1
|
Voisey AC, Broadley HD, Broadley KJ, Ford WR. Is there a role for biogenic amine receptors in mediating β-phenylethylamine and RO5256390-induced vascular contraction? Eur J Pharmacol 2024; 981:176895. [PMID: 39153650 DOI: 10.1016/j.ejphar.2024.176895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Substantial evidence indicates trace amines can induce vasoconstriction independently of noradrenaline release. However, the mechanism underlying noradrenaline-independent vasoconstrictor responses to trace amines has not yet been established. This study evaluates the role of trace amine-associated receptor 1 (TAAR1) and other biogenic amine receptors in mediating β-phenylethylamine and the TAAR-1 selective agonist RO5256390-induced vasoconstriction. METHODS Vasoconstrictor responses to β-PEA and the TAAR1-selective agonist, RO5256390 were assessed in vitro in endothelium-denuded aortic rings and third-order mesenteric arteries of male Sprague Dawley rats. RESULTS β-PEA and RO5256390 induced concentration-dependent vasoconstriction of aortic rings but not third-order mesenteric arteries. Vasoconstrictor responses in aortic rings were insensitive to antagonists of 5-HT. The murine-selective TAAR1 antagonist, EPPTB, had no effect on either β-PEA or RO5256390-induced vasoconstriction. The α1-adrenoceptor antagonist, prazosin, and the α2-adrenoceptor antagonist, yohimbine, induced a shift of the β-PEA concentration response curve too small to be ascribed to antagonism of α1-or α2-adrenoceptors, respectively. The α2-adrenoceptor antagonist atipamezole had no effect on β-PEA or RO5256390-induced vasoconstriction. CONCLUSION Vasoconstrictor responses to trace amines are not mediated by classical biogenic amine neurotransmitter receptors. Insensitivity of β-PEA vasoconstrictor responses to EPPTB, may be explained by its low affinity for rat rather than murine TAAR1. Therefore, TAAR1 remains the most likely candidate receptor mediating vasoconstrictor responses to trace amines and that prazosin and yohimbine have low affinity for TAAR1.
Collapse
Affiliation(s)
- Alexander C Voisey
- Medical Pharmacology, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| | - Harrison D Broadley
- Division of Pharmacology, School of Pharmacy, Cardiff University, Cardiff, United Kingdom
| | - Kenneth J Broadley
- Division of Pharmacology, School of Pharmacy, Cardiff University, Cardiff, United Kingdom
| | - William R Ford
- Division of Pharmacology, School of Pharmacy, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
2
|
Bahr F, Ricke-Hoch M, Ponimaskin E, Müller F. Serotonin Receptors in Myocardial Infarction: Friend or Foe? ACS Chem Neurosci 2024; 15:1619-1634. [PMID: 38573542 PMCID: PMC11027101 DOI: 10.1021/acschemneuro.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
Acute myocardial infarction (AMI) is one of the leading causes of death worldwide and treatment costs pose a major burden on the global health care system. Despite the variety of treatment options, individual recovery can be still poor and the mortality rate, especially in the first few years after the event, remains high. Therefore, intense research is currently focused on identifying novel target molecules to improve the outcome following AMI. One of the potentially interesting targets is the serotonergic system (5-HT system), not at least because of its connection to mental disorders. It is known that patients suffering from AMI have an increased risk of developing depression and vice versa. This implicates that the 5-HT system can be affected in response to AMI and might thus represent a target structure for patients' treatment. This review aims to highlight the importance of the 5-HT system after AMI by describing the role of individual serotonin receptors (5-HTR) in the regulation of physiological and pathophysiological responses. It particularly focuses on the signaling pathways of the serotonin receptors 1, 2, 4, and 7, which are expressed in the cardiovascular system, during disease onset, and the following remodeling process. This overview also emphasizes the importance of the 5-HT system in AMI etiology and highlights 5-HTRs as potential treatment targets.
Collapse
Affiliation(s)
- F.S. Bahr
- Cellular
Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - M. Ricke-Hoch
- Cardiology
and Angiology, Hannover Medical School, 30625 Hannover, Germany
| | - E. Ponimaskin
- Cellular
Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - F.E. Müller
- Cellular
Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
3
|
Elusive amines: migraine depends on biochemical abnormalities. Neurol Sci 2022; 43:6299-6304. [DOI: 10.1007/s10072-022-06241-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
|
4
|
Biringer RG. Migraine signaling pathways: amino acid metabolites that regulate migraine and predispose migraineurs to headache. Mol Cell Biochem 2022; 477:2269-2296. [PMID: 35482233 DOI: 10.1007/s11010-022-04438-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Migraine is a common, debilitating disorder for which attacks typically result in a throbbing, pulsating headache. Although much is known about migraine, its complexity renders understanding the complete etiology currently out of reach. However, two important facts are clear, the brain and the metabolism of the migraineur differ from that of the non-migraineur. This review centers on the altered amino acid metabolism in migraineurs and how it helps define the pathology of migraine.
