellow/orange/red foods against foliage. We identified genetic evidence of polymorphic trichromacy in a population of Verreaux's sifaka (Propithecus verreauxi) at Kirindy Mitea National Park in Madagascar, and explored effects of color vision on reproductive success and feeding behavior using nine years of morphological, demographic, and feeding data. We found that trichromats and dichromats residing in social groups with trichromats exhibit higher body mass indices than individuals in dichromat-only groups. Additionally, individuals in a trichromat social group devoted significantly more time to fruit feeding and had longer fruit feeding bouts than individuals in dichromat-only groups. We hypothesize that, due to small, cohesive sifaka social groups, a trichromat advantage in detecting productive fruit patches during the energetically stressful dry season also benefits dichromats in a trichromat's group. Our results offer the first support for the 'mutual benefit of association' hypothesis regarding the maintenance of polymorphic trichromacy in primates.
Collapse
Affiliation(s)
- Carrie C. Veilleux
- Department of Anthropology, University of Texas at Austin, 2201 Speedway Stop C3200, Austin, TX, 78712, USA
| | - Clara J. Scarry
- Department of Anthropology, University of Texas at Austin, 2201 Speedway Stop C3200, Austin, TX, 78712, USA
| | - Anthony Di Fiore
- Department of Anthropology, University of Texas at Austin, 2201 Speedway Stop C3200, Austin, TX, 78712, USA
| | - E. Christopher Kirk
- Department of Anthropology, University of Texas at Austin, 2201 Speedway Stop C3200, Austin, TX, 78712, USA
| | - Deborah A. Bolnick
- Department of Anthropology, University of Texas at Austin, 2201 Speedway Stop C3200, Austin, TX, 78712, USA
- Population Research Center, University of Texas at Austin, Austin, TX, 78712, USA
| | - Rebecca J. Lewis
- Department of Anthropology, University of Texas at Austin, 2201 Speedway Stop C3200, Austin, TX, 78712, USA
| |
Collapse
|
19
|
Kawamura S. Color vision diversity and significance in primates inferred from genetic and field studies. Genes Genomics 2016; 38:779-791. [PMID: 27594978 PMCID: PMC4987397 DOI: 10.1007/s13258-016-0448-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 11/26/2022]
Abstract
Color provides a reliable cue for object detection and identification during various behaviors such as foraging, mate choice, predator avoidance and navigation. The total number of colors that a visual system can discriminate is largely dependent on the number of different spectral types of cone opsins present in the retina and the spectral separations among them. Thus, opsins provide an excellent model system to study evolutionary interconnections at the genetic, phenotypic and behavioral levels. Primates have evolved a unique ability for three-dimensional color vision (trichromacy) from the two-dimensional color vision (dichromacy) present in the majority of other mammals. This was accomplished via allelic differentiation (e.g. most New World monkeys) or gene duplication (e.g. Old World primates) of the middle to long-wavelength sensitive (M/LWS, or red-green) opsin gene. However, questions remain regarding the behavioral adaptations of primate trichromacy. Allelic differentiation of the M/LWS opsins results in extensive color vision variability in New World monkeys, where trichromats and dichromats are found in the same breeding population, enabling us to directly compare visual performances among different color vision phenotypes. Thus, New World monkeys can serve as an excellent model to understand and evaluate the adaptive significance of primate trichromacy in a behavioral context. I shall summarize recent findings on color vision evolution in primates and introduce our genetic and behavioral study of vision-behavior interrelationships in free-ranging sympatric capuchin and spider monkey populations in Costa Rica.
