1
|
Gentiopicroside Produces Endothelium-Independent Vasodilation by Deactivating the PI3K/Akt/Rho-Kinase Pathway in Isolated Rat Thoracic Aorta. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5565748. [PMID: 34095301 PMCID: PMC8140822 DOI: 10.1155/2021/5565748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022]
Abstract
Gentiopicroside (GPS), a main active secoiridoid glucoside derived from the roots of perennial herbs in the Gentianaceae family, has antispasmodic and relaxant effects. However, the vasorelaxant effects of GPS on aortic rings and the molecular mechanisms involved in these effects are not yet clear. Therefore, we investigated whether GPS inhibits phenylephrine- (PE-) or KCl-induced contractions in isolated rat thoracic aortic rings. The present study found that GPS produced a dose-dependent relaxation in aortic rings precontracted with PE or KCl and significantly reduced CaCl2-, narciclasine- (Rho-kinase activator-), and phorbol-12,13-diacetate- (PKC activator-) induced vasocontractions. Pretreatment with NG-Nitroarginine methyl ester hydrochloride (L-NAME, NOS inhibitor), methylene blue (sGC inhibitor), indomethacin (COX inhibitor), 4-aminopyridine (KV channel inhibitor), and glibenclamide (KATP channel inhibitor) had no influence on the vasorelaxant effect of GPS, while BaCl2 (Kir channel inhibitor), tetraethylammonium chloride (KCa channel inhibitor), ruthenium red (RYR inhibitor), and heparin (IP3R inhibitor) significantly reduced GPS-induced vasorelaxation. Moreover, GPS pretreatment remarkably inhibited the influx of Ca2+ in vascular smooth muscle cells stimulated using KCl or PE-containing CaCl2 solution. Western blot analysis confirmed that GPS treatment inhibited PE-induced increases in the protein levels of p-Akt, p-myosin light chain (MLC), and p-myosin-binding subunit of myosin phosphatase 1 (MYPT1) in the aortic rings. Additionally, the vasorelaxation activity of GPS was attenuated upon pretreatment with LY294002 (PI3K/Akt inhibitor), Y27632 (Rho-kinase inhibitor), and verapamil (L-type Ca2+ channel inhibitor). These findings demonstrate that GPS exhibits endothelium-independent vasorelaxant effects through inhibition of voltage-dependent, receptor-operated, and inositol triphosphate receptor (IP3R)/ryanodine receptor- (RYR-) mediated Ca2+ channels as well as the PI3K/Akt/Rho-kinase signaling pathway.
Collapse
|
2
|
Nan Y, Zeng X, Jin Z, Li N, Chen Z, Chen J, Wang D, Wang Y, Lin Z, Ying L. PDE1 or PDE5 inhibition augments NO-dependent hypoxic constriction of porcine coronary artery via elevating inosine 3',5'-cyclic monophosphate level. J Cell Mol Med 2020; 24:14514-14524. [PMID: 33169529 PMCID: PMC7754025 DOI: 10.1111/jcmm.16078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 10/17/2020] [Accepted: 10/25/2020] [Indexed: 12/30/2022] Open
Abstract
Hypoxic coronary vasospasm may lead to myocardial ischaemia and cardiac dysfunction. Inosine 3',5'-cyclic monophosphate (cIMP) is a putative second messenger to mediate this pathological process. Nevertheless, it remains unclear as to whether levels of cIMP can be regulated in living tissue such as coronary artery and if so, what is the consequence of this regulation on hypoxia-induced vasoconstriction. In the present study, we found that cIMP was a key determinant of hypoxia-induced constriction but not that of the subsequent relaxation response in porcine coronary arteries. Subsequently, coronary arteries were treated with various phosphodiesterase (PDE) inhibitors to identify PDE types that are capable of regulating cIMP levels. We found that inhibition of PDE1 and PDE5 substantially elevated cIMP content in endothelium-denuded coronary artery supplemented with exogenous purified cIMP. However, cGMP levels were far lower than their levels in intact coronary arteries and lower than cIMP levels measured in endothelium-denuded coronary arteries supplemented with exogenous cIMP. The increased cIMP levels induced by PDE1 or PDE5 inhibition further led to augmented hypoxic constriction without apparently affecting the relaxation response. In intact coronary artery, PDE1 or PDE5 inhibition up-regulated cIMP levels under hypoxic condition. Concomitantly, cGMP level increased to a comparable level. Nevertheless, the hypoxia-mediated constriction was enhanced in this situation that was largely compromised by an even stronger inhibition of PDEs. Taken together, these data suggest that cIMP levels in coronary arteries are regulated by PDE1 and PDE5, whose inhibition at a certain level leads to increased cIMP content and enhanced hypoxic constriction.