Collapse
Affiliation(s)
- Roger Gregory Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
5
|
Paley EL. Discovery of Gut Bacteria Specific to Alzheimer's Associated Diseases is a Clue to Understanding Disease Etiology: Meta-Analysis of Population-Based Data on Human Gut Metagenomics and Metabolomics. J Alzheimers Dis 2020; 72:319-355. [PMID: 31561379 DOI: 10.3233/jad-190873] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD)-associated sequence (ADAS) of cultured fecal bacteria was discovered in human gut targeted screening. This study provides important information to expand our current understanding of the structure/activity relationship of ADAS and putative inhibitors/activators that are potentially involved in ADAS appearance/disappearance. The NCBI database analysis revealed that ADAS presents at a large proportion in American Indian Oklahoman (C&A) with a high prevalence of obesity/diabetes and in colorectal cancer (CRC) patients from the US and China. An Oklahoman non-native group (NNI) showed no ADAS. Comparison of two large US populations reveals that ADAS is more frequent in individuals aged ≥66 and in females. Prevalence and levels of fecal metabolites are altered in the C&A and CRC groups versus controls. Biogenic amines (histamine, tryptamine, tyramine, phenylethylamine, cadaverine, putrescine, agmatine, spermidine) that present in food and are produced by gut microbiota are significantly higher in C&A (e.g., histamine/histidine 95-fold) versus NNI (histamine/histidine 16-fold). The majority of these bio-amines are cytotoxic at concentrations found in food. Inositol phosphate signaling implicated in AD is altered in C&A and CRC. Tryptamine stimulated accumulation of inositol phosphate. The seizure-eliciting tryptamine induced cytoplasmic vacuolization and vesiculation with cell fragmentation. Present additions of ADAS-carriers at different ages including infants led to an ADAS-comprising human sample size of 2,830 from 27 studies from four continents (North America, Australia, Asia, Europe). Levels of food-derived monoamine oxidase inhibitors and anti-bacterial compounds, the potential modulators of ADAS-bacteria growth and biogenic amine production, were altered in C&A versus NNI. ADAS is attributable to potentially modifiable risk factors of AD associated diseases.
Collapse
Affiliation(s)
- Elena L Paley
- Expert Biomed, Inc., Miami, FL, USA.,Stop Alzheimers Corp, Miami, FL, USA
| |
Collapse
|
6
|
Zhang Q, Lyu W, Yu M, Niu Y. Sulfur dioxide induces vascular relaxation through PI3K/Akt/eNOS and NO/cGMP signaling pathways in rats. Hum Exp Toxicol 2020; 39:1108-1117. [PMID: 32153200 DOI: 10.1177/0960327120911428] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sulfur dioxide (SO2) is a common exogenous atmospheric pollutant. Studies have shown that SO2 can cause vasodilation as a gas signaling molecule, but the specific signaling pathways are not well understood. This study aimed to explore the underlying mechanism behind the effects of SO2 on vasodilation of isolated rat aorta. The results showed that when the dose of SO2 was 30 μM, the vasodilation of endothelium-intact rings was partially suppressed by LY294002 and NG-nitro-l-arginine methyl ester, and the protein levels of phosphoinositide 3-kinase (PI3K), p-Akt, and p-endothelial nitric oxide synthase (p-eNOS) were significantly increased. When the dose of SO2 was 300 μM or 1500 μM, the vasodilation of endothelium-denuded rings did not change after application of the inhibitor, but the protein levels of PI3K, p-Akt, and p-eNOS were significantly decreased, and the activity of NOS and the level of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) were significantly increased. We speculate that the mechanism of SO2-induced vasodilatation likely involved the endothelial PI3K/Akt/eNOS and NO/cGMP signal pathways. In addition, at the concentration of 1500 μM, SO2 markedly increased the level of caspase-3 and caspase-9. The results suggest that high concentrations of SO2 may cause damage to blood vessels. This study will help to further inform the etiologies of SO2-related cardiovascular disease.