Collapse
Affiliation(s)
- Shoji Kawamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Bioscience BLDG 502, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562 Japan
| |
Collapse
|
20
|
Corso J, Bowler M, Heymann EW, Roos C, Mundy NI. Highly polymorphic colour vision in a New World monkey with red facial skin, the bald uakari (Cacajao calvus). Proc Biol Sci 2016; 283:20160067. [PMID: 27053753 PMCID: PMC4843651 DOI: 10.1098/rspb.2016.0067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/16/2016] [Indexed: 11/12/2022] Open
Abstract
Colour vision is highly variable in New World monkeys (NWMs). Evidence for the adaptive basis of colour vision in this group has largely centred on environmental features such as foraging benefits for differently coloured foods or predator detection, whereas selection on colour vision for sociosexual communication is an alternative hypothesis that has received little attention. The colour vision of uakaris (Cacajao) is of particular interest because these monkeys have the most dramatic red facial skin of any primate, as well as a unique fission/fusion social system and a specialist diet of seeds. Here, we investigate colour vision in a wild population of the bald uakari,C. calvus, by genotyping the X-linked opsin locus. We document the presence of a polymorphic colour vision system with an unprecedented number of functional alleles (six), including a novel allele with a predicted maximum spectral sensitivity of 555 nm. This supports the presence of strong balancing selection on different alleles at this locus. We consider different hypotheses to explain this selection. One possibility is that trichromacy functions in sexual selection, enabling females to choose high-quality males on the basis of red facial coloration. In support of this, there is some evidence that health affects facial coloration in uakaris, as well as a high prevalence of blood-borne parasitism in wild uakari populations. Alternatively, the low proportion of heterozygous female trichromats in the population may indicate selection on different dichromatic phenotypes, which might be related to cryptic food coloration. We have uncovered unexpected diversity in the last major lineage of NWMs to be assayed for colour vision, which will provide an interesting system to dissect adaptation of polymorphic trichromacy.
Collapse
Affiliation(s)
- Josmael Corso
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| | - Mark Bowler
- Behavioral Ecology Division, San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Road, Escondido, CA 92027-7000, USA Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Göttingen 37077, Germany
| | - Eckhard W Heymann
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Göttingen 37077, Germany
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Göttingen 37077, Germany
| | - Nicholas I Mundy
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
21
|
Melin AD, Kline DW, Hiramatsu C, Caro T. Zebra Stripes through the Eyes of Their Predators, Zebras, and Humans. PLoS One 2016; 11:e0145679. [PMID: 26799935 PMCID: PMC4723339 DOI: 10.1371/journal.pone.0145679] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/07/2015] [Indexed: 11/26/2022] Open
Abstract
The century-old idea that stripes make zebras cryptic to large carnivores has never been examined systematically. We evaluated this hypothesis by passing digital images of zebras through species-specific spatial and colour filters to simulate their appearance for the visual systems of zebras’ primary predators and zebras themselves. We also measured stripe widths and luminance contrast to estimate the maximum distances from which lions, spotted hyaenas, and zebras can resolve stripes. We found that beyond ca. 50 m (daylight) and 30 m (twilight) zebra stripes are difficult for the estimated visual systems of large carnivores to resolve, but not humans. On moonless nights, stripes are difficult for all species to resolve beyond ca. 9 m. In open treeless habitats where zebras spend most time, zebras are as clearly identified by the lion visual system as are similar-sized ungulates, suggesting that stripes cannot confer crypsis by disrupting the zebra’s outline. Stripes confer a minor advantage over solid pelage in masking body shape in woodlands, but the effect is stronger for humans than for predators. Zebras appear to be less able than humans to resolve stripes although they are better than their chief predators. In conclusion, compared to the uniform pelage of other sympatric herbivores it appears highly unlikely that stripes are a form of anti-predator camouflage.