Collapse
Affiliation(s)
- Yan Nan
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xueqin Zeng
- Department of Pathophysiology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhiyi Jin
- Department of Pathophysiology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Na Li
- Department of Pathophysiology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Pathology, Wenzhou Central Hospital, Wenzhou, China
| | - Zhengju Chen
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Jiantong Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dezhong Wang
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Yang Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhenlang Lin
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lei Ying
- Department of Pathophysiology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Kuwabara Y, Tanaka-Ishikawa M, Abe K, Hirano M, Hirooka Y, Tsutsui H, Sunagawa K, Hirano K. Proteinase-activated receptor 1 antagonism ameliorates experimental pulmonary hypertension. Cardiovasc Res 2020; 115:1357-1368. [PMID: 30423156 DOI: 10.1093/cvr/cvy284] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/28/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022] Open
Abstract
AIMS Pulmonary hypertension (PH) is characterized by progressive increases in pulmonary vascular resistance (PVR). Thrombotic lesions are common pathological findings. The pulmonary artery has a unique property regarding the vasoconstrictive response to thrombin, which is mediated by proteinase-activated receptor 1 (PAR1). We aim to elucidate the role of PAR1 in the development and progression of PH. METHODS AND RESULTS A rat model of monocrotaline-induced PH and a mouse model of hypoxia (Hx)-induced PH were used to investigate the effects of atopaxar (a PAR1 antagonist) and PAR1 knockout on haemodynamic parameters, right ventricular hypertrophy (RVH), vascular remodelling and survival. In perfused lung preparations, the pressor response to PAR1 agonist was significantly augmented in monocrotaline-induced PH. Both the preventive and therapeutic administration of atopaxar significantly inhibited the increase in PVR and the development of RVH and prolonged survival. A real-time PCR revealed that the level of PAR1 mRNA in the pulmonary artery was significantly higher than that in any of the systemic arteries examined in control rats, and the level was significantly up-regulated in monocrotaline-induced PH. PAR1 gene knockout significantly attenuated the haemodynamic and histological findings in the mouse model of Hx-induced PH. CONCLUSION The specific expression of PAR1 in the pulmonary artery and its up-regulation were suggested to play a critical role in the development and progression of experimental PH in murine models. PAR1 is a potential therapeutic target for the treatment of PH.
Collapse
Affiliation(s)
- Yukimitsu Kuwabara
- Department of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medicine, Kyushu University, Fukuoka, Japan.,Department of Cardiovascular Medicine, Research Institute of Angiocardiology, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Mariko Tanaka-Ishikawa
- Department of Cardiovascular Medicine, Research Institute of Angiocardiology, Graduate School of Medicine, Kyushu University, Fukuoka, Japan.,Department of Anesthesiology and Critical Care, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Kohtaro Abe
- Department of Cardiovascular Medicine, Research Institute of Angiocardiology, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Mayumi Hirano
- Department of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Yoshitaka Hirooka
- Department of Advanced Cardiovascular Regulation and Therapeutics, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Research Institute of Angiocardiology, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Kenji Sunagawa
- Department of Cardiovascular Medicine, Research Institute of Angiocardiology, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Katsuya Hirano
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, Japan
| |
Collapse
|
4
|
Li Z, Ding Q, Ling LP, Wu Y, Meng DX, Li X, Zhang CQ. Metformin attenuates motility, contraction, and fibrogenic response of hepatic stellate cells in vivo and in vitro by activating AMP-activated protein kinase. World J Gastroenterol 2018; 24:819-832. [PMID: 29467552 PMCID: PMC5807940 DOI: 10.3748/wjg.v24.i7.819] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/12/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effect of metformin on activated hepatic stellate cells (HSCs) and the possible signaling pathways involved.
