1
|
Kim J, Yoshida T. Sense of agency at a temporally-delayed gaze-contingent display. PLoS One 2024; 19:e0309998. [PMID: 39241025 DOI: 10.1371/journal.pone.0309998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 08/22/2024] [Indexed: 09/08/2024] Open
Abstract
The subjective feeling of being the author of one's actions and the subsequent consequences is referred to as a sense of agency. Such a feeling is crucial for usability in human-computer interactions, where eye movement has been adopted, yet this area has been scarcely investigated. We examined how the temporal action-feedback discrepancy affects the sense of agency concerning eye movement. Participants conducted a visual search for an array of nine Chinese characters within a temporally-delayed gaze-contingent display, blurring the peripheral view. The relative delay between each eye movement and the subsequent window movement varied from 0 to 4,000 ms. In the control condition, the window played a recorded gaze behavior. The mean authorship rating and the proportion of "self" responses in the categorical authorship report ("self," "delayed self," and "other") gradually decreased as the temporal discrepancy increased, with "other" being rarely reported, except in the control condition. These results generally mirror those of prior studies on hand actions, suggesting that sense of agency extends beyond the effector body parts to other modalities, and two different types of sense of agency that have different temporal characteristics are simultaneously operating. The mode of fixation duration shifted as the delay increased under 200-ms delays and was divided into two modes at 200-500 ms delays. The frequency of 0-1.5° saccades exhibited an increasing trend as the delay increased. These results demonstrate the influence of perceived action-effect discrepancy on action refinement and task strategy.
Collapse
Affiliation(s)
- Junhui Kim
- School of Engineering, Tokyo Institute of Technology, Meguro City, Tokyo, Japan
| | - Takako Yoshida
- School of Engineering, Tokyo Institute of Technology, Meguro City, Tokyo, Japan
| |
Collapse
|
2
|
Privitera CM, Noah S, Carney T, Klein SA, Lenartowicz A, Hinshaw SP, McCracken JT, Nigg JT, Karalunas SL, Reid RC, Oliva MT, Betts SS, Simpson GV. Pupillary dilations in a Target/Distractor visual task paradigm and attention deficit hyperactivity disorder (ADHD). Neurosci Lett 2024; 818:137556. [PMID: 37951300 DOI: 10.1016/j.neulet.2023.137556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/30/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
ADHD is a neurocognitive disorder characterized by attention difficulties, hyperactivity, and impulsivity, often persisting into adulthood with substantial personal and societal consequences. Despite the importance of neurophysiological assessment and treatment monitoring tests, their availability outside of research settings remains limited. Cognitive neuroscience investigations have identified distinct components associated with ADHD, including deficits in sustained attention, inefficient enhancement of attended Targets, and altered suppression of ignored Distractors. In this study, we examined pupil activity in control and ADHD subjects during a sustained visual attention task specifically designed to evaluate the mechanisms underlying Target enhancement and Distractor suppression. Our findings revealed some distinguishing factors between the two groups which we discuss in light of their neurobiological implications.
Collapse
Affiliation(s)
- Claudio M Privitera
- School of Optometry and Vision Science, University of California, Berkeley, United States.