Collapse
Affiliation(s)
- Q Zhang
- College of Environment and Resource, Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - W Lyu
- College of Environment and Resource, Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - M Yu
- Institute of NBC Defence, Beijing, China
| | - Y Niu
- College of Environment and Resource, Institute of Environmental Science, Shanxi University, Taiyuan, China
| |
Collapse
|
7
|
Yoon KS, Lee JM, Kim YH, Suh SK, Cha HJ. Cardiotoxic effects of [3-[2-(diethylamino)ethyl]-1H-indol-4-yl] acetate and 3-[2-[ethyl(methyl)amino]ethyl]-1H-indol-4-ol. Toxicol Lett 2019; 319:40-48. [PMID: 31706004 DOI: 10.1016/j.toxlet.2019.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/06/2019] [Accepted: 10/27/2019] [Indexed: 12/28/2022]
Abstract
Two synthetic tryptamines, namely [3-[2-(diethylamino)ethyl]-1H-indol-4-yl] acetate (4-AcO-DET) and 3-[2-[ethyl(methyl)amino]ethyl]-1H-indol-4-ol (4-HO-MET), are abused by individuals seeking recreational hallucinogens. These new psychoactive substances (NPSs) can cause serious health problems because their adverse effects are mostly unknown. In the present study, we evaluated the cardiotoxicity of 4-AcO-DET and 4-HO-MET using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, electrocardiography (ECG), and the human ether-a-go-go-related gene (hERG) assay. In addition, we analyzed the expression level of p21 (CDC42/RAC)-activated kinase 1 (PAK1), which is known to play various roles in the cardiovascular system. In the MTT assay, 4-AcO-DET- and 4-HO-MET-treated H9c2 cells proliferated in a concentration-dependent manner. Moreover, both substances increased QT intervals (as determined using ECG) in Sprague-Dawley rats and inhibited potassium channels (as verified by the hERG assay) in Chinese hamster ovary cells. However, there was no change in PAK1 expression. Collectively, the results indicated that 4-AcO-DET and 4-HO-MET might cause adverse effects on the cardiovascular system. Further studies are required to confirm the relationship between PAK1 expression and cardiotoxicity. The findings of the present study would provide science-based evidence for scheduling the two NPSs.
Collapse
Affiliation(s)
- Kyung Sik Yoon
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Republic of Korea.
| | - Jin-Moo Lee
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Republic of Korea.
| | - Young-Hoon Kim
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Republic of Korea.
| | - Soo Kyung Suh
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Republic of Korea.
| | - Hye Jin Cha
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Republic of Korea.
| |
Collapse
|
8
|
Paley EL. Diet-Related Metabolic Perturbations of Gut Microbial Shikimate Pathway-Tryptamine-tRNA Aminoacylation-Protein Synthesis in Human Health and Disease. Int J Tryptophan Res 2019; 12:1178646919834550. [PMID: 30944520 PMCID: PMC6440052 DOI: 10.1177/1178646919834550] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 02/04/2019] [Indexed: 12/26/2022] Open
Abstract
Human gut bacterial Na(+)-transporting NADH:ubiquinone reductase (NQR) sequence is associated with Alzheimer disease (AD). Here, Alzheimer disease-associated sequence (ADAS) is further characterized in cultured spore-forming Clostridium sp. Tryptophan and NQR substrate ubiquinone have common precursor chorismate in microbial shikimate pathway. Tryptophan-derived tryptamine presents in human diet and gut microbiome. Tryptamine inhibits tryptophanyl-tRNA synthetase (TrpRS) with consequent neurodegeneration in cell and animal models. Tryptophanyl-tRNA synthetase inhibition causes protein biosynthesis impairment similar to that revealed in AD. Tryptamine-induced TrpRS gene-dose reduction is associated with TrpRS protein deficiency and cell death. In animals, tryptamine treatment results in toxicity, weight gain, and prediabetes-related hypoglycemia. Sequence analysis of gut microbiome database reveals 89% to 100% ADAS nucleotide identity in American Indian (Cheyenne and Arapaho [C&A]) Oklahomans, of which ~93% being overweight or obese and 50% self-reporting type 2 diabetes (T2D). Alzheimer disease-associated sequence occurs in 10.8% of C&A vs 1.3% of healthy American population. This observation is of considerable interest because T2D links to AD and obesity. Alzheimer disease-associated sequence prevails in gut microbiome of colorectal cancer, which linked to AD. Metabolomics revealed that tryptamine, chorismate precursor quinate, and chorismate product 4-hydroxybenzoate (ubiquinone precursor) are significantly higher, while tryptophan-containing dipeptides are lower due to tRNA aminoacylation deficiency in C&A compared with non-native Oklahoman who showed no ADAS. Thus, gut microbial tryptamine overproduction correlates with ADAS occurrence. Antibiotic and diet additives induce ADAS and tryptamine. Mitogenic/cytotoxic tryptamine cause microbial and human cell death, gut dysbiosis, and consequent disruption of host-microbe homeostasis. Present analysis of 1246 participants from 17 human gut metagenomics studies revealed ADAS in cell death diseases.