METHODS A fibrotic mouse model was generated by intraperitoneal injection of carbon tetrachloride (CCl4) and subsequent treatment with or without metformin. The level of fibrosis was detected by hematoxylin-eosin staining, Sirius Red staining, and immunohistochemistry. The HSC cell line LX-2 was used for in vitro studies. The effect of metformin on cell proliferation (CCK8 assay), motility (scratch test and Transwell assay), contraction (collagen gel contraction assay), extracellular matrix (ECM) secretion (Western blot), and angiogenesis (ELISA and tube formation assay) was investigated. We also analyzed the possible signaling pathways involved by Western blot analysis.
RESULTS Mice developed marked liver fibrosis after intraperitoneal injection with CCl4 for 6 wk. Metformin decreased the activation of HSCs, reduced the deposition of ECM, and inhibited angiogenesis in CCl4-treated mice. Platelet-derived growth factor (PDGF) promoted the fibrogenic response of HSCs in vitro, while metformin inhibited the activation, proliferation, migration, and contraction of HSCs, and reduced the secretion of ECM. Metformin decreased the expression of vascular endothelial growth factor (VEGF) in HSCs through inhibition of hypoxia inducible factor (HIF)-1α in both PDGF-BB treatment and hypoxic conditions, and it down-regulated VEGF secretion by HSCs and inhibited HSC-based angiogenesis in hypoxic conditions in vitro. The inhibitory effects of metformin on activated HSCs were mediated by inhibiting the Akt/mammalian target of rapamycin (mTOR) and extracellular signal-regulated kinase (ERK) pathways via the activation of adenosine monophosphate-activated protein kinase (AMPK).
CONCLUSION Metformin attenuates the fibrogenic response of HSCs in vivo and in vitro, and may therefore be useful for the treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Zhen Li
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong Province, China
- Shandong Provincial Engineering and Technological Research Center for Liver Disease Prevention and Control, Jinan 250021, Shandong Province, China
| | - Qian Ding
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong Province, China
| | - Li-Ping Ling
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong Province, China
- Shandong Provincial Engineering and Technological Research Center for Liver Disease Prevention and Control, Jinan 250021, Shandong Province, China
| | - Ying Wu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong Province, China
- Shandong Provincial Engineering and Technological Research Center for Liver Disease Prevention and Control, Jinan 250021, Shandong Province, China
| | - Dong-Xiao Meng
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong Province, China
- Shandong Provincial Engineering and Technological Research Center for Liver Disease Prevention and Control, Jinan 250021, Shandong Province, China
| | - Xiao Li
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong Province, China
- Shandong Provincial Engineering and Technological Research Center for Liver Disease Prevention and Control, Jinan 250021, Shandong Province, China
| | - Chun-Qing Zhang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong Province, China
| |
Collapse
|
5
|
Miyamoto Y, Feng GG, Satomi S, Tanaka K, Fujiwara Y, Kinoshita H. Phosphatidylinositol 3-kinase inhibition induces vasodilator effect of sevoflurane via reduction of Rho kinase activity. Life Sci 2017; 177:20-26. [PMID: 28400117 DOI: 10.1016/j.lfs.2017.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/23/2017] [Accepted: 04/08/2017] [Indexed: 11/16/2022]
Abstract