| | - Sean Noah
- School of Optometry and Vision Science, University of California, Berkeley, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, United States
| | - Thom Carney
- School of Optometry and Vision Science, University of California, Berkeley, United States
| | - Stanley A Klein
- School of Optometry and Vision Science, University of California, Berkeley, United States
| | - Agatha Lenartowicz
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, United States
| | - Stephen P Hinshaw
- Department of Psychology, University of California, Berkeley, Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, United States
| | - James T McCracken
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute and David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Joel T Nigg
- Departments of Psychiatry and Behavioral Neuroscience, Oregon Health & Science University, Portland, United States
| | - Sarah L Karalunas
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, United States
| | - Rory C Reid
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, United States
| | - Mercedes T Oliva
- Division of Social Sciences, University of California, Santa Cruz, United States
| | - Samantha S Betts
- Graduate Program in Neurosciences, University of Southern California, Los Angeles, United States
| | | |
Collapse
|
3
|
A Narrative Literature Review About the Role of Microsaccades in Sports. Motor Control 2023:1-15. [PMID: 36640777 DOI: 10.1123/mc.2022-0102] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/18/2022] [Accepted: 11/15/2022] [Indexed: 01/15/2023]
Abstract
In many daily and sport situations, people have to simultaneously perceive and process multiple objects and scenes in a short amount of time. A wrong decision may lead to a disadvantage for a team or for a single athlete, and during daily life (i.e., driving, surgery), it could have more dangerous consequences. Considering the results of different studies, the ability to distribute visual attention depends on different levels of expertise and environment-related constraints. This article is a narrative review of the current scientific evidence in the field of eye movements in sports, focusing on the role of microsaccades in sporting task situations. Over the past 10 years, microsaccades have become one of the most increasing areas of research in visual and oculomotor studies and even in the area of sport science. Here, we review the latest findings and discuss the relationships between microsaccades and attention, perception, and action in sports.
Collapse
|
4
|
Nakayama R, Bardin JB, Koizumi A, Motoyoshi I, Amano K. Building a decoder of perceptual decisions from microsaccades and pupil size. Front Psychol 2022; 13:942859. [PMID: 36176801 PMCID: PMC9514321 DOI: 10.3389/fpsyg.2022.942859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Many studies have reported neural correlates of visual awareness across several brain regions, including the sensory, parietal, and frontal areas. In most of these studies, participants were instructed to explicitly report their perceptual experience through a button press or verbal report. It is conceivable, however, that explicit reporting itself may trigger specific neural responses that can confound the direct examination of the neural correlates of visual awareness. This suggests the need to assess visual awareness without explicit reporting. One way to achieve this is to develop a technique to predict the visual awareness of participants based on their peripheral responses. Here, we used eye movements and pupil sizes to decode trial-by-trial changes in the awareness of a stimulus whose visibility was deteriorated due to adaptation-induced blindness (AIB). In the experiment, participants judged whether they perceived a target stimulus and rated the confidence they had in their perceptual judgment, while their eye movements and pupil sizes were recorded. We found that not only perceptual decision but also perceptual confidence can be separately decoded from the eye movement and pupil size. We discuss the potential of this technique with regard to assessing visual awareness in future neuroimaging experiments.
Collapse
Affiliation(s)
- Ryohei Nakayama
- Department of Psychology, The University of Tokyo, Tokyo, Japan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka, Japan
| | - Jean-Baptiste Bardin
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka, Japan
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ai Koizumi
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka, Japan
- Sony Computer Science Laboratories, Inc., Tokyo, Japan
| | - Isamu Motoyoshi
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kaoru Amano
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka, Japan
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
- *Correspondence: Kaoru Amano,
| |
Collapse
|
5
|
Low SC, Verschure PFMJ, Santos-Pata D. Saccade rate is associated with recall of items in working memory. Learn Mem 2022; 29:146-154. [PMID: 35589337 DOI: 10.1101/lm.053522.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 04/25/2022] [Indexed: 11/24/2022]
Abstract
Working memory has been shown to rely on theta oscillations' phase synchronicity for item encoding and recall. At the same time, saccadic eye movements during visual exploration have been observed to trigger theta-phase resets, raising the question of whether the neuronal substrates of mnemonic processing rely on motor-evoked responses. To quantify the relationship between saccades and working memory load, we recorded eye tracking and behavioral data from human participants simultaneously performing an n-back Sternberg auditory task and a hue-based catch detection task. In addition to task-specific interference in performance, we also found that saccade rate was modulated by working memory load in the Sternberg task's preresponse stage. Our results support the possibility of interplay between saccades and hippocampal theta during working memory retrieval of items.