Collapse
Affiliation(s)
- Elena L Paley
- Expert BioMed, Inc., Miami Dade, FL, USA.,Stop Alzheimers Corp, Miami Dade, FL, USA.,Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
9
|
Paulsen P, Bauer S, Bauer F. Biogenic amines and polyamines in foods of animal origin. CHEMICAL HAZARDS IN FOODS OF ANIMAL ORIGIN 2019. [DOI: 10.3920/978-90-8686-877-3_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Peter Paulsen
- Institute of Meat Hygiene, Meat Technology and Food Science, Vetmeduni Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Susanne Bauer
- Institute of Meat Hygiene, Meat Technology and Food Science, Vetmeduni Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Friedrich Bauer
- Institute of Meat Hygiene, Meat Technology and Food Science, Vetmeduni Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
10
|
Kelm NQ, Beare JE, Yuan F, George M, Shofner CM, Keller BB, Hoying JB, LeBlanc AJ. Adipose-derived cells improve left ventricular diastolic function and increase microvascular perfusion in advanced age. PLoS One 2018; 13:e0202934. [PMID: 30142193 PMCID: PMC6108481 DOI: 10.1371/journal.pone.0202934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/10/2018] [Indexed: 12/20/2022] Open
Abstract
An early manifestation of coronary artery disease in advanced age is the development of microvascular dysfunction leading to deficits in diastolic function. Our lab has previously shown that epicardial treatment with adipose-derived stromal vascular fraction (SVF) preserves microvascular function following coronary ischemia in a young rodent model. Follow-up studies showed intravenous (i.v.) delivery of SVF allows the cells to migrate to the walls of small vessels and reset vasomotor tone. Therefore we tested the hypothesis that the i.v. cell injection of SVF would reverse the coronary microvascular dysfunction associated with aging in a rodent model. Fischer 344 rats were divided into 4 groups: young control (YC), old control (OC), old + rat aortic endothelial cells (O+EC) and old + GFP+ SVF cells (O+SVF). After four weeks, cardiac function and coronary flow reserve (CFR) were measured via echocardiography, and hearts were explanted either for histology or isolation of coronary arterioles for vessel reactivity studies. In a subgroup of animals, microspheres were injected during resting and dobutamine-stimulated conditions to measure coronary blood flow. GFP+ SVF cells engrafted and persisted in the myocardium and coronary vasculature four weeks following i.v. injection. Echocardiography showed age-related diastolic dysfunction without accompanying systolic dysfunction; diastolic function was improved in old rats after SVF treatment. Ultrasound and microsphere data both showed increased stimulated coronary blood flow in O+SVF rats compared to OC and O+EC, while isolated vessel reactivity was mostly unchanged. I.v.-injected SVF cells were capable of incorporating into the vasculature of the aging heart and are shown in this study to improve CFR and diastolic function in a model of advanced age. Importantly, SVF injection did not lead to arrhythmias or increased mortality in aged rats. SVF cells provide an autologous cell therapy option for treatment of microvascular and cardiac dysfunction in aged populations.
Collapse
Affiliation(s)
- Natia Q. Kelm
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, United States of America
| | - Jason E. Beare
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, United States of America
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States of America
| | - Fangping Yuan
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, United States of America
| | - Monika George
- Department of Physiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Charles M. Shofner
- Department of Physiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Bradley B. Keller
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, United States of America
- Department of Pediatrics, University of Louisville, Louisville, Kentucky, United States of America
| | - James B. Hoying
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, United States of America
- Department of Physiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Amanda J. LeBlanc
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, United States of America
- Department of Physiology, University of Louisville, Louisville, Kentucky, United States of America
| |
Collapse
|
11
|
Anwar MA, Samaha AA, Baydoun S, Iratni R, Eid AH. Rhus coriaria L. (Sumac) Evokes Endothelium-Dependent Vasorelaxation of Rat Aorta: Involvement of the cAMP and cGMP Pathways. Front Pharmacol 2018; 9:688. [PMID: 30002626 PMCID: PMC6031713 DOI: 10.3389/fphar.2018.00688] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 06/07/2018] [Indexed: 12/13/2022] Open
Abstract
Rhus coriaria L. (sumac) is widely used in traditional remedies and cuisine of countries of the Mediterranean as well as Central and South-West Asia. Administration of sumac to experimental models and patients with diverse pathological conditions generates multi-faceted propitious effects, including the quality as a vasodilator. Together, the effects are concertedly channeled toward cardiovasobolic protection. However, there is paucity of data on the mechanism of action for sumac’s vasodilatory effect, an attribute which is considered to be advantageous for unhealthy circulatory system. Accordingly, we sought to determine the mechanisms by which sumac elicits its vasorelaxatory effects. We deciphered the signaling networks by application of a range of pharmacological inhibitors, biochemical assays and including the quantification of cyclic nucleotide monophosphates. Herein, we provide evidence that an ethanolic extract of sumac fruit, dose-dependently, relaxes rat isolated aorta. The mechanistic effect is achieved via stimulation of multiple transducers namely PI3-K/Akt, eNOS, NO, guanylyl cyclase, cGMP, and PKG. Interestingly, the arachidonic acid pathway (cyclooxygenases), adenylyl cyclase/cAMP and ATP-dependent potassium channels appear to partake in this sumac-orchestrated attenuation of vascular tone. Clearly, our data support the favorable potential cardio-vasculoprotective action of sumac.