AIMS This study was aimed to examine whether a volatile anesthetic sevoflurane in clinical doses reduces vasoconstriction under the inhibition of phosphatidylinositol 3-kinase (PI3K) in the rat and human arteries and whether the intravenous administration of the PI3K inhibitor decreases blood pressure in rats under the sevoflurane inhalation. MATERIALS AND METHODS Rat arteries (n=5-6) and human omental arteries (n=5-6) were subjected to isometric force recordings and western immunoblotting for Rho kinase, mitogen-activated protein kinase, and protein kinase C. Some arteries were incubated with sevoflurane (1.5% or 3%), a selective PI3K inhibitor LY294002 (3×10-6mol/L) or the combination. Mean arterial pressure (MAP) and heart rate (HR) in rats (n=7) were evaluated with or without intravenous injection of LY294002 (3×10-6mol/L) under 2% sevoflurane inhalation. KEY FINDINGS Sevoflurane with LY294002, but not sevoflurane or LY294002 solely, inhibited the phenylephrine-induced contraction (32% to 52% decrease at phenylephrine [3×10-6mol/L] in rat arteries and [3×10-5mol/L] in human arteries). Sevoflurane (3%) only with LY294002 decreased Rho kinase activity in the rat aorta into 30%. Intravenous LY294002 reduced MAP (8.1-12.4mmHg decrease), but not HR, in rats under 2% sevoflurane inhalation. SIGNIFICANCE Clinical sevoflurane doses with PI3K inhibition reduce the contraction of rat and human arteries ex vivo resulting from Rho kinase inhibition, and systemic blood pressure of rats in vivo. These results suggest that sevoflurane potentially causes vasodilation and hypotension in patients receiving anti-cancer therapy that inhibits PI3K.
Collapse
Affiliation(s)
- Yasunori Miyamoto
- Department of Anesthesiology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Guo-Gang Feng
- Department of and Pharmacology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Shiho Satomi
- Department of Anesthesiology, Tokushima University Hospital, 3-18-15, Kuramoto, Tokushima 770-8503, Japan
| | - Katsuya Tanaka
- Department of Anesthesiology, Tokushima University Hospital, 3-18-15, Kuramoto, Tokushima 770-8503, Japan
| | - Yoshihiro Fujiwara
- Department of Anesthesiology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Hiroyuki Kinoshita
- Department of Anesthesiology, Aichi Medical University School of Medicine, Aichi, Japan; Department of Anesthesiology, Tokushima University Hospital, 3-18-15, Kuramoto, Tokushima 770-8503, Japan.
| |
Collapse
|
6
|
An YM, Feng H, Zhang XZ, Cong X, Zhao Q, Wu LL, Dou D. Homocysteine ameliorates the endothelium-independent hypoxic vasoconstriction via the suppression of phosphatidylinositol 3-kinase/Akt pathway in porcine coronary arteries. Biochem Biophys Res Commun 2017; 486:178-183. [PMID: 28285136 DOI: 10.1016/j.bbrc.2017.03.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 03/07/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Endothelium-independent coronary vasoconstriction induced by continuous hypoxia contributes to the development of ischemic heart diseases. Acute elevation of homocysteine (Hcy) has a potent of vasodilation. The present study aims to investigate the role of Hcy in endothelium-independent hypoxic coronary vasoconstriction and its underlying mechanisms. METHODS AND RESULTS Vessel tension of isolated porcine coronary arteries was measured by organ chamber study and the protein expression were detected by western blot. A sustained contraction of porcine coronary artery was induced when exposed to prolonged hypoxia for more than 15 min, which was significantly reduced by Hcy in a dose-dependent manner but not affected by cysteine or N-acetyl-l-cysteine. Phosphorylated myosin light chain (MLC-p) at Ser19 was decreased when exposure to hypoxia for 15 min, and could be reversed by prolonged hypoxia for 30 and 60 min. The recovery of MLC-p at Ser19 by hypoxia for more than 30 min could be abolished by Hcy. The protein levels of phosphorylated Akt at Ser473 and phosphorylated P85 at Tyr508 were decreased by Hcy in normoxia, and were also reduced exposure to hypoxia for 15 min and then augmented by prolonged hypoxia for more than 30 min, which could be prevented by Hcy. The protein level of P110α was not affected by Hcy or prolonged hypoxia. CONCLUSIONS This study demonstrates that Hcy can ameliorate the endothelium-independent hypoxic coronary vasoconstriction, in which the inhibition of PI3K/Akt signaling pathway may be involved.