Collapse
Affiliation(s)
- Sock Ching Low
- Synthetic, Perceptive, Emotive, and Cognitive Systems (SPECS), Barcelona 08930, Spain.,Institute of Bioengineering of Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Paul F M J Verschure
- Synthetic, Perceptive, Emotive, and Cognitive Systems (SPECS), Barcelona 08930, Spain.,Institute of Bioengineering of Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Diogo Santos-Pata
- Synthetic, Perceptive, Emotive, and Cognitive Systems (SPECS), Barcelona 08930, Spain.,Institute of Bioengineering of Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| |
Collapse
|
6
|
Abstract
Saccadic eye movements can allude to emotional states and visual attention. Recent studies have shown that microsaccadic responses (i.e., small fixational eye movements) reflect advanced brain activity during attentional and cognitive tasks. Moreover, the microsaccadic activity related to emotional attention provides new insights into this field. For example, emotional pictures attenuate the microsaccadic rate, and microsaccadic responses to covert attention occur in the direction opposite to a negative emotional target. However, the effects of various emotional events on microsaccadic activity remain debatable. This review introduces visual attention and eye movement studies that support findings on the modulation of microsaccadic responses to emotional events, comparing them with typical microsaccadic responses. This review also discusses the brain neuronal mechanisms governing microsaccadic responses to the attentional shifts triggered by emotion-related stimuli. It is hard to reveal the direct brain pathway of the microsaccadic modulation, especially in advanced (e.g., sustained anger, envy, distrust, guilt, frustration, delight, attraction, trust, and love), but also in basic human emotions (i.e., anger, disgust, fear, happiness, sadness, and surprise). However, non-human primates and human studies can uncover the possible brain pathways of emotional attention and microsaccades, thus providing future research directions. In particular, the facilitated (or reduced) attention is common evidence that microsaccadic activities change under a variety of social modalities (e.g., cognition, music, mental illness, and working memory) that elicit emotions and feelings.
Collapse
Affiliation(s)
- Koji Kashihara
- College of Information Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan.
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijyousanjima, Tokushima, 770-8506, Japan.
| |
Collapse
|
7
|
Duchowski AT, Krejtz K, Zurawska J, House DH. Using Microsaccades to Estimate Task Difficulty During Visual Search of Layered Surfaces. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:2904-2918. [PMID: 30835226 DOI: 10.1109/tvcg.2019.2901881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We develop an approach to using microsaccade dynamics for the measurement of task difficulty/cognitive load imposed by a visual search task of a layered surface. Previous studies provide converging evidence that task difficulty/cognitive load can influence microsaccade activity. We corroborate this notion. Specifically, we explore this relationship during visual search for features embedded in a terrain-like surface, with the eyes allowed to move freely during the task. We make two relevant contributions. First, we validate an approach to distinguishing between the ambient and focal phases of visual search. We show that this spectrum of visual behavior can be quantified by a single previously reported estimator, known as Krejtz's K coefficient. Second, we use ambient/focal segments based on K as a moderating factor for microsaccade analysis in response to task difficulty. We find that during the focal phase of visual search (a) microsaccade magnitude increases significantly, and (b) microsaccade rate decreases significantly, with increased task difficulty. We conclude that the combined use of K and microsaccade analysis may be helpful in building effective tools that provide an indication of the level of cognitive activity within a task while the task is being performed.
Collapse
|
8
|
Martin JT, Whittaker AH, Johnston SJ. Component processes in free-viewing visual search: Insights from fixation-aligned pupillary response averaging. J Vis 2020; 20:5. [PMID: 32634226 PMCID: PMC7424908 DOI: 10.1167/jov.20.7.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/09/2020] [Indexed: 12/30/2022] Open
Abstract
Pupil size changes during a visual search may reflect cognitive processes, such as effort and memory accumulation, but methodological confounds and the general lack of literature in this area leave the reliability of findings open to question. We used a novel synthesis of experimental methods and averaging techniques to explore how cognitive processing unfolds during free-viewing visual search for multiple targets. Twenty-seven participants completed 152 searches across two separate 1-hour sessions. The number of targets present (Targets: 0, 1, 2, and 3) in each trial was the main manipulation and the task was to "find all of the targets" and report the total via mouse-click at the end of the trial. Search time lasted for 10 seconds or until the participant purported to have found all of the targets, in which case they could terminate the search via keypress. Whole-trial pupil analysis revealed a significant effect of button pressing as well as a significant main effect of targets for trials that were not self-terminated via button press. Fixation-aligned pupil responses revealed transient modulations in pupil size following initial fixations on targets but not distractors and refixations on both targets and distractors. Owing to rigorous control over experimental confounds and a detailed analysis and correction of eye-movement-related measurement error, we confidently discuss these findings in terms of task-related processing and underlying brain activity.