Collapse
Affiliation(s)
- Mohammad A Anwar
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Ali A Samaha
- Department of Biomedical Sciences, Lebanese International University, Beirut, Lebanon.,Faculty of Public Health IV, Lebanese University, Beirut, Lebanon
| | - Safaa Baydoun
- Research Center for Environment and Development, Beirut Arab University, Beirut, Lebanon
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ali H Eid
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar.,Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
12
|
Paley EL, Perry G. Towards an Integrative Understanding of tRNA Aminoacylation-Diet-Host-Gut Microbiome Interactions in Neurodegeneration. Nutrients 2018; 10:nu10040410. [PMID: 29587458 PMCID: PMC5946195 DOI: 10.3390/nu10040410] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/19/2018] [Accepted: 03/22/2018] [Indexed: 02/07/2023] Open
Abstract
Transgenic mice used for Alzheimer’s disease (AD) preclinical experiments do not recapitulate the human disease. In our models, the dietary tryptophan metabolite tryptamine produced by human gut microbiome induces tryptophanyl-tRNA synthetase (TrpRS) deficiency with consequent neurodegeneration in cells and mice. Dietary supplements, antibiotics and certain drugs increase tryptamine content in vivo. TrpRS catalyzes tryptophan attachment to tRNAtrp at initial step of protein biosynthesis. Tryptamine that easily crosses the blood–brain barrier induces vasculopathies, neurodegeneration and cell death via TrpRS competitive inhibition. TrpRS inhibitor tryptophanol produced by gut microbiome also induces neurodegeneration. TrpRS inhibition by tryptamine and its metabolites preventing tryptophan incorporation into proteins lead to protein biosynthesis impairment. Tryptophan, a least amino acid in food and proteins that cannot be synthesized by humans competes with frequent amino acids for the transport from blood to brain. Tryptophan is a vulnerable amino acid, which can be easily lost to protein biosynthesis. Some proteins marking neurodegenerative pathology, such as tau lack tryptophan. TrpRS exists in cytoplasmic (WARS) and mitochondrial (WARS2) forms. Pathogenic gene variants of both forms cause TrpRS deficiency with consequent intellectual and motor disabilities in humans. The diminished tryptophan-dependent protein biosynthesis in AD patients is a proof of our model-based disease concept.
Collapse
Affiliation(s)
- Elena L Paley
- Expert Biomed, Inc., 11933 SW 271st TER Homestead, Miami Dade, FL 33032-3305, USA.
- Stop Alzheimers Corp., Miami Dade, FL 33032, USA.
- Nova Southeastern University, 3301 College Ave, Fort Lauderdale, FL 33314, USA.
| | - George Perry
- Stop Alzheimers Corp., Miami Dade, FL 33032, USA.
- University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA.
| |
Collapse
|
13
|
Restini CBA, Ismail A, Kumar RK, Burnett R, Garver H, Fink GD, Watts SW. Renal perivascular adipose tissue: Form and function. Vascul Pharmacol 2018; 106:37-45. [PMID: 29454047 DOI: 10.1016/j.vph.2018.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/05/2017] [Accepted: 02/11/2018] [Indexed: 12/21/2022]
Abstract
Renal sympathetic activity affects blood pressure in part by increasing renovascular resistance via release of norepinephrine (NE) from sympathetic nerves onto renal arteries. Here we test the idea that adipose tissue adjacent to renal blood vessels, i.e. renal perivascular adipose tissue (RPVAT), contains a pool of NE which can be released to alter renal vascular function. RPVAT was obtained from around the main renal artery/vein of the male Sprague Dawley rats. Thoracic aortic PVAT and mesenteric PVAT also were studied as brown-like and white fat comparators respectively. RPVAT was identified as a mix of white and brown adipocytes, because of expression of both brown-like (e.g. uncoupling protein 1) and white adipogenic genes. All PVATs contained NE (ng/g tissue, RPVAT:524 ± 68, TAPVAT:740 ± 16, MPVAT:96 ± 24). NE was visualized specifically in RPVAT adipocytes by immunohistochemistry. The presence of RPVAT (+RPVAT) did not alter the response of isolated renal arteries to NE compared to responses of arteries without RPVAT (-RPVAT). By contrast, the maximum contraction to the sympathomimetic tyramine was ~2× greater in the renal artery +PVAT versus -PVAT. Tyramine-induced contraction in +RPVAT renal arteries was reduced by the α1-adrenoceptor antagonist prazosin and the NE transporter inhibitor nisoxetine. These results suggest that tyramine caused release of NE from RPVAT. Renal denervation significantly (>50%) reduced NE content of RPVAT but did not modify tyramine-induced contraction of +RPVAT renal arteries. Collectively, these data support the existence of a releasable pool of NE in RPVAT that is independent of renal sympathetic innervation and has the potential to change renal arterial function.
