1
|
Yamada M, Nakadate Y, Omiya K, Oguchi T, Abe M, Matsukawa T. Cardioprotective effects of S-equol, a soybean metabolite with estrogen activity, and role of the PI3K/Akt pathway in a male rat model of ischemic reperfusion. Steroids 2025; 213:109542. [PMID: 39613131 DOI: 10.1016/j.steroids.2024.109542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
PURPOSE S-equol, an isoflavone metabolite with high estrogenic activity, exhibits organ-protective effects via the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway. While estrogen has cardioprotective effects against ischemia-reperfusion injury, whether S-equol shares this capability remains uncertain. This study aimed to assess the cardioprotective effects of S-equol on stunned myocardium using an isolated rat heart model and investigate the involvement of PI3K/Akt signaling pathway. METHODS Male rat hearts were perfused using the Langendorff system and divided into four groups: 1) modified Krebs-Henseleit (KH) buffer containing 1 μmol/L S-equol (EQ); 2) KH buffer (Cont); 3) KH buffer supplemented with 1 μmol/L S-equol and 100 nmol/L wortmannin (a specific PI3K inhibitor) (EQW); or 4) KH buffer containing wortmannin (ContW). After stabilization, each group was perfused for 20 min before undergoing 7.5 min of no-flow ischemia, followed by 20 min reperfusion. The primary outcome was the maximum left ventricular derivative of pressure development (left ventricle [LV] dP/dt max)after 20 min of reperfusion. Myocardial Akt and glycogen synthase kinase-3 beta (GSK-3β) were assayed using western blotting. RESULTS LV dP/dt max was greater in the EQ group than that in the Cont group after 15 and 20 min of reperfusion; however, this effect was attenuated in the presence of PI3K inhibitors. S-equol treatment increased Akt and suppressed GSK-3β expression in the EQ group compared to that in the Cont group. However, these effects were not observed in the presence of wortmannin. CONCLUSION S-equol exerts a protective effect against myocardial ischemia-reperfusion injury, possibly by activating PI3K/Akt signaling.
Collapse
Affiliation(s)
- Mariko Yamada
- Department of Anesthesiology, University of Tsukuba Hospital, 2-1-1 Amakuba, Tsukuba, Ibaraki 305-8576, Japan
| | - Yosuke Nakadate
- Department of Anesthesiology, University of Tsukuba Hospital, 2-1-1 Amakuba, Tsukuba, Ibaraki 305-8576, Japan; Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan.
| | - Keisuke Omiya
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Takeshi Oguchi
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Masako Abe
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Takashi Matsukawa
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
2
|
Mahdiani S, Omidkhoda N, Rezaee R, Heidari S, Karimi G. Induction of JAK2/STAT3 pathway contributes to protective effects of different therapeutics against myocardial ischemia/reperfusion. Biomed Pharmacother 2022; 155:113751. [PMID: 36162372 DOI: 10.1016/j.biopha.2022.113751] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
Insufficiency in coronary blood supply results in myocardial ischemia and consequently, various clinical syndromes and irreversible injuries. Myocardial damage occurs as a result of two processes during acute myocardial infarction (MI): ischemia and subsequent reperfusion. According to the available evidence, oxidative stress, excessive inflammation reaction, reactive oxygen species (ROS) generation, and apoptosis are crucial players in the pathogenesis of myocardial ischemia/reperfusion (IR) injury. There is emerging evidence that Janus tyrosine kinase 2 (JAK2) signal transducer and activator of the transcription 3 (STAT3) pathway offers cardioprotection against myocardial IR injury. This article reviews therapeutics that exert cardioprotective effects against myocardial IR injury through induction of JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Sina Mahdiani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Omidkhoda
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shadi Heidari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Impacts of opium addiction on patterns of angiographic findings in patients with acute coronary syndrome. Sci Rep 2022; 12:15209. [PMID: 36076021 PMCID: PMC9458649 DOI: 10.1038/s41598-022-19683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 09/01/2022] [Indexed: 11/18/2022] Open
Abstract
Opium is one of the most abused substances in the Middle East. The effects of opium use on coronary artery disease (CAD) are a matter of debate. This study aimed to assess the association between opium use and angiographic findings as well as the complexity of CAD in patients with acute coronary syndrome (ACS) diagnosis. In this case–control study, all patients admitted for coronary angiography from 2019 to 2020 were evaluated. After applying the eligibility criteria, they were categorized into two groups opium and non-opium based on their history of opium use. Both groups were matched regarding the demographic features. The prevalence, location, and severity of obstruction of the vessels were compared between the non-opium and opium groups. The SYNTAX score was also calculated and compared between the two groups. The scores ≤ 22 are considered low risk and the higher scores are a non-low risk. P value < 0.05 is considered significant. A total of 170 patients with a mean age of 61.59 ± 9.07 years were finally enrolled in our study. Regarding the severity of vascular involvement, there was a significant difference between the non-opium and opium groups in LAD (P = 0.025), and PLV (P = 0.018) vessels. From the location points of view of obstructive coronary artery involved segments, only in the PDA (P = 0.006), and LCX (P = 0.004) vessels, a significant difference was observed. Moreover, 47.1% of opium and 30.6% of non-opium use group were in the non-low risk SYNTAX score classification which is a statistically significant difference between these two groups (P value = 0.048). Opium, as an independent risk factor for cardiovascular diseases, can have specific effects on angiographic findings in patients with acute coronary syndrome. Likewise, the complexity of CAD in opium users who undergo percutaneous coronary intervention is significantly higher.
Collapse
|
4
|
Chen Y, He Y, Zhao S, He X, Xue D, Xia Y. Hypoxic/Ischemic Inflammation, MicroRNAs and δ-Opioid Receptors: Hypoxia/Ischemia-Sensitive Versus-Insensitive Organs. Front Aging Neurosci 2022; 14:847374. [PMID: 35615595 PMCID: PMC9124822 DOI: 10.3389/fnagi.2022.847374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/21/2022] [Indexed: 11/15/2022] Open
Abstract
Hypoxia and ischemia cause inflammatory injury and critically participate in the pathogenesis of various diseases in various organs. However, the protective strategies against hypoxic and ischemic insults are very limited in clinical settings up to date. It is of utmost importance to improve our understanding of hypoxic/ischemic (H/I) inflammation and find novel therapies for better prevention/treatment of H/I injury. Recent studies provide strong evidence that the expression of microRNAs (miRNAs), which regulate gene expression and affect H/I inflammation through post-transcriptional mechanisms, are differentially altered in response to H/I stress, while δ-opioid receptors (DOR) play a protective role against H/I insults in different organs, including both H/I-sensitive organs (e.g., brain, kidney, and heart) and H/I-insensitive organs (e.g., liver and muscle). Indeed, many studies have demonstrated the crucial role of the DOR-mediated cyto-protection against H/I injury by several molecular pathways, including NLRP3 inflammasome modulated by miRNAs. In this review, we summarize our recent studies along with those of others worldwide, and compare the effects of DOR on H/I expression of miRNAs in H/I-sensitive and -insensitive organs. The alternation in miRNA expression profiles upon DOR activation and the potential impact on inflammatory injury in different organs under normoxic and hypoxic conditions are discussed at molecular and cellular levels. More in-depth investigations into this field may provide novel clues for new protective strategies against H/I inflammation in different types of organs.
Collapse
Affiliation(s)
- Yimeng Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yichen He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shuchen Zhao
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Dong Xue
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
- *Correspondence: Dong Xue,
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
- Ying Xia,
| |
Collapse
|
5
|
Shcheniavskyi ІJ. CARDIOPROTECTIVE EFFECT OF ENKEPHALINS UNDER IMMOBILIZATION STRESS. BIOTECHNOLOGIA ACTA 2022. [DOI: 10.15407/biotech15.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective: The aim of this study was to investigate the cardioprotective effect of dalargin, a synthetic leu-enkephalin. Methods: The induction of myocardial infarction in rats, which were kept on a diet with excess fat and calcium/sodium salts for two months, by the use of immobilization stress. The experimental results indicated that the applied model allowed to induce the development of myocardial infarction within one three days, which was confirmed by electrocardiography, enzyme-linked immunosorbent assay and histological examination. Results: Pre-treatment of rats with dalargin had no prevented myocardial infarction, however, it increased the resistance to immobilization stress and reduced infarction-induced myocardial lesions. Simultaneous administration of naloxone, an opiate receptor antagonist, together with dalargin eliminated its cardioprotective effect in experimental animals. Conclusion: The use of synthetic leu-enkephalin dalargin significantly reduced the risk of myocardial infarction caused by excessive neuromuscular stress. The dalargin effect on the myocardium was mediated by opiate receptors.