Collapse
Affiliation(s)
- Joel T. Martin
- School of Human and Health Sciences, Department of Psychology, University of Swansea, Swansea, Wales, UK
- Institute of Biomedical Engineering, University of Oxford, UK
| | | | - Stephen J. Johnston
- School of Human and Health Sciences, Department of Psychology, University of Swansea, Swansea, Wales, UK
| |
Collapse
|
9
|
Abstract
This work presents a visual analytics approach to explore microsaccade distributions in high-frequency eye tracking data. Research studies often apply filter algorithms and parameter values for microsaccade detection. Even when the same algorithms are employed, different parameter values might be adopted across different studies. In this paper, we present a visual analytics system (VisME) to promote reproducibility in the data analysis of microsaccades. It allows users to interactively vary the parametric values for microsaccade filters and evaluate the resulting influence on microsaccade behavior across individuals and on a group level. In particular, we exploit brushing-and-linking techniques that allow the microsaccadic properties of space, time, and movement direction to be extracted, visualized, and compared across multiple views. We demonstrate in a case study the use of our visual analytics system on data sets collected from natural scene viewing and show in a qualitative usability study the usefulness of this approach for eye tracking researchers. We believe that interactive tools such as VisME will promote greater transparency in eye movement research by providing researchers with the ability to easily understand complex eye tracking data sets; such tools can also serve as teaching systems. VisME is provided as open source software.
Collapse
|
10
|
Scholz S, Dutke S. Investigating intentional forgetting using pupillometry: no evidence for the ongoing allocation of cognitive resources during forgetting. JOURNAL OF COGNITIVE PSYCHOLOGY 2019. [DOI: 10.1080/20445911.2019.1622548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Sebastian Scholz
- Institute for Psychology in Education, University of Münster, Münster, Germany
| | - Stephan Dutke
- Institute for Psychology in Education, University of Münster, Münster, Germany
| |
Collapse
|
11
|
Dalmaso M, Castelli L, Galfano G. Microsaccadic rate and pupil size dynamics in pro-/anti-saccade preparation: the impact of intermixed vs. blocked trial administration. PSYCHOLOGICAL RESEARCH 2019; 84:1320-1332. [PMID: 30603866 DOI: 10.1007/s00426-018-01141-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/21/2018] [Indexed: 01/02/2023]
Abstract
Prolonged fixation can lead to the generation of tiny and fast eye movements called microsaccades, whose dynamics can be associated with higher cognitive mechanisms. Saccade preparation is also reflected in microsaccadic activity, but the few studies on this topic provided mixed results. For instance, fewer microsaccades have been observed when participants were asked to prepare for an anti-saccade (i.e., a saccade in the opposite direction to the target) as compared to a pro-saccade (i.e., a saccade executed towards a target), but null results have also been reported. In the attempt to shed new light on this topic, two experiments were carried out in which the context of presentation of pro- and anti-saccade trials was manipulated. Pupil size was also recorded, as a further index of cognitive load. In Experiment 1, participants were asked to prepare and perform pro- and anti-saccades in response to a peripheral target, according to a central instruction cue provided at the beginning of each trial (intermixed condition). In Experiment 2, the same task was employed, but pro- and anti-saccade trials were delivered in two distinct blocks (blocked condition). In both experiments, greater saccadic latencies and lower accuracy emerged for anti- than for pro-saccades. However, in the intermixed condition, a lower microsaccadic rate and a greater pupil size emerged when participants prepared for anti- rather than pro-saccades, whereas these differences disappeared in the blocked condition. These results suggest that contextual factors may play a key role in shaping oculomotor dynamics linked to saccade preparation.