Collapse
Affiliation(s)
- Carolina Baraldi A Restini
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, United States
| | - Alex Ismail
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, United States
| | - Ramya K Kumar
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, United States
| | - Robert Burnett
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, United States
| | - Hannah Garver
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, United States
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, United States
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, United States.
| |
Collapse
|
14
|
Broadley KJ, Broadley HD. Non-adrenergic vasoconstriction and vasodilatation of guinea-pig aorta by β-phenylethylamine and amphetamine - Role of nitric oxide determined with L-NAME and NO scavengers. Eur J Pharmacol 2017; 818:198-205. [PMID: 29074414 DOI: 10.1016/j.ejphar.2017.10.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 10/18/2022]
Abstract
Sympathomimetic and trace amines, including β-phenylethylamine (PEA) and amphetamine, increase blood pressure and constrict isolated blood vessels. By convention this is regarded as a sympathomimetic response, however, recent studies suggest trace amine-associated receptor (TAAR) involvement. There is also uncertainty whether these amines also release nitric oxide (NO) causing opposing vasodilatation. These questions were addressed in guinea-pig isolated aorta, a species not previously examined. Guinea-pig aortic rings were set up to measure contractile tension. Cumulative concentration-response curves were constructed for the reference α-adrenoceptor agonist, phenylephrine, PEA or d-amphetamine before and in the presence of vehicles, the α1-adrenoceptor antagonist, prazosin (1µM), the nitric oxide synthase inhibitor, Nω-nitro-L-arginine (L-NAME), or NO scavengers, curcumin and astaxanthin. Prazosin inhibited phenylephrine contractions with low affinity consistent with α1L-adrenoceptors. However, PEA and amphetamine were not antagonised, indicating non-adrenergic responses probably via TAARs. L-NAME potentiated contractions to PEA both in the absence and presence of prazosin, indicating that PEA releases NO to cause underlying opposing vasodilatation, independent of α1-adrenoceptors. L-NAME also potentiated amphetamine and phenylephrine. PEA was potentiated by the NO scavenger astaxanthin but less effectively. Curcumin, an active component of turmeric, however, inhibited PEA. Trace amines therefore constrict blood vessels non-adrenergically with an underlying NO-mediated non-adrenergic vasodilatation. This has implications in the pressor actions of these amines when NO is compromised.
Collapse
Affiliation(s)
- Kenneth J Broadley
- Division of Pharmacology, Cardiff School of Pharmacy & Pharmaceutical Sciences, Cardiff University, King Edward Vll Avenue, Cathays Park, Cardiff Wales, CF10 3NB, UK.
| | - Harrison D Broadley
- Division of Pharmacology, Cardiff School of Pharmacy & Pharmaceutical Sciences, Cardiff University, King Edward Vll Avenue, Cathays Park, Cardiff Wales, CF10 3NB, UK
| |
Collapse
|
15
|
D’Andrea G, Bussone G, Di Fiore P, Perini F, Gucciardi A, Bolner A, Aguggia M, Saracco G, Galloni E, Giordano G, Leon A. Pathogenesis of chronic cluster headache and bouts: role of tryptamine, arginine metabolism and α1-agonists. Neurol Sci 2017; 38:37-43. [DOI: 10.1007/s10072-017-2862-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Salvia fruticosa Induces Vasorelaxation In Rat Isolated Thoracic Aorta: Role of the PI3K/Akt/eNOS/NO/cGMP Signaling Pathway. Sci Rep 2017; 7:686. [PMID: 28386068 PMCID: PMC5429649 DOI: 10.1038/s41598-017-00790-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/13/2017] [Indexed: 12/27/2022] Open
Abstract
Salvia fruticosa (SF) Mill. is traditionally used for its antihypertensive actions. However, little is known about its pharmacologic and molecular mechanisms of action. Here we determined the effects of an ethanolic extract of SF leaves on rings of isolated thoracic aorta from Sprague-Dawley rats. Our results show that SF extract increased nitric oxide production and relaxed endothelium-intact rings in a dose-dependent (0.3 µg/ml–1 mg/ml) manner, and the maximum arterial relaxation (Rmax) was significantly reduced with endothelium denudation. Pretreatment of endothelium-intact rings with L-NAME (a non-selective inhibitor of nitric oxide synthase, 100 µM), or ODQ (an inhibitor of soluble guanylyl cyclase, 10 µM) significantly diminished SF-mediated vasorelaxation. Furthermore, SF induced Akt phosphorylation as well as increased cGMP levels in rings treated with increasing doses of SF. Prior exposure to PI3K inhibitors, wortmannin (0.1 µM) or LY294002 (10 µM), decreased cGMP accumulation and attenuated the SF-induced vasorelaxation by approximately 50% (Rmax). SF-evoked relaxation was not affected by indomethacin, verapamil, glibenclamide, tetraethylammonium, pyrilamine or atropine. Taken together, our results indicate that SF induces endothelium-dependent vasorelaxation through the PI3K/Akt/eNOS/NO/sGC/cGMP signaling pathway. Our data illustrate the health-orientated benefits of consuming SF which may act as an antihypertensive agent to reduce the burden of cardiovascular complications.