Collapse
|
6
|
Zhao XY, Li JF, Li TZ, Pan CX, Xue FS, Wang GY. Morphine pretreatment protects against cerebral ischemic injury via a cPKCγ-mediated anti-apoptosis pathway. Exp Ther Med 2021; 22:1016. [PMID: 34373702 DOI: 10.3892/etm.2021.10448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022] Open
Abstract
It has been reported that morphine pretreatment (MP) can exert neuroprotective effects, and that protein kinase C (PKC) participates in the initiation and development of ischemic/hypoxic preconditioning in the brain. However, it remains unknown whether PKC is involved in MP-induced neuroprotection. The aim of the present study, which included in vivo and in vitro experiments, was to determine whether the conventional γ isoform of PKC (cPKCγ) was involved in the protective effects of MP against cerebral ischemic injury. The present study included an in vivo experiment using a mouse model of middle cerebral artery occlusion and an in vitro experiment using neuroblastoma N2a cells with oxygen-glucose deprivation (OGD). Furthermore, a cPKCγ antagonist, Go6983, was used to determine the involvement of cPKCγ in the protective effects of MP against cerebral ischemic injury. In the in vivo experiment, neurological deficits, ischemic infarct volume, neural cell damage, apoptosis and caspase-3 activation were evaluated. In the in vitro experiment, flow cytometry was used to determine the activation of caspase-3 in N2a cells with OGD. It was found that MP protected against cerebral ischemic injury. However, intracerebroventricular injection of the cPKCγ antagonist before MP attenuated the neuroprotective effect of MP and increased the activation of cleaved caspase-3. These findings suggested that MP may provide protection against cerebral ischemic injury via a cPKCγ-mediated anti-apoptosis pathway.
Collapse
Affiliation(s)
- Xiao-Yan Zhao
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Jun-Fa Li
- Department of Neurobiology, Capital Medical University; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, P.R. China
| | - Tian-Zuo Li
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Chu-Xiong Pan
- Department of Anesthesiology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Fu-Shan Xue
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Gu-Yan Wang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| |
Collapse
|
7
|
Reducing Cardiac Injury during ST-Elevation Myocardial Infarction: A Reasoned Approach to a Multitarget Therapeutic Strategy. J Clin Med 2021; 10:jcm10132968. [PMID: 34279451 PMCID: PMC8268641 DOI: 10.3390/jcm10132968] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023] Open
Abstract
The significant reduction in ‘ischemic time’ through capillary diffusion of primary percutaneous intervention (pPCI) has rendered myocardial-ischemia reperfusion injury (MIRI) prevention a major issue in order to improve the prognosis of ST elevation myocardial infarction (STEMI) patients. In fact, while the ischemic damage increases with the severity and the duration of blood flow reduction, reperfusion injury reaches its maximum with a moderate amount of ischemic injury. MIRI leads to the development of post-STEMI left ventricular remodeling (post-STEMI LVR), thereby increasing the risk of arrhythmias and heart failure. Single pharmacological and mechanical interventions have shown some benefits, but have not satisfactorily reduced mortality. Therefore, a multitarget therapeutic strategy is needed, but no univocal indications have come from the clinical trials performed so far. On the basis of the results of the consistent clinical studies analyzed in this review, we try to design a randomized clinical trial aimed at evaluating the effects of a reasoned multitarget therapeutic strategy on the prevention of post-STEMI LVR. In fact, we believe that the correct timing of pharmacological and mechanical intervention application, according to their specific ability to interfere with survival pathways, may significantly reduce the incidence of post-STEMI LVR and thus improve patient prognosis.
Collapse
|
8
|
Surveying the Effect of Opioid Abuse on the Extent of Coronary Artery Diseases in Diabetic Patients. JOURNAL OF ADDICTION 2020; 2020:8619805. [PMID: 32765923 PMCID: PMC7387960 DOI: 10.1155/2020/8619805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 04/13/2020] [Accepted: 06/11/2020] [Indexed: 11/25/2022]
Abstract
Background Diabetes mellitus is recognized as one of the most common, serious, and costly chronic diseases. Opium addiction is also a common health problem in Iran. Given the high prevalence of opium use in South Khorasan Province and the increasing prevalence of opioid abuse in the community, this study was performed to investigate the effect of opioid abuse on the extent of disease in diabetic patients undergoing coronary angiography in the cardiology department of Vali-e-Asr Hospital in Birjand city, South Khorasan Province, Iran. Methods This study recruited a total of 1051 diabetic patients who underwent coronary angiography in the cardiology department of Vali-e-Asr Hospital of Birjand city from 2011 to 2015. The collected data were analyzed using SPSS version 22.0 with the chi-square test and univariate regression analysis. P value <0.05 was considered as statistically significant. Results Among opiate-addicted diabetics, the risk of coronary artery disease was 0.44 times higher than among nonaddicted diabetics (range 0.24–0.77, P=0.004). The extent of coronary vessel involvement, when present, was not different between the two groups. Conclusion Opiate-addicted diabetics appear to be more susceptible to CAD than their nonaddicted counterparts. The determinants and correlates of this interaction must be the subject of further study.
Collapse
|
9
|
Autocrine Bradykinin Release Promotes Ischemic Preconditioning-Induced Cytoprotection in Bovine Aortic Endothelial Cells. Int J Mol Sci 2020; 21:ijms21082965. [PMID: 32340102 PMCID: PMC7215376 DOI: 10.3390/ijms21082965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/18/2020] [Accepted: 04/18/2020] [Indexed: 12/27/2022] Open
Abstract
The aims of this study were to assess whether ischemic preconditioning (PC) induces bradykinin (Bk) synthesis in bovine aortic endothelial cells (bAECs) and, if so, to explore the molecular mechanisms by which this peptide provides cytoprotection against hypoxia. PC was induced by exposing bAECs to three cycles of 15 min of hypoxia followed by 15 min of reoxygenation. Bk synthesis peaked in correspondence to the early and late phases of PC (10−12 M and 10−11 M, respectively) and was abolished by a selective tissue kallikrein inhibitor, aprotinin. Stimulation with exogenous Bk at concentrations of 10−12 M and 10−11 M reduced the cell death induced by 12 h of hypoxia by 50%. Pretreatment with HOE−140, a Bk receptor 2 (BKR2) inhibitor, in bAECs exposed to 12 h of hypoxia, abrogated the cytoprotective effect of early and late PC, whereas des-Arg-HOE-140, a Bk receptor 1 (BKR1) inhibitor, affected only the late PC. In addition, we found that PC evoked endocytosis and the recycling of BKR2 during both the early and late phases, and that inhibition of these pathways affected PC-mediated cytoprotection. Finally, we evaluated the activation of PKA and Akt in the presence or absence of BKR2 inhibitor. HOE-140 abrogated PKA and Akt activation during both early and late PC. Consistently, BKR2 inhibition abolished cross-talk between PKA and Akt in PC. In bAECs, Bk-synthesis evoked by PC mediates the protection against both apoptotic and necrotic hypoxia-induced cell death in an autocrine manner, by both BKR2- and BKR1-dependent mechanisms.
Collapse
|
10
|
Abstract
Analgesics, particularly opioids, have been routinely used in the emergency treatment of ischemic chest pain for a long time. In the past two decades; however, several studies have raised the possibility of the harmful effects of opioid administration. In 2014, the American Heart Association (AHA)/American College of Cardiology Foundation (ACCF) changed the guidelines regarding the use of opioids from class IC to class IIb for non-ST elevation acute coronary syndrome. And in 2015, the European Society of Cardiology (ESC) guidelines incidentally noted the side effects of opioids. In ST-segment elevation myocardial infarction, both ESC and AHA/ACCF still recommend the use of opioids. Given the need for adequate pain relief in ischemic chest pain in the emergency setting, it is necessary to understand the adverse effects of analgesia, while still providing sufficiently potent options for analgesia. The primary purpose of this review is to quantify the effects of analgesics commonly used in the prehospital and emergency department in patients with ischemic chest pain.
Collapse
|
11
|
Lu S, Liao L, Zhang B, Yan W, Chen L, Yan H, Guo L, Lu S, Xiong K, Yan J. Antioxidant cascades confer neuroprotection in ethanol, morphine, and methamphetamine preconditioning. Neurochem Int 2019; 131:104540. [DOI: 10.1016/j.neuint.2019.104540] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/06/2019] [Accepted: 08/23/2019] [Indexed: 12/22/2022]
|
12
|
Luo Y, Duan X, Bian L, Chen Z, Kuang L, Li Y. Ischemic Preconditioning Preventing Downregulation of miR-182 Protects Intestine Against Ischemia/Reperfusion Injury by Inhibiting Apoptosis. Arch Med Res 2019; 50:241-248. [DOI: 10.1016/j.arcmed.2019.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/24/2019] [Accepted: 08/29/2019] [Indexed: 01/16/2023]
|
13
|
Gan XT, Karmazyn M. Cardioprotection by ginseng: experimental and clinical evidence and underlying mechanisms. Can J Physiol Pharmacol 2018; 96:859-868. [PMID: 29940129 DOI: 10.1139/cjpp-2018-0192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protection of the ischemic and reperfused myocardium represents a major therapeutic challenge. Translating results from animal studies to the clinical setting has been disappointing, yet the need for effective intervention, particularly to limit heart damage following infarction or surgical procedures such as coronary artery bypass grafting, is substantial. Among the many compounds touted as cardioprotective agents is ginseng, a medicinal herb belonging to the genus Panax, which has been used as a medicinal agent for thousands of years, particularly in Asian societies. The biological actions of ginseng are very complex and reflect composition of many bioactive components, although many of the biological and therapeutic effects of ginseng have been attributed to the presence of steroid-like saponins termed ginsenosides. Both ginseng and many ginsenosides have been shown to exert cardioprotective properties in experimental models. There is also clinical evidence that traditional Chinese medications containing ginseng exert cardioprotective properties, although such clinical evidence is less robust primarily owing to the paucity of large-scale clinical trials. Here, we discuss the experimental and clinical evidence for ginseng, ginsenosides, and ginseng-containing formulations as cardioprotective agents against ischemic and reperfusion injury. We further discuss potential mechanisms, particularly as these relate to antioxidant properties.