Collapse
Affiliation(s)
- Mario Dalmaso
- Department of Developmental and Social Psychology, University of Padova, Via Venezia 8, 35131, Padua, Italy.
| | - Luigi Castelli
- Department of Developmental and Social Psychology, University of Padova, Via Venezia 8, 35131, Padua, Italy
| | - Giovanni Galfano
- Department of Developmental and Social Psychology, University of Padova, Via Venezia 8, 35131, Padua, Italy
| |
Collapse
|
12
|
Berga D, Fdez-Vidal XR, Otazu X, Leborán V, Pardo XM. Psychophysical evaluation of individual low-level feature influences on visual attention. Vision Res 2018; 154:60-79. [PMID: 30408434 DOI: 10.1016/j.visres.2018.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 11/16/2022]
Abstract
In this study we provide the analysis of eye movement behavior elicited by low-level feature distinctiveness with a dataset of synthetically-generated image patterns. Design of visual stimuli was inspired by the ones used in previous psychophysical experiments, namely in free-viewing and visual searching tasks, to provide a total of 15 types of stimuli, divided according to the task and feature to be analyzed. Our interest is to analyze the influences of low-level feature contrast between a salient region and the rest of distractors, providing fixation localization characteristics and reaction time of landing inside the salient region. Eye-tracking data was collected from 34 participants during the viewing of a 230 images dataset. Results show that saliency is predominantly and distinctively influenced by: 1. feature type, 2. feature contrast, 3. temporality of fixations, 4. task difficulty and 5. center bias. This experimentation proposes a new psychophysical basis for saliency model evaluation using synthetic images.
Collapse
Affiliation(s)
- David Berga
- Computer Vision Center, Universitat Autonoma de Barcelona, Spain; Computer Science Department, Universitat Autonoma de Barcelona, Spain.
| | - Xosé R Fdez-Vidal
- Centro de Investigacion en Tecnoloxias da Informacion, Universidade Santiago de Compostela, Spain
| | - Xavier Otazu
- Computer Vision Center, Universitat Autonoma de Barcelona, Spain; Computer Science Department, Universitat Autonoma de Barcelona, Spain
| | - Víctor Leborán
- Centro de Investigacion en Tecnoloxias da Informacion, Universidade Santiago de Compostela, Spain
| | - Xosé M Pardo
- Centro de Investigacion en Tecnoloxias da Informacion, Universidade Santiago de Compostela, Spain
| |
Collapse
|
13
|
Strauch C, Greiter L, Huckauf A. Pupil dilation but not microsaccade rate robustly reveals decision formation. Sci Rep 2018; 8:13165. [PMID: 30177773 PMCID: PMC6120888 DOI: 10.1038/s41598-018-31551-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/21/2018] [Indexed: 11/09/2022] Open
Abstract
Pupil dilation, an indicator of arousal that is generally regarded as unspecific, amongst others reflects decision formation and reveals choice. Employing letter selection in a Go/NoGo task, we show that choice can robustly be predicted by the pupillary signal, even under the presence of strong interfering factors such as changes in brightness or motor execution. In addition, a larger difference in pupil dilation between target and distractor conditions for NoGo compared to Go was demonstrated, underlining the particular appropriateness of the paradigm for decision research. Incorporating microsaccades, a variable that is suggested to covary with pupil diameter, we show that decision formation can only be observed in pupil diameter. However, microsaccade rate and pupil size covaried for motor execution and both reflected choice after key press with smaller effect size for microsaccade rate. We argue that combining pupil dilation and microsaccade rate may help dissociating decision-related changes in pupil diameter from interfering factors. Considering the interlinked main neural correlates of pupil dilation and microsaccade generation, these findings point to a selective role of locus coeruleus compared to superior colliculus in decision formation.