Collapse
Affiliation(s)
- Yuan-Ming An
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Han Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xing-Zhong Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Xin Cong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Qian Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Dou Dou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.
| |
Collapse
|
7
|
Abstract
In a number of isolated blood vessel types, hypoxia causes an acute contraction that is dependent on the presence of nitric oxide and activation of soluble guanylyl cyclase. It is more pronounced when the preparations are constricted and is therefore termed hypoxic augmentation of vasoconstriction. This hypoxic response is accompanied by increases in the intracellular level of inosine 5′-triphosphate and in the synthesis of inosine 3′,5′-cyclic monophosphate (cIMP) by soluble guanylyl cyclase. The administration of exogenous cIMP or inosine 5′-triphosphate causes augmented vasoconstriction to hypoxia. Furthermore, the vasoconstriction evoked by hypoxia and cIMP is associated with increased activity of Rho kinase (ROCK), indicating that cIMP may mediate the hypoxic effect by sensitizing the myofilaments to Ca2+ through ROCK. Hypoxia is implicated in exaggerated vasoconstriction in the pathogenesis of coronary artery disease, myocardial infarction, hypertension, and stroke. The newly found role of cIMP may help to identify unique therapeutic targets for certain cardiovascular disorders.
Collapse
|
8
|
Endothelium-Independent Hypoxic Contraction Is Prevented Specifically by Nitroglycerin via Inhibition of Akt Kinase in Porcine Coronary Artery. Stem Cells Int 2015; 2016:2916017. [PMID: 26839558 PMCID: PMC4709768 DOI: 10.1155/2016/2916017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/10/2015] [Accepted: 10/13/2015] [Indexed: 11/28/2022] Open
Abstract
Objective. Hypoxia-induced sustained contraction of porcine coronary artery is endothelium-independent and mediated by PI3K/Akt/Rho kinase. Nitroglycerin (NTG) is a vasodilator used to treat angina pectoris and acute heart failure. The present study was to determine the role of NTG in hypoxia-induced endothelium-independent contraction and the underlying mechanism. Methods and Results. Organ chamber technique was used to measure the isometric vessel tension of isolated porcine coronary arteries. Protein levels of phosphorylated and total Akt were determined by western blot. A sustained contraction of porcine coronary arteries induced by hypoxia was significantly reduced by NTG but not by isoproterenol. This contraction was also inhibited by DETA NONOate, 8-Br-cGMP, which can be reversed by ODQ, and Rp-8-Br-PET-cGMPS. The restored contraction was blocked by LY294002. The reduction of Akt-p at Ser-473 by NTG, DETA NONOate, and 8-Br-cGMP was significantly inhibited by ODQ, PKG-I. The decrease in Akt-p level by NTG and 8-Br-cGMP was prevented by calyculin A but not by okadaic acid. Conclusions. These results demonstrated that the endothelium-independent sustained hypoxic vasoconstriction can be prevented by NTG and that the inhibition of PI3K/Akt signaling pathway may be involved.