Collapse
Affiliation(s)
- Xiaohong Tracey Gan
- University of Western Ontario, London, ON N6G 2X6, Canada.,University of Western Ontario, London, ON N6G 2X6, Canada
| | | |
Collapse
|
14
|
Adedayo AD, Aderinola AA, Adekilekun TA, Olaolu OO, Olanike AM, Olayemi IK. Morphine-alcohol treatment impairs cognitive functions and increases neuro-inflammatory responses in the medial prefrontal cortex of juvenile male rats. Anat Cell Biol 2018; 51:41-51. [PMID: 29644109 PMCID: PMC5890016 DOI: 10.5115/acb.2018.51.1.41] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/04/2017] [Accepted: 12/13/2017] [Indexed: 02/01/2023] Open
Abstract
In the developed and developing world, opioid consumption in combination with alcohol has become one of the substances abused. In this experiment, we examined the effects of alcohol, morphine, and morphine+alcohol combination on cognitive functions and neuroinflammatory responses in the medial prefrontal cortex (mPFC) of juvenile male rats. Alcohol (1.0 ml of 15% v/v ethanol twice daily, subcutaneously, 7 hours apart), morphine (0.5 ml/kg of 0.4 mg/kg morphine chlorate twice daily, subcutaneously, 7 hours apart), morphine+alcohol co-treatment (0.5 ml/kg of 0.4 mg/kg morphine chlorate+1.0 ml of 15% v/v ethanol twice daily, subcutaneously, 7 hours apart) were administered for 21 days. Treatment with morphine+alcohol significantly impairs cognition functions in the Morris water maze, passive avoidance, and novel object recognition tests, furthermore, the treatment significantly increased the quantitative count of astrocytic cells and also conferred marked neuronal cell death in the mPFC, which were studied by glial fibrillary acidic protein immunochemistry for astrocytes and Cresyl violet for Nissl's substance distribution in neurons respectively. These results suggest that alcohol, morphine, and morphine+alcohol co-treatment may trigger cognitive deficits and neuroinflammatory responses in the brain.
Collapse
Affiliation(s)
| | | | | | - Olaniyan Olayinka Olaolu
- Department of Medical Biochemistry (Chemical Pathology Unit), Osun State University (Osogbo Campus), Osogbo, Nigeria
| | | | - Ijomone Kafilat Olayemi
- Department of Anatomy, Faculty of Basic Medical Science, University of Medical Sciences, Ondo, Nigeria
| |
Collapse
|
15
|
Abstract
The opioid receptor family, with associated endogenous ligands, has numerous roles throughout the body. Moreover, the delta opioid receptor (DORs) has various integrated roles within the physiological systems, including the cardiovascular system. While DORs are important modulators of cardiovascular autonomic balance, they are well-established contributors to cardioprotective mechanisms. Both endogenous and exogenous opioids acting upon DORs have roles in myocardial hibernation and protection against ischaemia-reperfusion (I-R) injury. Downstream signalling mechanisms governing protective responses alternate, depending on the timing and duration of DOR activation. The following review describes models and mechanisms of DOR-mediated cardioprotection, the impact of co-morbidities and challenges for clinical translation.
Collapse
Affiliation(s)
- Louise See Hoe
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, 4222, Australia
- Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Chermside, QLD, Australia
| | - Hemal H Patel
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Jason N Peart
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, 4222, Australia.
| |
Collapse
|
16
|
|
17
|
Grant Liska M, Crowley MG, Lippert T, Corey S, Borlongan CV. Delta Opioid Receptor and Peptide: A Dynamic Therapy for Stroke and Other Neurological Disorders. Handb Exp Pharmacol 2017; 247:277-299. [PMID: 28315071 DOI: 10.1007/164_2017_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Research of the opioid system and its composite receptors and ligands has revealed its promise as a potential therapy for neurodegenerative diseases such as stroke and Parkinson's Disease. In particular, delta opioid receptors (DORs) have been elucidated as a therapeutically distinguished subset of opioid receptors and a compelling target for novel intervention techniques. Research is progressively shedding light on the underlying mechanism of DORs and has revealed two mechanisms of DOR neuroprotection; DORs function to maintain ionic homeostasis and also to trigger endogenous neuroprotective pathways. Delta opioid agonists such as (D-Ala2, D-Leu5) enkephalin (DADLE) have been shown to promote neuronal survival and decrease apoptosis, resulting in a substantial amount of research for its application as a neurological therapeutic. Most notably, DADLE has demonstrated significant potential to reduce cell death following ischemic events. Current research is working to reveal the complex mechanisms of DADLE's neuroprotective properties. Ultimately, our knowledge of the DOR receptors and agonists has made the opioid system a promising target for therapeutic intervention in many neurological disorders.
Collapse
Affiliation(s)
- M Grant Liska
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Marci G Crowley
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Trenton Lippert
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Sydney Corey
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, 33612, USA.
| |
Collapse
|
18
|
Yoon JY, Baek CW, Woo MN, Kim EJ, Yoon JU, Park CH. Remifentanil induces autophagy and prevents hydrogen peroxide-induced apoptosis in Cos-7 cells. J Dent Anesth Pain Med 2016; 16:175-184. [PMID: 28884150 PMCID: PMC5586554 DOI: 10.17245/jdapm.2016.16.3.175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND This study investigated the effect of remifentanil pretreatment on Cos-7 cells exposed to oxidative stress, and the influence of remifentanil on intracellular autophagy and apoptotic cell death. METHODS Cells were divided into 4 groups: (1) Control: non-pretreated cells were incubated in normoxia (5% CO2, 21% O2, and 74% N2). (2) H2O2: non-pretreated cells were exposed to H2O2 for 24 h. (3) RPC+H2O2: cells pretreated with remifentanil were exposed to H2O2 for 24 h. (4) 3-MA+RPC+H2O2: cells pretreated with 3-Methyladenine (3-MA) and remifentanil were exposed to H2O2 for 24 h. We determined the cell viability of each group using an MTT assay. Hoechst staining and FACS analysis of Cos-7 cells were performed to observe the effect of remifentanil on apoptosis. Autophagy activation was determined by fluorescence microscopy, MDC staining, and AO staining. The expression of autophagy-related proteins was observed using western blotting. RESULTS Remifentanil pretreatment increased the viability of Cos-7 cells exposed to oxidative stress. Hoechst staining and FACS analysis revealed that oxidative stress-dependent apoptosis was suppressed by the pretreatment. Additionally, fluorescence microscopy showed that remifentanil pretreatment led to autophagy-induction in Cos-7 cells, and the expression of autophagy-related proteins was increased in the RPC+H2O2 group. CONCLUSIONS The study showed that remifentanil pretreatment stimulated autophagy and increased viability in an oxidative stress model of Cos-7 cells. Therefore, we suggest that apoptosis was activated upon oxidative stress, and remifentanil preconditioning increased the survival rate of the cells by activating autophagy.
Collapse
Affiliation(s)
- Ji-Young Yoon
- Department of Dental Anesthesia and Pain Medicine, Pusan National University Dental Hospital, Yangsan, Korea
| | - Chul-Woo Baek
- Department of Dental Anesthesia and Pain Medicine, Pusan National University Dental Hospital, Yangsan, Korea
| | - Mi-Na Woo
- Department of Dental Anesthesia and Pain Medicine, Pusan National University Dental Hospital, Yangsan, Korea
| | - Eun-Jung Kim
- Department of Dental Anesthesia and Pain Medicine, Pusan National University Dental Hospital, Yangsan, Korea
| | - Ji-Uk Yoon
- Department of Anesthesia and Pain Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Chang-Hoon Park
- Department of Dental Anesthesia and Pain Medicine, Pusan National University Dental Hospital, Yangsan, Korea
| |
Collapse
|
19
|
Abstract
The mortality from acute myocardial infarction (AMI) remains significant, and the prevalence of post-myocardial infarction heart failure is increasing. Therefore, cardioprotection beyond timely reperfusion is needed. Conditioning procedures are the most powerful cardioprotective interventions in animal experiments. However, ischemic preconditioning cannot be used to reduce infarct size in patients with AMI because its occurrence is not predictable; several studies in patients undergoing surgical coronary revascularization report reduced release of creatine kinase and troponin. Ischemic postconditioning reduces infarct size in most, but not all, studies in patients undergoing interventional reperfusion of AMI, but may require direct stenting and exclusion of patients with >6 hours of symptom onset to protect. Remote ischemic conditioning reduces infarct size in patients undergoing interventional reperfusion of AMI, elective percutaneous or surgical coronary revascularization, and other cardiovascular surgery in many, but not in all, studies. Adequate dose-finding phase II studies do not exist. There are only 2 phase III trials, both on remote ischemic conditioning in patients undergoing cardiovascular surgery, both with neutral results in terms of infarct size and clinical outcome, but also both with major problems in trial design. We discuss the difficulties in translation of cardioprotection from animal experiments and proof-of-concept trials to clinical practice. Given that most studies on ischemic postconditioning and all studies on remote ischemic preconditioning in patients with AMI reported reduced infarct size, it would be premature to give up on cardioprotection.