Collapse
|
17
|
Development of a validated strategy for the determination of tryptamine in human cerebrospinal fluid in the presence of competitors using molecularly imprinted polymers. J Sep Sci 2017; 40:1824-1833. [DOI: 10.1002/jssc.201601349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/30/2017] [Accepted: 02/02/2017] [Indexed: 12/20/2022]
|
18
|
Wüst N, Rauscher-Gabernig E, Steinwider J, Bauer F, Paulsen P. Risk assessment of dietary exposure to tryptamine for the Austrian population. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 34:404-420. [DOI: 10.1080/19440049.2016.1269207] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Nadja Wüst
- Business Area Data, Statistics & Risk Assessment, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Elke Rauscher-Gabernig
- Business Area Data, Statistics & Risk Assessment, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Johann Steinwider
- Business Area Data, Statistics & Risk Assessment, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Friedrich Bauer
- Institute of Meat Hygiene, Meat Technology and Food Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Peter Paulsen
- Institute of Meat Hygiene, Meat Technology and Food Science, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
19
|
Abstract
The pathogenesis of migraine as well as cluster headache (CH) is yet a debated question. In this review, we discuss the possible role of the of tyrosine and tryptophan metabolism in the pathogenesis of these primary headaches. These include the abnormalities in the synthesis of neurotransmitters: high level of DA, low level of NE and very elevated levels of octopamine and synephrine (neuromodulators) in plasma of episodic migraine without aura and CH patients. We hypothesize that the imbalance between the levels of neurotransmitters and elusive amines synthesis is due to a metabolic shift directing tyrosine toward an increased decarboxylase and reduced hydroxylase enzyme activities. The metabolic shift of the tyrosine is favored by a state of neuronal hyperexcitability and a reduced mitochondrial activity present in migraine. In addition we present biochemical studies performed in chronic migraine and chronic tension-type headache patients to verify if the same anomalies of the tyrosine and tryptophan metabolism are present in these primary headaches and, if so, their possible role in the chronicity process of CM and CTTH. The results show that important abnormalities of tyrosine metabolism are present only in CM patients (very high plasma levels of DA, NE and tryptamine). Tryptamine plasma levels were found significantly lower in both CM and CTTH patients. In view of this, we propose that migraine and, possibly, CH attacks derive from neurotransmitter and neuromodulator metabolic abnormalities in a hyperexcitable and hypoenergetic brain that spread from the frontal lobe, downstream, resulting in abnormally activated nuclei of the pain matrix. The low tryptamine plasma levels found in CM and CTTH patients suggest that these two primary chronic headaches are characterized by a common insufficient serotoninergic control of the pain threshold.
Collapse
|
20
|
Anwar MA, Eid AH. Determination of Vascular Reactivity of Middle Cerebral Arteries from Stroke and Spinal Cord Injury Animal Models Using Pressure Myography. Methods Mol Biol 2016; 1462:611-24. [PMID: 27604741 DOI: 10.1007/978-1-4939-3816-2_33] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Stroke and other neurovascular derangements are main causes of global death. They, along with spinal cord injuries, are responsible for being the principal cause of disability due to neurological and cognitive problems. These problems then lead to a burden on scarce financial resources and societal care facilities as well as have a profound effect on patients' families. The mechanism of action in these debilitating diseases is complex and unclear. An important component of these problems arises from derangement of blood vessels, such as blockage due to clotting/embolism, endothelial dysfunction, and overreactivity to contractile agents, as well as alteration in endothelial permeability. Moreover, the cerebro-vasculature (large vessels and arterioles) is involved in regulating blood flow by facilitating auto-regulatory processes. Moreover, the anterior (middle cerebral artery and the surrounding region) and posterior (basilar artery and its immediate locality) regions of the brain play a significant role in triggering the pathological progression of ischemic stroke particularly due to inflammatory activity and oxidative stress. Interestingly, modifiable and non-modifiable cardiovascular risk factors are responsible for driving ischemic and hemorrhagic stroke and spinal cord injury. There are different stroke animal models to examine the pathophysiology of middle cerebral and basilar arteries. In this context, arterial myography offers an opportunity to determine the etiology of vascular dysfunction in these diseases. Herein, we describe the technique of pressure myography to examine the reactivity of cerebral vessels to contractile and vasodilator agents and a prelude to stroke and spinal cord injury.