Collapse
Affiliation(s)
- Amanda D. Melin
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, 63130, United States of America
- Departments of Anthropology & Archaeology and Cell Biology & Anatomy University of Calgary, Calgary, Alberta T2N 1N4, Canada
- * E-mail:
| | - Donald W. Kline
- Departments of Psychology and Surgery (Ophthalmology), University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Chihiro Hiramatsu
- Department of Human Science, Faculty of Design, Kyushu University, Fukuoka, 815–8540, Japan
| | - Tim Caro
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, California 95616, United States of America
| |
Collapse
|
22
|
Bunce JA. Incorporating ecology and social system into formal hypotheses to guide field studies of color vision in primates. Am J Primatol 2015; 77:516-26. [PMID: 25690845 DOI: 10.1002/ajp.22371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/05/2014] [Accepted: 11/11/2014] [Indexed: 11/07/2022]
Abstract
The X-linked gene polymorphism responsible for the variable color vision of most Neotropical monkeys and some lemurs is thought to be maintained by balancing selection, such that trichromats have an advantage over dichromats for some ecologically important task(s). However, evidence for such an advantage in wild primate populations is equivocal. The purpose of this study is to refine a hypothesis for a trichromat advantage by tailoring it to the ecology of territorial primates with female natal dispersal, such that dispersing trichromatic females have a foraging and, by extension, survival advantage over dichromats. I then examine the most practical way to test this hypothesis using field data. Indirect evidence in support of the hypothesis may take the form of differences in genotype frequencies among life stages and differences in disperser food item encounter rates. A deterministic evolutionary matrix population model and a stochastic model of food patch encounter rates are constructed to investigate the magnitude of such differences and the likelihood of statistical detection using field data. Results suggest that, although the sampling effort required to detect the hypothesized genotype frequency differences is impractical, a field study of reasonable scope may be able to detect differences in disperser foraging rates. This study demonstrates the utility of incorporating socioecological details into formal hypotheses during the planning stages of field studies of primate color vision.
Collapse
Affiliation(s)
- John A Bunce
- Department of Anthropology, University of California, Davis, California; Department of Anthropology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
23
|
de Lima EM, Pessoa DMA, Sena L, de Melo AGC, de Castro PHG, Oliveira-Mendes AC, Schneider MPC, Pessoa VF. Polymorphic color vision in captive Uta Hick's cuxiús, or bearded sakis (Chiropotes utahickae). Am J Primatol 2014; 77:66-75. [PMID: 25224123 DOI: 10.1002/ajp.22311] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 05/29/2014] [Accepted: 05/31/2014] [Indexed: 11/10/2022]
Abstract
The pitheciines (Chiropotes, Pithecia, and Cacajao) are frugivorous Neotropical primates that specialize on the predation of seeds from unripe fruits, usually cryptic against the foliage. However, little is known about the color vision distribution within this taxon, and even less about the abilities shared by these animals regarding discrimination of chromatic targets. The aim of this study was to evaluate the color vision perception of captive Uta Hick's cuxiús, or bearded sakis (Chiropotes utahickae) through a behavioral paradigm of color visual discrimination, as well as to estimate, by genetic studies, the number and kinds of medium to long wavelength cone photopigment (opsins) encoded by this species. Among 12 cuxiús (7 males and 5 females) studied only 1 female was diagnosed as a trichromat. Results from genotyping were in line with our behavioral data and showed that cuxiús carried one (dichromat) or two (trichromat) medium to long wavelength pigments alleles, demonstrating a color vision polymorphism in C. utahickae similar to the majority of Neotropical Primates.
Collapse
|
24
|
Amano K, Foster DH. Influence of local scene color on fixation position in visual search. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2014; 31:A254-A262. [PMID: 24695179 DOI: 10.1364/josaa.31.00a254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Where observers concentrate their gaze during visual search depends on several factors. The aim here was to determine how much of the variance in observers' fixations in natural scenes can be explained by local scene color and how that variance is related to viewing bias. Fixation data were taken from an experiment in which observers searched images of 20 natural rural and urban scenes for a small target. The proportion R2 of the variance explained in a regression on local color properties (lightness and the red-green and yellow-blue chromatic components) ranged from 1% to 85%, depending mainly on how well those properties were consistent with observers' viewing bias. When viewing bias was included in the regression, values of R2 increased, ranging from 62% to 96%. By comparison, local lightness and local lightness contrast, edge density, and entropy each explained less variance than local color properties. Local scene color may have a much stronger influence on gaze position than is generally recognized, capturing significant aspects of scene structure on target search behavior.