Collapse
Affiliation(s)
- Gerd Heusch
- From the Institute for Pathophysiology (G.H.) and Clinic for Cardiology (T.R.), West German Heart and Vascular Center, University School of Medicine Essen, Essen, Germany
| | - Tienush Rassaf
- From the Institute for Pathophysiology (G.H.) and Clinic for Cardiology (T.R.), West German Heart and Vascular Center, University School of Medicine Essen, Essen, Germany
| |
Collapse
|
20
|
He SF, Zhu HJ, Han ZY, Wu H, Jin SY, Irwin MG, Zhang Y. MicroRNA-133b-5p Is Involved in Cardioprotection of Morphine Preconditioning in Rat Cardiomyocytes by Targeting Fas. Can J Cardiol 2016; 32:996-1007. [DOI: 10.1016/j.cjca.2015.10.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 12/11/2022] Open
|
21
|
Esmaeili Nadimi A, Pour Amiri F, Sheikh Fathollahi M, Hassanshahi G, Ahmadi Z, Sayadi AR. Opium addiction as an independent risk factor for coronary microvascular dysfunction: A case-control study of 250 consecutive patients with slow-flow angina. Int J Cardiol 2016; 219:301-7. [PMID: 27343424 DOI: 10.1016/j.ijcard.2016.06.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/12/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Approximately 20% to 30% of patients who undergo coronary angiography for assessment of typical cardiac chest pain display microvascular coronary dysfunction (MCD). This study aimed to determine potential relationships between baseline clinical characteristics and likelihood of MCD diagnosis in a large group of patients with stable angina symptoms, positive exercise test and angiographic ally normal epicardial coronary arteries. MATERIAL AND METHODS This cross-sectional study included 250 Iranian with documented evidence of cardiac ischemia on exercise testing, class I or II indication for coronary angiography, and either: (1) angiographically normal coronary arteries and diagnosis of MCD with slow-flow phenomenon, or (2) normal angiogram and no evidence of MCD. All patients completed a questionnaire designed to capture key data including clinical demographics, past medical history, and social factors. Data was evaluated using single and multivariable logistic regression models to identify potential individual patient factors that might help to predict a diagnosis of MCD. RESULTS 125 (11.2% of total) patients were subsequently diagnosed with MCD. 125 consecutive control subjects were selected for comparison. The mean age was similar among the two groups (52.38 vs. 53.26%, p=ns), but there was a higher proportion of men in the study group compared to control (42.4 vs. 27.2%, p=0.012). No significant relationships were observed between traditional cardiovascular risk factors (diabetes, hypertension, and dyslipidemia) or body mass index (BMI), and likelihood of MCD diagnosis. However, opium addiction was found to be an independent predictor of MCD on single and multivariable logistic regression model (OR=3.575, 95%CI: 1.418-9.016; p=0.0069). CONCLUSIONS We observed a significant relationship between opium addiction and microvascular angina. This novel finding provides a potential mechanistic insight into the pathogenesis of MCD with slow-flow phenomenon.
Collapse
Affiliation(s)
- Ali Esmaeili Nadimi
- Dept. of Cardiology, Medical School, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Farah Pour Amiri
- Dept. of Cardiology, Medical School, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahmood Sheikh Fathollahi
- Dept. of Social Medicine and Occupational Environment Research Center, Medical School, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Zahra Ahmadi
- Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ahmad Reza Sayadi
- Social Determinants of Health Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
22
|
Caveolin-1/-3: therapeutic targets for myocardial ischemia/reperfusion injury. Basic Res Cardiol 2016; 111:45. [PMID: 27282376 DOI: 10.1007/s00395-016-0561-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 01/20/2023]
Abstract
Myocardial ischemia/reperfusion (I/R) injury is a major cause of morbidity and mortality worldwide. Caveolae, caveolin-1 (Cav-1), and caveolin-3 (Cav-3) are essential for the protective effects of conditioning against myocardial I/R injury. Caveolins are membrane-bound scaffolding proteins that compartmentalize and modulate signal transduction. In this review, we introduce caveolae and caveolins and briefly describe the interactions of caveolins in the cardiovascular diseases. We also review the roles of Cav-1/-3 in protection against myocardial ischemia and I/R injury, and in conditioning. Finally, we suggest several potential research avenues that may be of interest to clinicians and basic scientists. The information included, herein, is potentially useful for the design of future studies and should advance the investigation of caveolins as therapeutic targets.
Collapse
|
23
|
|
24
|
Morphine preconditioning confers cardioprotection in doxorubicin-induced failing rat hearts via ERK/GSK-3β pathway independent of PI3K/Akt. Toxicol Appl Pharmacol 2015; 288:349-58. [DOI: 10.1016/j.taap.2015.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/11/2015] [Accepted: 08/13/2015] [Indexed: 11/22/2022]
|
25
|
Pré‐tratamento com remifentanil protege contra a redução da contratilidade intestinal relacionada à lesão de isquemia e reperfusão em ratos. Braz J Anesthesiol 2015; 65:483-90. [DOI: 10.1016/j.bjan.2013.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/02/2013] [Indexed: 11/19/2022] Open
|
26
|
Sayan-Ozacmak H, Ozacmak VH, Turan I, Barut F, Hanci V. Pretreatment with remifentanil protects against the reduced-intestinal contractility related to the ischemia and reperfusion injury in rat. Braz J Anesthesiol 2015; 65:483-90. [DOI: 10.1016/j.bjane.2013.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/02/2013] [Indexed: 11/29/2022] Open
|
27
|
Abstract
BACKGROUND Lipid emulsion (LE) has been successfully used for resuscitation of local anesthetic cardiotoxicity caused by bupivacaine overdose. Opioid receptors have been shown to play a key role in cardio protection. We explored whether this rescue action of LE is mediated through opioid receptors. METHODS Asystole was induced by bupivacaine (10 mg/kg over 20 seconds, IV) in young male Sprague-Dawley rats, and resuscitation with LE (intralipid 20%; 5 mL/kg bolus and 0.5 mL/kg/min maintenance) was started immediately. The rats were pretreated 2 minutes before inducing asystole with nonselective opioid receptor antagonists such as naloxone and naloxone methiodide, as well as highly selective opioid receptor antagonists for subtype κ, δ, and µ or phosphate buffer solution as a control. Heart rates and ejection fractions were measured using echocardiography. RESULTS LE rescue of bupivacaine cardiotoxicity was prevented by high-dose (1 mg/kg) naloxone but not by lower doses of naloxone (1, 5, and 10 µg/kg), by naloxone methiodide (which does not cross the blood-brain barrier), and by a selective δ- and κ-opioid receptor antagonists at a higher (10 mg/kg) dose. Successful LE rescue was not affected by highly selective µ-opioid receptor antagonists. δ-Opioid receptor antagonist (10 mg/kg) pretreatment also resulted in reduced phosphorylation level of cardiac glycogen synthase kinase-3β in rats that were not resuscitated by LE compared with control. CONCLUSIONS Our data highlight the involvement of peripheral δ- and κ-opioid receptors in the rescue action of LE.
Collapse
|
28
|
Opioid Facilitation of β-Adrenergic Blockade: A New Pharmacological Condition? Pharmaceuticals (Basel) 2015; 8:664-74. [PMID: 26426025 PMCID: PMC4695804 DOI: 10.3390/ph8040664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 01/07/2023] Open
Abstract
Recently, propranolol was suggested to prevent hyperlactatemia in a child with hypovolemic shock through β-adrenergic blockade. Though it is a known inhibitor of glycolysis, propranolol, outside this observation, has never been reported to fully protect against lactate overproduction. On the other hand, literature evidence exists for a cross-talk between β-adrenergic receptors (protein targets of propranolol) and δ-opioid receptor. In this literature context, it is hypothesized here that anti-diarrheic racecadotril (a pro-drug of thiorphan, an inhibitor of enkephalinases), which, in the cited observation, was co-administered with propranolol, might have facilitated the β-blocker-driven inhibition of glycolysis and resulting lactate production. The opioid-facilitated β-adrenergic blockade would be essentially additivity or even synergism putatively existing between antagonism of β-adrenergic receptors and agonism of δ-opioid receptor in lowering cellular cAMP and dependent functions.