Collapse
Affiliation(s)
| | - Lukas Greiter
- Ulm University, General Psychology, Ulm, 89081, Germany
| | - Anke Huckauf
- Ulm University, General Psychology, Ulm, 89081, Germany
| |
Collapse
|
14
|
Multisensory integration in orienting behavior: Pupil size, microsaccades, and saccades. Biol Psychol 2017; 129:36-44. [DOI: 10.1016/j.biopsycho.2017.07.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 06/26/2017] [Accepted: 07/31/2017] [Indexed: 11/22/2022]
|
15
|
Korda AI, Koliaraki M, Asvestas PA, Matsopoulos GK, Ventouras EM, Ktonas PY, Smyrnis N. Discrete states of attention during active visual fixation revealed by Markovian analysis of the time series of intrusive saccades. Neuroscience 2016; 339:385-395. [PMID: 27751962 DOI: 10.1016/j.neuroscience.2016.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/01/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022]
Abstract
The frequency of intrusive saccades during maintenance of active visual fixation has been used as a measure of sustained visual attention in studies of healthy subjects as well as of neuropsychiatric patient populations. In this study, the mechanism that generates intrusive saccades during active visual fixation was investigated in a population of young healthy men performing three sustained fixation tasks (fixation to a visual target, fixation to a visual target with visual distracters, and fixation straight ahead in the dark). Markov Chain modeling of inter-saccade intervals (ISIs) was utilized. First- and second-order Markov modeling provided indications for the existence of a non-random pattern in the production of intrusive saccades. Accordingly, the system of intrusive saccade generation may operate in two "attractor" states, one in which intrusive saccades occur at short consecutive ISIs and another in which intrusive saccades occur at long consecutive ISIs. These states might correspond to two distinct states of the attention system, one of low focused - high distractibility and another of high focused - low distractibility, such as those proposed in the adaptive gain theory for the control of attention by the noradrenergic system in the brain. To the authors knowledge, this is the first time that Markov Chain modeling has been applied to the analysis of the ISIs of intrusive saccades.
Collapse
Affiliation(s)
- Alexandra I Korda
- School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytexneiou, GR-15780 Zografou, Athens, Greece
| | - Mariniki Koliaraki
- School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytexneiou, GR-15780 Zografou, Athens, Greece
| | - Pantelis A Asvestas
- Department of Biomedical Engineering, Technological Educational Institute of Athens, Agiou Spyridonos Street, GR-122 43 Egaleo, Athens, Greece
| | - George K Matsopoulos
- School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytexneiou, GR-15780 Zografou, Athens, Greece
| | - Errikos M Ventouras
- Department of Biomedical Engineering, Technological Educational Institute of Athens, Agiou Spyridonos Street, GR-122 43 Egaleo, Athens, Greece
| | - Periklis Y Ktonas
- Department of Psychiatry, Eginition Hospital, National and Kapodistrian University of Athens, 72 V. Sofias Avenue, GR-11528 Athens, Greece
| | - Nikolaos Smyrnis
- Laboratory of Sensorimotor Control, University Mental Health Research Institute, 2 Soranou Efesiou Street, GR-11527 Papagou, Athens, Greece; Department of Psychiatry, Eginition Hospital, National and Kapodistrian University of Athens, 72 V. Sofias Avenue, GR-11528 Athens, Greece.
| |
Collapse
|
16
|
A compact field guide to the study of microsaccades: Challenges and functions. Vision Res 2015; 118:83-97. [PMID: 25689315 DOI: 10.1016/j.visres.2015.01.018] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/30/2014] [Accepted: 01/02/2015] [Indexed: 11/20/2022]
Abstract
Following a period of quiescence at the end of last century, the study of microsaccades has now regained strong impetus and broad attention within the vision research community. This wave of interest, partly fueled by the advent of user-friendly high-resolution eyetrackers, has attracted researchers and led to novel ideas. Old hypothesis have been revisited and new ones formulated. This article is designed to serve as a practical guide for researchers in the field. Because of the history of the field and the difficulty of measuring very small eye movements, the study of microsaccades presents peculiar challenges. Here, we summarize some of the main challenges and describe methods for assessing and improving the quality of the recordings. Furthermore, we examine how these experimental challenges have influenced analysis of the visual functions of microsaccades and critically review current evidence on three long-debated proposals: the maintenance of fixation, the prevention of visual fading, and the exploration of fine spatial detail.
Collapse
|