Collapse
|
25
|
Pessoa DMA, Maia R, de Albuquerque Ajuz RC, De Moraes PZPMR, Spyrides MHC, Pessoa VF. The adaptive value of primate color vision for predator detection. Am J Primatol 2014; 76:721-9. [PMID: 24535839 DOI: 10.1002/ajp.22264] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 12/13/2013] [Accepted: 12/15/2013] [Indexed: 11/09/2022]
Abstract
The complex evolution of primate color vision has puzzled biologists for decades. Primates are the only eutherian mammals that evolved an enhanced capacity for discriminating colors in the green-red part of the spectrum (trichromatism). However, while Old World primates present three types of cone pigments and are routinely trichromatic, most New World primates exhibit a color vision polymorphism, characterized by the occurrence of trichromatic and dichromatic females and obligatory dichromatic males. Even though this has stimulated a prolific line of inquiry, the selective forces and relative benefits influencing color vision evolution in primates are still under debate, with current explanations focusing almost exclusively at the advantages in finding food and detecting socio-sexual signals. Here, we evaluate a previously untested possibility, the adaptive value of primate color vision for predator detection. By combining color vision modeling data on New World and Old World primates, as well as behavioral information from human subjects, we demonstrate that primates exhibiting better color discrimination (trichromats) excel those displaying poorer color visions (dichromats) at detecting carnivoran predators against the green foliage background. The distribution of color vision found in extant anthropoid primates agrees with our results, and may be explained by the advantages of trichromats and dichromats in detecting predators and insects, respectively.
Collapse
Affiliation(s)
- Daniel Marques Almeida Pessoa
- Laboratory of Sensory Ecology, Department of Physiology, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Laboratory for the Advanced Study of Primates, Department of Physiology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | | | | | | | | |
Collapse
|
26
|
Fedigan LM, Melin AD, Addicott JF, Kawamura S. The heterozygote superiority hypothesis for polymorphic color vision is not supported by long-term fitness data from wild neotropical monkeys. PLoS One 2014; 9:e84872. [PMID: 24404195 PMCID: PMC3880319 DOI: 10.1371/journal.pone.0084872] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/20/2013] [Indexed: 11/23/2022] Open
Abstract
The leading explanatory model for the widespread occurrence of color vision polymorphism in Neotropical primates is the heterozygote superiority hypothesis, which postulates that trichromatic individuals have a fitness advantage over other phenotypes because redgreen chromatic discrimination is useful for foraging, social signaling, or predator detection. Alternative explanatory models predict that dichromatic and trichromatic phenotypes are each suited to distinct tasks. To conclusively evaluate these models, one must determine whether proposed visual advantages translate into differential fitness of trichromatic and dichromatic individuals. We tested whether color vision phenotype is a significant predictor of female fitness in a population of wild capuchins, using longterm 26 years survival and fertility data. We found no advantage to trichromats over dichromats for three fitness measures fertility rates, offspring survival and maternal survival. This finding suggests that a selective mechanism other than heterozygote advantage is operating to maintain the color vision polymorphism. We propose that attention be directed to field testing the alternative mechanisms of balancing selection proposed to explain opsin polymorphism nichedivergence, frequencydependence and mutual benefit of association. This is the first indepth, longterm study examining the effects of color vision variation on survival and reproductive success in a naturallyoccurring population of primates.
Collapse
Affiliation(s)
- Linda M Fedigan
- Department of Anthropology, University of Calgary, Alberta, Canada
| | - Amanda D Melin
- Department of Anthropology, Washington University, St. Louis Missouri, United States of America
| | - John F Addicott
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | - Shoji Kawamura
- Department of Integrated Biosciences, University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
27
|
The Behavioral Ecology of Color Vision: Considering Fruit Conspicuity, Detection Distance and Dietary Importance. INT J PRIMATOL 2013. [DOI: 10.1007/s10764-013-9730-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|