Collapse
|
29
|
da Luz VF, Otsuki DA, Gonzalez MMC, Negri EM, Caldini EG, Damaceno-Rodrigues NR, Malbouisson LMS, Viana BG, Vane MF, Carmona MJC. Myocardial protection induced by fentanyl in pigs exposed to high-dose adrenaline. Clin Exp Pharmacol Physiol 2015; 42:1098-107. [DOI: 10.1111/1440-1681.12456] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 06/30/2015] [Accepted: 07/09/2015] [Indexed: 01/02/2023]
Affiliation(s)
| | - Denise Aya Otsuki
- University of Sao Paulo Medical School; Department of Anaesthesiology; São Paulo Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
de Lima Portella R, Lynn Bickta J, Shiva S. Nitrite Confers Preconditioning and Cytoprotection After Ischemia/Reperfusion Injury Through the Modulation of Mitochondrial Function. Antioxid Redox Signal 2015; 23:307-27. [PMID: 26094636 DOI: 10.1089/ars.2015.6260] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Nitrite is now recognized as an intrinsic signaling molecule that mediates a number of biological processes. One of the most reproducible effects of nitrite is its ability to mediate cytoprotection after ischemia/reperfusion (I/R). This robust phenomenon has been reproduced by a number of investigators in varying animal models focusing on different target organs. Furthermore, nitrite's cytoprotective versatility is highlighted by its ability to mediate delayed preconditioning and remote conditioning in addition to acute protection. RECENT ADVANCES In the last 10 years, significant progress has been made in elucidating the mechanisms underlying nitrite-mediated ischemic tolerance. CRITICAL ISSUES The mitochondrion, which is essential to both the progression of I/R injury and the protection afforded by preconditioning, has emerged as a major subcellular target for nitrite. This review will outline the role of the mitochondrion in I/R injury and preconditioning, review the accumulated preclinical studies demonstrating nitrite-mediated cytoprotection, and finally focus on the known interactions of nitrite with mitochondria and their role in the mechanism of nitrite-mediated ischemic tolerance. FUTURE DIRECTIONS These studies set the stage for current clinical trials testing the efficacy of nitrite to prevent warm and cold I/R injury.
Collapse
Affiliation(s)
- Rafael de Lima Portella
- 1 Vascular Medicine Institute, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Janelle Lynn Bickta
- 1 Vascular Medicine Institute, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,2 Department of Bioengineering, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- 1 Vascular Medicine Institute, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,3 Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,4 Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| |
Collapse
|
31
|
Maslov LN, Naryzhnaya NV, Prokudina ES, Kolar F, Gorbunov AS, Zhang Y, Wang H, Tsibulnikov SY, Portnichenko AG, Lasukova TV, Lishmanov YB. Preserved cardiac mitochondrial function and reduced ischaemia/reperfusion injury afforded by chronic continuous hypoxia: Role of opioid receptors. Clin Exp Pharmacol Physiol 2015; 42:496-501. [DOI: 10.1111/1440-1681.12383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/12/2014] [Accepted: 12/24/2014] [Indexed: 01/29/2023]
Affiliation(s)
- Leonid N Maslov
- Laboratory of Experimental Cardiology; Federal State Budgetary Scientific Institution; Research Institute for Cardiology; Tomsk Russia
| | - Natalia V Naryzhnaya
- Laboratory of Experimental Cardiology; Federal State Budgetary Scientific Institution; Research Institute for Cardiology; Tomsk Russia
| | - Ekaterina S Prokudina
- Laboratory of Experimental Cardiology; Federal State Budgetary Scientific Institution; Research Institute for Cardiology; Tomsk Russia
| | - Frantisek Kolar
- Department of Developmental Cardiology; Institute of Physiology; Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - Alexander S Gorbunov
- Laboratory of Experimental Cardiology; Federal State Budgetary Scientific Institution; Research Institute for Cardiology; Tomsk Russia
| | - Yi Zhang
- Department of Physiology; Hebei Medical University; Shijiazhuang China
| | - Hongxin Wang
- Department of Pharmacology; Liaoning Medical College; Jinzhou City China
| | - Sergey Yu Tsibulnikov
- Laboratory of Experimental Cardiology; Federal State Budgetary Scientific Institution; Research Institute for Cardiology; Tomsk Russia
| | - Alla G Portnichenko
- Bogomoletz Institute of Physiology; National Academy of Sciences of Ukraine; Kiev Ukraine
| | | | - Yury B Lishmanov
- Laboratory of Experimental Cardiology; Federal State Budgetary Scientific Institution; Research Institute for Cardiology; Tomsk Russia
| |
Collapse
|
32
|
Abstract
Reperfusion is mandatory to salvage ischemic myocardium from infarction, but reperfusion per se contributes to injury and ultimate infarct size. Therefore, cardioprotection beyond that by timely reperfusion is needed to reduce infarct size and improve the prognosis of patients with acute myocardial infarction. The conditioning phenomena provide such cardioprotection, insofar as brief episodes of coronary occlusion/reperfusion preceding (ischemic preconditioning) or following (ischemic postconditioning) sustained myocardial ischemia with reperfusion reduce infarct size. Even ischemia/reperfusion in organs remote from the heart provides cardioprotection (remote ischemic conditioning). The present review characterizes the signal transduction underlying the conditioning phenomena, including their physical and chemical triggers, intracellular signal transduction, and effector mechanisms, notably in the mitochondria. Cardioprotective signal transduction appears as a highly concerted spatiotemporal program. Although the translation of ischemic postconditioning and remote ischemic conditioning protocols to patients with acute myocardial infarction has been fairly successful, the pharmacological recruitment of cardioprotective signaling has been largely disappointing to date.
Collapse
Affiliation(s)
- Gerd Heusch
- From the Institute for Pathophysiology, West German Heart and Vascular Centre, University of Essen Medical School, Essen, Germany.
| |
Collapse
|
33
|
Xu YC, Li RP, Xue FS, Cui XL, Wang SY, Liu GP, Yang GZ, Sun C, Liao X. κ-Opioid receptors are involved in enhanced cardioprotection by combined fentanyl and limb remote ischemic postconditioning. J Anesth 2015; 29:535-43. [DOI: 10.1007/s00540-015-1998-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/04/2015] [Indexed: 11/29/2022]
|
34
|
22nd annual meeting of Chinese Society of Anesthesiology. Br J Anaesth 2014. [DOI: 10.1093/bja/aeu337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
35
|
Kleinbongard P, Heusch G. Extracellular signalling molecules in the ischaemic/reperfused heart - druggable and translatable for cardioprotection? Br J Pharmacol 2014; 172:2010-25. [PMID: 25204973 DOI: 10.1111/bph.12902] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/21/2014] [Accepted: 08/29/2014] [Indexed: 12/28/2022] Open
Abstract
In patients with acute myocardial infarction, timely reperfusion is essential to limit infarct size. However, reperfusion also adds to myocardial injury. Brief episodes of ischaemia/reperfusion in the myocardium or on organ remote from the heart, before or shortly after sustained myocardial ischaemia effectively reduce infarct size, provided there is eventual reperfusion. Such conditioning phenomena have been established in many experimental studies and also translated to humans. The underlying signal transduction, that is the molecular identity of triggers, mediators and effectors, is not clear yet in detail, but several extracellular signalling molecules, such as adenosine, bradykinin and opioids, have been identified to contribute to cardioprotection by conditioning manoeuvres. Several trials have attempted the translation of cardioprotection by such autacoids into a clinical scenario of myocardial ischaemia and reperfusion. Adenosine and its selective agonists reduced infarct size in a few studies, but this benefit was not translated into improved clinical outcome. All studies with bradykinin or drugs which increase bradykinin's bioavailability reported reduced infarct size and some of them also improved clinical outcome. Synthetic opioid agonists did not result in a robust infarct size reduction, but this failure of translation may relate to the cardioprotective properties of the underlying anaesthesia per se or of the comparator drugs. The translation of findings in healthy, young animals with acute coronary occlusion/reperfusion to patients of older age, with a variety of co-morbidities and co-medications, suffering from different scenarios of myocardial ischaemia/reperfusion remains a challenge.
Collapse
Affiliation(s)
- P Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University School of Medicine Essen, Essen, Germany
| | | |
Collapse
|
36
|
Borges JP, Verdoorn KS, Daliry A, Powers SK, Ortenzi VH, Fortunato RS, Tibiriçá E, Lessa MA. Delta opioid receptors: the link between exercise and cardioprotection. PLoS One 2014; 9:e113541. [PMID: 25415192 PMCID: PMC4240613 DOI: 10.1371/journal.pone.0113541] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/27/2014] [Indexed: 12/26/2022] Open
Abstract
This study investigated the role of opioid receptor (OR) subtypes as a mechanism by which endurance exercise promotes cardioprotection against myocardial ischemia-reperfusion (IR) injury. Wistar rats were randomly divided into one of seven experimental groups: 1) control; 2) exercise-trained; 3) exercise-trained plus a non-selective OR antagonist; 4) control sham; 5) exercise-trained plus a kappa OR antagonist; 6) exercise-trained plus a delta OR antagonist; and 7) exercise-trained plus a mu OR antagonist. The exercised animals underwent 4 consecutive days of treadmill training (60 min/day at ∼70% of maximal oxygen consumption). All groups except the sham group were exposed to an in vivo myocardial IR insult, and the myocardial infarct size (IS) was determined histologically. Myocardial capillary density, OR subtype expression, heat shock protein 72 (HSP72) expression, and antioxidant enzyme activity were measured in the hearts of both the exercised and control groups. Exercise training significantly reduced the myocardial IS by approximately 34%. Pharmacological blockade of the kappa or mu OR subtypes did not blunt exercise-induced cardioprotection against IR-mediated infarction, whereas treatment of animals with a non-selective OR antagonist or a delta OR antagonist abolished exercise-induced cardioprotection. Exercise training enhanced the activities of myocardial superoxide dismutase (SOD) and catalase but did not increase the left ventricular capillary density or the mRNA levels of HSP72, SOD, and catalase. In addition, exercise significantly reduced the protein expression of kappa and delta ORs in the heart by 44% and 37%, respectively. Together, these results indicate that ORs contribute to the cardioprotection conferred by endurance exercise, with the delta OR subtype playing a key role in this response.