Collapse
Affiliation(s)
- Mohammad A Anwar
- Department of Biological & Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Ali H Eid
- Department of Biological & Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar. .,Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, 11-0236, Beirut, 1107-2020, Lebanon.
| |
Collapse
|
21
|
Seo JW, Jones SM, Hostetter TA, Iliff JJ, West GA. Methamphetamine induces the release of endothelin. J Neurosci Res 2015; 94:170-8. [PMID: 26568405 DOI: 10.1002/jnr.23697] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/09/2015] [Accepted: 10/28/2015] [Indexed: 11/09/2022]
Abstract
Methamphetamine is a potent psychostimulant drug of abuse that increases release and blocks reuptake of dopamine, producing intense euphoria, factors that may contribute to its widespread abuse. It also produces severe neurotoxicity resulting from oxidative stress, DNA damage, blood-brain barrier disruption, microgliosis, and mitochondrial dysfunction. Intracerebral hemorrhagic and ischemic stroke have been reported after intravenous and oral abuse of methamphetamine. Several studies have shown that methamphetamine causes vasoconstriction of vessels. This study investigates the effect of methamphetamine on endothelin-1 (ET-1) release in mouse brain endothelial cells by ELISA. ET-1 transcription as well as endothelial nitric oxide synthase (eNOS) activation and transcription were measured following methamphetamine treatment. We also examine the effect of methamphetamine on isolated cerebral arteriolar vessels from C57BL/6 mice. Penetrating middle cerebral arterioles were cannulated at both ends with a micropipette system. Methamphetamine was applied extraluminally, and the vascular response was investigated. Methamphetamine treatment of mouse brain endothelial cells resulted in ET-1 release and a transient increase in ET-1 message. The activity and transcription of eNOS were only slightly enhanced after 24 hr of treatment with methamphetamine. In addition, methamphetamine caused significant vasoconstriction of isolated mouse intracerebral arterioles. The vasoconstrictive effect of methamphetamine was attenuated by coapplication of the endothelin receptor antagonist PD145065. These findings suggest that vasoconstriction induced by methamphetamine is mediated through the endothelin receptor and may involve an endothelin-dependent pathway.
Collapse
Affiliation(s)
- Jeong-Woo Seo
- Neurotrauma Research, Swedish Medical Center, Englewood, Colorado
| | - Susan M Jones
- Neurotrauma Research, Swedish Medical Center, Englewood, Colorado
| | | | - Jeffrey J Iliff
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon
| | | |
Collapse
|
22
|
Tryptamine levels are low in plasma of chronic migraine and chronic tension-type headache. Neurol Sci 2014; 35:1941-5. [DOI: 10.1007/s10072-014-1867-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/25/2014] [Indexed: 10/25/2022]
|
23
|
Ayala-Lopez N, Martini M, Jackson WF, Darios E, Burnett R, Seitz B, Fink GD, Watts SW. Perivascular adipose tissue contains functional catecholamines. Pharmacol Res Perspect 2014; 2:e00041. [PMID: 24904751 PMCID: PMC4041285 DOI: 10.1002/prp2.41] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The sympathetic nervous system and its neurotransmitter effectors are undeniably important to blood pressure control. We made the novel discovery that perivascular adipose tissue (PVAT) contains significant concentrations of catecholamines. We hypothesized that PVAT contains sufficient releasable catecholamines to affect vascular function. High-pressure liquid chromatography, isometric contractility, immunohistochemistry, whole animal approaches, and pharmacology were used to test this hypothesis. In normal rat thoracic aorta and superior mesenteric artery, the indirect sympathomimetic tyramine caused a concentration-dependent contraction that was dependent on the presence of PVAT. Tyramine stimulated release of norepinephrine (NA), dopamine (DA) and the tryptamine serotonin (5-hydroxytryptamine [5-HT]) from PVAT isolated from both arteries. In both arteries, tyramine-induced concentration-dependent contraction was rightward-shifted and reduced by the noradrenaline transporter inhibitor nisoxetine (1 μmol/L), the vesicular monoamine transporter inhibitor tetrabenazine (10 μmol/L), and abolished by the α adrenoreceptor antagonist prazosin (100 nmol/L). Inhibitors of the DA and 5-HT transporter did not alter tyramine-induced, PVAT-dependent contraction. Removal of the celiac ganglion as a neuronal source of catecholamines for superior mesenteric artery PVAT did not significantly reduce the maximum or shift the concentration-dependent contraction to tyramine. Electrical field stimulation of the isolated aorta was not affected by the presence of PVAT. These data suggest that PVAT components that are independent of sympathetic nerves can release NA in a tyramine-sensitive manner to result in arterial contraction. Because PVAT is intimately apposed to the artery, this raises the possibility of local control of arterial function by PVAT catecholamines.
Collapse
Affiliation(s)
- N Ayala-Lopez
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317
| | - M Martini
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317
| | - W F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317
| | - E Darios
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317
| | - R Burnett
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317
| | - B Seitz
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317
| | - G D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317
| | - S W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317
| |
Collapse
|