1
|
Collin SP, Yopak KE, Crowe-Riddell JM, Camilieri-Asch V, Kerr CC, Robins H, Ha MH, Ceddia A, Dutka TL, Chapuis L. Bioimaging of sense organs and the central nervous system in extant fishes and reptiles in situ: A review. Anat Rec (Hoboken) 2024. [PMID: 39223842 DOI: 10.1002/ar.25566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Bioimaging is changing the field of sensory biology, especially for taxa that are lesser-known, rare, and logistically difficult to source. When integrated with traditional neurobiological approaches, developing an archival, digital repository of morphological images can offer the opportunity to improve our understanding of whole neural systems without the issues of surgical intervention and negate the risk of damage and artefactual interpretation. This review focuses on current approaches to bioimaging the peripheral (sense organs) and central (brain) nervous systems in extant fishes (cartilaginous and bony) and non-avian reptiles in situ. Magnetic resonance imaging (MRI), micro-computed tomography (μCT), both super-resolution track density imaging and diffusion tensor-based imaging, and a range of other new technological advances are presented, together with novel approaches in optimizing both contrast and resolution, for developing detailed neuroanatomical atlases and enhancing comparative analyses of museum specimens. For MRI, tissue preparation, including choice of fixative, impacts tissue MR responses, where both resolving power and signal-to-noise ratio improve as field strength increases. Time in fixative, concentration of contrast agent, and duration of immersion in the contrast agent can also significantly affect relaxation times, and thus image quality. For μCT, the use of contrast-enhancing stains (iodine-, non-iodine-, or nanoparticle-based) is critical, where the type of fixative used, and the concentration of stain and duration of staining time often require species-specific optimization. Advanced reconstruction algorithms to reduce noise and artifacts and post-processing techniques, such as deconvolution and filtering, are now being used to improve image quality and resolution.
Collapse
Affiliation(s)
- Shaun P Collin
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Kara E Yopak
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Jenna M Crowe-Riddell
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Victoria Camilieri-Asch
- Max Planck Queensland Centre for the Materials Science of Extracellular Matrices, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Caroline C Kerr
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Hope Robins
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Myoung Hoon Ha
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Annalise Ceddia
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Travis L Dutka
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Lucille Chapuis
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
- School of Biological Sciences, University of Bristol, Bristol, UK
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh, New Zealand
| |
Collapse
|
2
|
El-Bakary NER, Alsafy MAM, El-Gendy SAA, Elarab SME. New insights into the retinal microstructure-diurnal activity relationship in the African five-lined skink (Trachylepis quinquetaeniata) (Lichtenstein, 1823). ZOOLOGICAL LETTERS 2023; 9:7. [PMID: 36934288 PMCID: PMC10024390 DOI: 10.1186/s40851-023-00205-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The retinae of diurnal vertebrates have characteristics. Most lizards are strictly diurnal, and their retinal morphology is still unknown. MATERIALS AND METHODS The retina of the African five-lined skink (Trachylepis quinquetaeniata) was studied using light and transmission electron microscopy. RESULTS The retina's ten layers were all detected. The inner nuclear layer was the thickest by an average of 67.66 μm, and the inner plexiform layer was 57.564 μm. There were elliptical, long cylindrical, and spherical melanosomes (small and large) in the pigment epithelial layer of the retina. The cylindrical melanosomes had a large area on the lateral surfaces of cones to increase light scatter absorption. The photoreceptor layer of the retina had cones only. There were single and double cones, with the double cones consisting of principal and accessory cones. The cones had inner and outer segments separated by oil droplets. A spherical paraboloid body existed between the limiting membrane and the ellipsoid. All single cones had a paraboloid, and double cones had a large paraboloid in the accessory cone. The presence of paraboloids and large ellipsoids with mitochondria of varying sizes may have helped focus the light on cone segments. CONCLUSION The African five-lined skink's eye was light-adapted due to a variety of retinal specializations related to the demands of its diurnal lifestyle in its environment.
Collapse
Affiliation(s)
| | - Mohamed A M Alsafy
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Alexandria University, Abees 10Th, Alexandria, Egypt.
| | - Samir A A El-Gendy
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Alexandria University, Abees 10Th, Alexandria, Egypt
| | - Samar M Ez Elarab
- Histology and Cytology Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|