Collapse
Affiliation(s)
- Juliana P. Borges
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | - Anissa Daliry
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Scott K. Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States of America
| | - Victor H. Ortenzi
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rodrigo S. Fortunato
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eduardo Tibiriçá
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Marcos Adriano Lessa
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
37
|
Jazi SMH, Nazary IA, Behjati M. Response to thrombolytic agents in acute myocardial infarction in opium abusers versus non-abusers. J Res Pharm Pract 2014; 1:34-6. [PMID: 24991586 PMCID: PMC4076858 DOI: 10.4103/2279-042x.99676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Objective: Coronary artery disease is one of the leading causes of morbidity and mortality in populations. In opium abusers, level of circulating coagulation factors differs from non-abusers. The aim of this study was to evaluate response to thrombolytic therapy in opium abusers vs. non-abusers. Methods: In this prospective observational study, 83 patients (36 opium abusers and 47 non-abusers) with AMI were evaluated for the presence and degree of response to thrombolytic agent. All patients were monitored for electrocardiographic changes and response to thrombolysis 2 hours before and after administration of thrombolytic agent. Serum CPK and LDH were measured 2 hours before and after thrombolysis. Quantitative and qualitative data were analyzed by independent t-test and chi-square using SPSS, respectively. Findings: ST-resolution 2 hours after thrombolysis was 63.8% and 44.4% in opium users and non-users, respectively. Serum level of CPK cardiac biomarker 2 hours after thrombolysis was 980 ± 245 and 847 ± 130 IU/L in opium users and non-users, respectively. Conclusion: Our data demonstrate that in those patients with opium abuse, electrocardiographic changes after thrombolysis were significantly lower than opium non-users (P < 0.05). Opium users showed better ST-resolution compared with non-users. Opium addiction had effect on cardiac enzymes despite their effect on response to streptokinase.
Collapse
Affiliation(s)
| | - Idin Ahang Nazary
- Department of Cardiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohaddeseh Behjati
- Department of Cardiology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
38
|
Kocoglu H, Karaaslan K, Gonca E, Bozdogan O, Gulcu N. Preconditionin effects of dexmedetomidine on myocardial ischemia/reperfusion injury in rats. Curr Ther Res Clin Exp 2014; 69:150-8. [PMID: 24692794 DOI: 10.1016/j.curtheres.2008.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2008] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Preconditioning might protect the myocardium against ischemia/ reperfusion injury by reducing infarct size and preventing arrhythmias. Dexmedetomidine (DEX) is a highly selective α2-agonist used for sedoanalgesia in daily anesthetic practice. The cardioprotective effects of DEX on infarct size and on the incidence of arrhythmias observed after regional ischemia/reperfusion injury in vivo have not been reported. OBJECTIVE The aim of this study was to determine whether DEX exhibits a preconditioning effect and reduces infarct size and the incidence and duration of arrhythmias in a regional cardiac ischemia/reperfusion model in rats. METHODS Adult male Sprague-Dawley rats were anesthetized with sodium thiopental and mechanically ventilated (0.9 mL/100 g at 60 strokes/min) through a cannula inserted into the trachea after tracheotomy. Cardiac ischemia was then produced by ligating the left main coronary artery for 30 minutes, followed by a reperfusion period of 120 minutes. Blood pressure (BP) and heart rate (HR) were monitored and echocardiograms (ECGs) were performed. Arrhythmia was scored based on incidence and duration. The animals were randomly divided into 3 groups. The ischemic preconditioning (IPC) group underwent 5 minutes of ischemia followed by 5 minutes of reperfusion before the 30-minute ischemia/120-minute reperfusion period. In the DEX group, intraperitoneal (IP) DEX 1 mL (100 μg/kg) was administered 30 minutes before the ischemia/ reperfusion period. In the control group, IP saline 1 mL was administered 30 minutes before the ischemia/reperfusion period. After reperfusion, the heart was excised, demarcated with saline and ethanol to identify the occluded and nonoccluded myocardium, and cut into slices ~2 mm thick, that were then stained and placed between 2 glass plates. The risk zone and the infarct zone were compared between groups. The investigator assessing the infarcts was blinded to the study group. RESULTS Twenty-one adult (aged 4-6 months) male Sprague-Dawley rats weighing 280 to 360 g were included in the study; 7 rats were assigned to each group. BP, HR, and ECG readings were not significantly different between groups and did not change during the study. Arrythmias occurred during ischemia and reperfusion in all groups. The duration of the arrhythmias was significantly shorter and the arrhythmia score was significantly lower in the IPC group (all, P<0.05), compared with the control group; however, they were not significantly different in the DEX group. During the ischemic period, duration of ventricular tachycardia (VT) and ventricular premature contractions (VPC) in the DEX group was significantly longer than that observed in the IPC group (all, P<0.05). The duration of VPC was also significantly shorter than that observed in the control group (both, P<0.05). Duration of VT during the reperfusion period in the DEX group was significantly longer than that observed in both IPC and control groups (both, P<0.05). The mean (SD) percentage of damage was significantly lower in the IPC group (44.1% [2.0%]) and the DEX group (26.7% [2.0%]) compared with the control group (69.0% [3.0%]; both, P<0.05). The percentage of damage in the DEX group was also significantly lower compared with the IPC group (P<0.05). CONCLUSIONS This small, experimental in vivo study found that DEX was associated with reduced infarct size in ischemia/reperfusion injury in regional ischemia in this rat model but had no effect on the incidence of arrhythmias. Future studies are needed to clarify these findings.
Collapse
Affiliation(s)
- Hasan Kocoglu
- Department of Anesthesiology, Faculty of Medicine, Abant Izzet Baysal University, Bolu, Turkey
| | - Kazim Karaaslan
- Department of Anesthesiology, Faculty of Medicine, Abant Izzet Baysal University, Bolu, Turkey
| | - Ersoz Gonca
- Department of Biology, Faculty of Science end Literature, Abant Izzet Baysal University, Bolu, Turkey
| | - Omer Bozdogan
- Department of Biology, Faculty of Science end Literature, Abant Izzet Baysal University, Bolu, Turkey
| | - Nebahat Gulcu
- Department of Anesthesiology, Faculty of Medicine, Abant Izzet Baysal University, Bolu, Turkey
| |
Collapse
|
39
|
Desai KK, Mora-Esteves C, Holland BK, Dikdan G, Fisher A, Wilson DJ, Koneru B. Does Liver Ischemic Preconditioning in Brain Death Donors Induce Kidney Preconditioning? A Retrospective Analysis. Transplantation 2014; 97:337-43. [DOI: 10.1097/01.tp.0000436926.30897.56] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Remifentanil preconditioning alleviating brain damage of cerebral ischemia reperfusion rats by regulating the JNK signal pathway and TNF-α/TNFR1 signal pathway. Mol Biol Rep 2013; 40:6997-7006. [DOI: 10.1007/s11033-013-2819-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 10/19/2013] [Indexed: 12/21/2022]
|
41
|
Vasdekis SN, Athanasiadis D, Lazaris A, Martikos G, Katsanos AH, Tsivgoulis G, Machairas A, Liakakos T. The role of remote ischemic preconditioning in the treatment of atherosclerotic diseases. Brain Behav 2013; 3:606-16. [PMID: 24363964 PMCID: PMC3868166 DOI: 10.1002/brb3.161] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/13/2013] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Remote ischemic preconditioning (RIPC) is the application of a transient and brief ischemic stimulus to a distant site from the organ or tissue that is afterward exposed to injury ischemia, and has been found to reduce ischemia-reperfusion injury (IRI) in various animal models. RIPC appears to offer two distinct phases of endothelial IRI protection, which are presumably mediated through neuronal and humoral pathways. METHODS We conducted a comprehensive literature review on the available published data about the potential effect of RIPC in patients undergoing IRI in one or more vital organs. RESULTS Our search highlighted 24 randomized clinical trials about the effect of RIPC on variable clinical settings (abdominal aortic aneurysm repair, open heart surgery, percutaneous coronary intervention, living donor renal transplantation, coronary angiography, elective decompression surgery, carotid endarterectomy, recent stroke, or transient ischemic attack combined with intracranial carotid artery stenosis). Most of the trials focused on postoperative cardiac or renal function after RIPC with conflicting results. Preconditioning protocols, age limits, comorbidities, and concomitant drug use varied significantly across trials, and therefore no firm conclusions can be drawn using the available data. However, no severe local adverse events were observed in any patient undergoing limb or arm preconditioning. CONCLUSIONS RIPC is a safe and well-tolerated procedure that may constitute a potentially promising innovative treatment in atherosclerotic diseases. Large, multicenter, randomized clinical trials are required to determine an optimal protocol for the RIPC procedure, and to evaluate further the potential benefits of RIPC in human ischemic injury.
Collapse
Affiliation(s)
- Spyros N Vasdekis
- Vascular Unit, Third Department of Surgery, School of Medicine Athens, University of Athens Athens, Greece
| | - Dimitrios Athanasiadis
- Vascular Unit, Third Department of Surgery, School of Medicine Athens, University of Athens Athens, Greece
| | - Andreas Lazaris
- Vascular Unit, Third Department of Surgery, School of Medicine Athens, University of Athens Athens, Greece
| | - Georgios Martikos
- Third Department of Surgery, University of Athens, School of Medicine Athens, Greece
| | - Aristeidis H Katsanos
- Department of Neurology, University of Ioannina, School of Medicine Ioannina, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, University of Athens, School of Medicine Athens, Greece ; International Clinical Research Center, St. Anne's University Hospital in Brno Czech Republic
| | - Anastasios Machairas
- Third Department of Surgery, University of Athens, School of Medicine Athens, Greece
| | - Theodoros Liakakos
- Third Department of Surgery, University of Athens, School of Medicine Athens, Greece
| |
Collapse
|
42
|
Rafati A, Noorafshan A, Torabi N. Stereological study of the effects of morphine consumption and abstinence on the number of the neurons and oligodendrocytes in medial prefrontal cortex of rats. Anat Cell Biol 2013; 46:191-7. [PMID: 24179694 PMCID: PMC3811856 DOI: 10.5115/acb.2013.46.3.191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/26/2013] [Accepted: 06/04/2013] [Indexed: 01/25/2023] Open
Abstract
Quantitative studies to date on the effects of opioid consumption and abstinence on the nervous system using modern stereological methods have not received enough attention. In addition, they have yielded controversial results. The present study was conducted to investigate the effects of morphine, with or without abstinence, on the neurons and oligodendrocytes of the medial prefrontal cortex (MPFC) in rats using quantitative stereological methods. The male rats were divided into four groups: the first (saline [SAL]) and second (morphine [MOR]) groups were treated with saline and an escalating dose of morphine (5-20 mg/kg) for 30 days, respectively; the third (SAL+abstinence [ABS]) and fourth (MOR+ABS) groups were treated in the same manner as the previous groups plus they had a 30-day abstinence period. The results showed that the volume of the MPFC and its subdivisions decreased by approximately 15% in the MOR group compared with that in the SAL group (P<0.05). In addition, the volume decreased by approximately 24% in the MOR+ABS group compared with that in the SAL+ABS group (P<0.05). The number of neurons in the MOR and MOR+ABS groups decreased by approximately 44% and 35%, respectively, compared with that in their corresponding control groups. Moreover, the number of the oligodendrocytes in the MOR and MOR+ABS groups decreased by approximately 41% and 37%, respectively. No significant difference was noted in the number of cells in the MOR and MOR+ABS groups. In conclusion, morphine consumption leads to a permanent reduction in the number of neurons and oligodendrocytes, and no additional neuron and oligodendrocyte loss occurs after abstinence.
Collapse
Affiliation(s)
- Ali Rafati
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. ; Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | |
Collapse
|
43
|
Staples M, Acosta S, Tajiri N, Pabon M, Kaneko Y, Borlongan CV. Delta opioid receptor and its peptide: a receptor-ligand neuroprotection. Int J Mol Sci 2013; 14:17410-9. [PMID: 23979422 PMCID: PMC3794733 DOI: 10.3390/ijms140917410] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/15/2013] [Accepted: 08/19/2013] [Indexed: 11/29/2022] Open
Abstract
In pursuit of neurological therapies, the opioid system, specifically delta opioid receptors and delta opioid peptides, demonstrates promising therapeutic potential for stroke, Parkinson’s disease, and other degenerative neurological conditions. Recent studies offer strong evidence in support of the therapeutic use of delta opioid receptors, and provide insights into the underlying mechanisms of action. Delta opioid receptors have been shown to confer protective effects by mediating ionic homeostasis and activating endogenous neuroprotective pathways. Additionally, delta opioid agonists such as (D-Ala 2, D-Leu 5) enkephalin (DADLE) have been shown to decrease apoptosis and promote neuronal survival. In its entirety, the delta opioid system represents a promising target for neural therapies.
Collapse
Affiliation(s)
- Meaghan Staples
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL 33612, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Della-Morte D, Guadagni F, Palmirotta R, Ferroni P, Testa G, Cacciatore F, Abete P, Rengo F, Perez-Pinzon MA, Sacco RL, Rundek T. Genetics and genomics of ischemic tolerance: focus on cardiac and cerebral ischemic preconditioning. Pharmacogenomics 2013; 13:1741-57. [PMID: 23171338 DOI: 10.2217/pgs.12.157] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A subthreshold ischemic insult applied to an organ such as the heart and/or brain may help to reduce damage caused by subsequent ischemic episodes. This phenomenon is known as ischemic tolerance mediated by ischemic preconditioning (IPC) and represents the most powerful endogenous mechanism against ischemic injury. Various molecular pathways have been implicated in IPC, and several compounds have been proposed as activators or mediators of IPC. Recently, it has been established that the protective phenotype in response to ischemia depends on a coordinated response at the genomic, molecular, cellular and tissue levels by introducing the concept of 'genomic reprogramming' following IPC. In this article, we sought to review the genetic expression profiles found in cardiac and cerebral IPC studies, describe the differences between young and aged organs in IPC-mediated protection, and discuss the potential therapeutic application of IPC and pharmacological preconditioning based on the genomic response.
Collapse
Affiliation(s)
- David Della-Morte
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Maslov LN, Naryzhnaia NV, Tsibulnikov SY, Kolar F, Zhang Y, Wang H, Gusakova AM, Lishmanov YB. Role of endogenous opioid peptides in the infarct size-limiting effect of adaptation to chronic continuous hypoxia. Life Sci 2013; 93:373-9. [PMID: 23891777 DOI: 10.1016/j.lfs.2013.07.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/27/2013] [Accepted: 07/15/2013] [Indexed: 11/16/2022]
Abstract
AIMS The objective of this study was to examine the involvement of endogenous opioid peptides and opioid receptor (OR) subtypes in the cardioprotective effect of adaptation to chronic hypoxia in rats. MAIN METHODS Rats were exposed to continuous normobaric hypoxia (CNH; 12% oxygen) for 3 weeks. Myocardial ischemia was induced by 20-min coronary artery occlusion followed by 3-h reperfusion in anesthetized open-chest animals. Various OR antagonists were administered to rats prior to ischemia. The size of myocardial infarction and the incidence of ischemic ventricular arrhythmias were assessed. Myocardial and plasma concentrations of opioid peptides (met-enkephalin, β-endorphin, and endomorphins) were determined. KEY FINDINGS Adaptation to CNH significantly increased myocardial and plasma concentrations of opioids, potentiated their further elevation by ischemia/reperfusion, and reduced myocardial infarct size, but it did not affect the incidence of ischemic arrhythmias. The infarct size-limiting effect of CNH was abolished by OR antagonists naltrexone (non-selective), naloxone methiodide (non-selective peripherally acting), TIPP[ψ] (δ-OR), naltriben (δ2-OR), or CTAP (μ-OR), while BNTX (δ1-OR) and nor-binaltorphimine (κ-OR) had no effect. SIGNIFICANCE The results suggest that the infarct size-limiting effect afforded by adaptation to CNH is mediated by activation of peripheral δ2- and μ-ORs by elevated levels of endogenous opioid peptides.
Collapse
Affiliation(s)
- Leonid N Maslov
- Laboratory Experimental Cardiology, Research Institute for Cardiology, Siberian Branch of the Russian Academy of Medical Sciences, Tomsk 634012, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
He X, Sandhu HK, Yang Y, Hua F, Belser N, Kim DH, Xia Y. Neuroprotection against hypoxia/ischemia: δ-opioid receptor-mediated cellular/molecular events. Cell Mol Life Sci 2013; 70:2291-303. [PMID: 23014992 PMCID: PMC11113157 DOI: 10.1007/s00018-012-1167-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 09/08/2012] [Accepted: 09/10/2012] [Indexed: 12/24/2022]
Abstract
Hypoxic/ischemic injury remains the most dreaded cause of neurological disability and mortality. Despite the humbling experiences due to lack of promising therapy, our understanding of the complex cascades underlying the neuronal insult has led to advances in basic science research. One of the most noteworthy has been the effect of opioid receptors, especially the delta-opioid receptor (DOR), on hypoxic/ischemic neurons. Our recent studies, and those of others worldwide, present strong evidence that sheds light on DOR-mediated neuroprotection in the brain, especially in the cortex. The mechanisms of DOR neuroprotection are broadly categorized as: (1) stabilization of the ionic homeostasis, (2) inhibition of excitatory transmitter release, (3) attenuation of disrupted neuronal transmission, (4) increase in antioxidant capacity, (5) regulation of intracellular pathways-inhibition of apoptotic signals and activation of pro-survival signaling, (6) regulation of specific gene and protein expression, and (7) up-regulation of endogenous opioid release and/or DOR expression. Depending upon the severity and duration of hypoxic/ischemic insult, the release of endogenous opioids and DOR expression are regulated in response to the stress, and DOR signaling acts at multiple levels to confer neuronal tolerance to harmful insult. The phenomenon of DOR neuroprotection offers a potential clue for a promising target that may have significant clinical implications in our quest for neurotherapeutics.
Collapse
Affiliation(s)
- Xiaozhou He
- The Third Clinical College of Suzhou University, Changzhou, Jiangsu China
| | - Harleen K. Sandhu
- The Vivian L Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, 77030 TX USA
| | - Yilin Yang
- The Third Clinical College of Suzhou University, Changzhou, Jiangsu China
| | - Fei Hua
- The Third Clinical College of Suzhou University, Changzhou, Jiangsu China
| | - Nathalee Belser
- The Vivian L Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, 77030 TX USA
| | - Dong H. Kim
- The Vivian L Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, 77030 TX USA
| | - Ying Xia
- The Vivian L Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, 77030 TX USA
| |
Collapse
|
47
|
Cho SSC, Rudloff I, Berger PJ, Irwin MG, Nold MF, Cheng W, Nold-Petry CA. Remifentanil ameliorates intestinal ischemia-reperfusion injury. BMC Gastroenterol 2013; 13:69. [PMID: 23607370 PMCID: PMC3639835 DOI: 10.1186/1471-230x-13-69] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 04/11/2013] [Indexed: 12/13/2022] Open
Abstract
Background Intestinal ischemia-reperfusion injury (IRI) can occur in clinical scenarios such as organ transplantation, trauma and cardio-pulmonary bypass, as well as in neonatal necrotizing enterocolitis or persistent ductus arteriosus. Pharmacological protection by pretreating (“preconditioning”) with opioids attenuates IRI in a number of organs. Remifentanil appears particularly attractive for this purpose because of its ultra-short duration of action and favorable safety profile. To date, little is known about opioid preconditioning of the intestine. Methods Young adult C57BL/6J mice were randomly assigned to receive tail vein injections of 1 μg/kg of remifentanil or normal saline and underwent either ischemia-reperfusion of the intestine or a sham laparotomy. Under isoflurane anesthesia, the mice were subjected to intestinal ischemia-reperfusion by occlusion (clamping) of the superior mesenteric artery for 30 min, followed by unclamping and 60 min of reperfusion. After completion of this protocol, tissue injury and lipid peroxidation in jejunum and ileum were analyzed by histology and malondialdehyde (MDA), respectively. Systemic interleukin (IL)-6 was determined in the plasma by ELISA. Results Pretreatment with remifentanil markedly reduced intestinal IRI (P < 0.001): In the ileum, we observed a more than 8-fold decrease in injured villi (4% vs 34% in saline-pretreated animals). In fact, the mucosa in the remifentanil group was as healthy as that of sham-operated animals. This protective effect was not as pronounced in the jejunum, but the percentage of damaged villi was still reduced considerably (18% vs 42%). There was up to 3-fold more tissue MDA after intestinal ischemia-reperfusion than after sham laparotomy, but this increase in lipid peroxidation was prevented by preconditioning with remifentanil (P < 0.05). The systemic inflammatory response triggered by intestinal IRI was significantly attenuated in mice pretreated with remifentanil (159 vs 805 pg/ml of IL-6 after saline pretreatment, with 92 pg/ml in the sham groups). After sham operations, no difference was detected between the saline- and remifentanil-pretreatments in any of the parameters investigated. Conclusion Preconditioning with remifentanil attenuates intestinal IRI and the subsequent systemic inflammatory response in mice. We therefore suggest that prophylaxis with this ultra-short-acting opioid may be advantageous in various clinical scenarios of human IRI.
Collapse
Affiliation(s)
- Steven S C Cho
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Melbourne, Australia
| | | | | | | | | | | | | |
Collapse
|
48
|
Chang WT, Li J, Vanden Hoek MS, Zhu X, Li CQ, Huang HH, Hsu CW, Zhong Q, Li J, Chen SJ, Vanden Hoek TL, Shao ZH. Baicalein Preconditioning Protects Cardiomyocytes from Ischemia-Reperfusion Injury via Mitochondrial Oxidant Signaling. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2013; 41:315-31. [DOI: 10.1142/s0192415x13500237] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Previous studies suggest baicalein, in addition to its antioxidant effects, protects against hypoxia/reoxygenation injury via its pro-oxidant properties. We hypothesize that a brief period of baicalein treatment prior to ischemia/reperfusion (I/R) may trigger preconditioning protection via a mitochondrial pro-oxidant mechanism. Using an established chick cardiomyocyte model of I/R, cells were preconditioned with baicalein (10 μM) for 10 min followed by 10-min wash prior to I/R. Intracellular oxidants were measured using 2′, 7′-dichlorofluorescin diacetate (DCFH/DA). Cell viability was assessed by propidium iodide and apoptosis determined by DNA fragmentation. Baicalein induced a transient but significant increase of DCF fluorescence within the 10-min preconditioning period, and led to significant reduction of cell death (38.9 ± 1.8% vs. 58.7 ± 1.2% in I/R control, n = 6, p < 0.001) and DNA fragmentation after I/R. Cotreatment with N-acetylcysteine (500 μM), mitochondrial complex III electron transport chain inhibitor myxothiazol (1 μM), mitochondrial KATP channel blocker 5-hydroxydecanoate-Na (5-HD, 500 μM) or anion channel inhibitor 4′, 4′-diisothiocyanato-stilbene-2, 2′-disulfonic acid (DIDS, 200 μM) resulted in significant abrogation of oxidant increase during induction as well as the protection conferred by baicalein preconditioning. These results suggest that baicalein preconditioning exhibits significant anti-apoptotic protection against cardiomyocyte I/R injury by mitochondrial oxidant signaling, which was in part mediated by mitochondrial KATP channel and anion channel opening.
Collapse
Affiliation(s)
- Wei-Tien Chang
- Department of Emergency Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jing Li
- Department of Emergency Medicine, University of Illinois Hospital and Health Sciences System, Chicago, IL, USA
| | - Matthew S. Vanden Hoek
- Department of Emergency Medicine, University of Illinois Hospital and Health Sciences System, Chicago, IL, USA
| | - Xiangdong Zhu
- Department of Emergency Medicine, University of Illinois Hospital and Health Sciences System, Chicago, IL, USA
| | - Chang-Qing Li
- Department of Emergency Medicine, University of Illinois Hospital and Health Sciences System, Chicago, IL, USA
| | - Hsien-Hao Huang
- Department of Emergency Medicine, Taipei Veterans General Hospital and Emergency Medicine, College of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chin-Wang Hsu
- Department of Critical and Emergency Medicine, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Qiang Zhong
- Department of Emergency Medicine, Tongji Hospital, Huazhaong University of Science and Technology, Wuhan, China
| | - Juan Li
- Department of Emergency Medicine, University of Illinois Hospital and Health Sciences System, Chicago, IL, USA
| | - Sy-Jou Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Terry L. Vanden Hoek
- Department of Emergency Medicine, University of Illinois Hospital and Health Sciences System, Chicago, IL, USA
| | - Zuo-Hui Shao
- Department of Emergency Medicine, University of Illinois Hospital and Health Sciences System, Chicago, IL, USA
| |
Collapse
|
49
|
Cardioprotective effect of sevoflurane and propofol during anaesthesia and the postoperative period in coronary bypass graft surgery. Eur J Anaesthesiol 2012; 29:561-9. [DOI: 10.1097/eja.0b013e3283560aea] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Feng Y, He X, Yang Y, Chao D, Lazarus LH, Xia Y. Current research on opioid receptor function. Curr Drug Targets 2012; 13:230-46. [PMID: 22204322 DOI: 10.2174/138945012799201612] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 08/09/2011] [Accepted: 08/12/2011] [Indexed: 12/11/2022]
Abstract
The use of opioid analgesics has a long history in clinical settings, although the comprehensive action of opioid receptors is still less understood. Nonetheless, recent studies have generated fresh insights into opioid receptor-mediated functions and their underlying mechanisms. Three major opioid receptors (μ-opioid receptor, MOR; δ-opioid receptor, DOR; and κ-opioid receptor, KOR) have been cloned in many species. Each opioid receptor is functionally sub-classified into several pharmacological subtypes, although, specific gene corresponding each of these receptor subtypes is still unidentified as only a single gene has been isolated for each opioid receptor. In addition to pain modulation and addiction, opioid receptors are widely involved in various physiological and pathophysiological activities, including the regulation of membrane ionic homeostasis, cell proliferation, emotional response, epileptic seizures, immune function, feeding, obesity, respiratory and cardiovascular control as well as some neurodegenerative disorders. In some species, they play an essential role in hibernation. One of the most exciting findings of the past decade is the opioid-receptor, especially DOR, mediated neuroprotection and cardioprotection. The upregulation of DOR expression and DOR activation increase the neuronal tolerance to hypoxic/ischemic stress. The DOR signal triggers (depending on stress duration and severity) different mechanisms at multiple levels to preserve neuronal survival, including the stabilization of homeostasis and increased pro-survival signaling (e.g., PKC-ERK-Bcl 2) and antioxidative capacity. In the heart, PKC and KATP channels are involved in the opioid receptor-mediated cardioprotection. The DOR-mediated neuroprotection and cardioprotection have the potential to significantly alter the clinical pharmacology in terms of prevention and treatment of life-threatening conditions like stroke and myocardial infarction. The main purpose of this article is to review the recent work done on opioids and their receptor functions. It shall provide an informative reference for better understanding the opioid system and further elucidation of the opioid receptor function from a physiological and pharmacological point of view.
Collapse
Affiliation(s)
- Yuan Feng
- Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | |
Collapse
|