Collapse
|
9
|
Zhang Y, Zhang B. Trichostatin A, an Inhibitor of Histone Deacetylase, Inhibits the Viability and Invasiveness of Hypoxic Rheumatoid Arthritis Fibroblast-Like Synoviocytes via PI3K/Akt Signaling. J Biochem Mol Toxicol 2015; 30:163-9. [PMID: 26509796 DOI: 10.1002/jbt.21774] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/17/2015] [Accepted: 09/27/2015] [Indexed: 12/20/2022]
Abstract
This study was undertaken to explore the effects of trichostatin A (TSA), an inhibitor of histone deacetylase, on the viability, apoptosis, and invasiveness of hypoxic rheumatoid arthritis fibroblast-like synoviocytes (RA FLSs). RA FLSs were exposed to hypoxia for 24 h in the presence or absence of 2 μM TSA and tested for cell viability, apoptosis, invasion, and gene expression. The involvement of the phosphatidylinositol-3-kinase (PI3K)/Akt pathway was checked. TSA significantly inhibited the viability and induced apoptosis of hypoxic RA FLSs, compared to vehicle control. TSA blocked hypoxia-induced invasion of RA FLSs during Matrigel invasion assays and reduced the expression of matrix metalloproteinases (MMP-2 and MMP-9) and PI3K and phosphorylation of Akt. Overexpression of constitutively active Akt reversed TSA-mediated suppression of invasiveness and downregulation of MMP-2 and MMP-9. Our results indicate the antisurvival and antiinvasive activities of TSA in hypoxic RA FLSs, which is associated with inactivation of PI3K/Akt signaling.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Integrated Chinese and Western Medicine, Wuhan General Hospital of Guangzhou Military Command, Wuhan, 430070, People's Republic of China.
| | - Bo Zhang
- Department of Respiratory Disease, Wuhan General Hospital of Guangzhou Military Command, Wuhan, 430070, People's Republic of China
| |
Collapse
|
10
|
Chen Z, Zhang X, Ying L, Dou D, Li Y, Bai Y, Liu J, Liu L, Feng H, Yu X, Leung SWS, Vanhoutte PM, Gao Y. cIMP synthesized by sGC as a mediator of hypoxic contraction of coronary arteries. Am J Physiol Heart Circ Physiol 2014; 307:H328-36. [PMID: 24906916 DOI: 10.1152/ajpheart.00132.2014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
cGMP is considered the only mediator synthesized by soluble guanylyl cyclase (sGC) in response to nitric oxide (NO). However, purified sGC can synthesize several other cyclic nucleotides, including inosine 3',5'-cyclic monophosphate (cIMP). The present study was designed to determine the role of cIMP in hypoxic contractions of isolated porcine coronary arteries. Vascular responses were examined by measuring isometric tension. Cyclic nucleotides were assayed by HPLC tandem mass spectroscopy. Rho kinase (ROCK) activity was determined by measuring the phosphorylation of myosin phosphatase target subunit 1 using Western blot analysis and an ELISA kit. The level of cIMP, but not that of cGMP, was elevated by hypoxia in arteries with, but not in those without, endothelium [except if treated with diethylenetriamine (DETA) NONOate]; the increases in cIMP were inhibited by the sGC inhibitor 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ). Hypoxia (Po2: 25-30 mmHg) augmented contractions of arteries with and without endothelium if treated with DETA NONOate; these hypoxic contractions were blocked by ODQ. In arteries without endothelium, hypoxic augmentation of contraction was also obtained with exogenous cIMP. In arteries with endothelium, hypoxic augmentation of contraction was further enhanced by inosine 5'-triphosphate, the precursor for cIMP. The augmentation of contraction caused by hypoxia or cIMP was accompanied by increased phosphorylation of myosin phosphatase target subunit 1 at Thr(853), which was prevented by the ROCK inhibitor Y-27632. ROCK activity in the supernatant of isolated arteries was stimulated by cIMP in a concentration-dependent fashion. These results demonstrate that cIMP synthesized by sGC is the likely mediator of hypoxic augmentation of coronary vasoconstriction, in part by activating ROCK.
Collapse
Affiliation(s)
- Zhengju Chen
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Xu Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Lei Ying
- Department of Pathophysiology, Wenzhou Medical University, Wenzhou; Zhejiang, China
| | - Dou Dou
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yanhui Li
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China; Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, China
| | - Yun Bai
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Juan Liu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Limei Liu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Han Feng
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Xiaoxing Yu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Susan Wai-Sum Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China; and
| | - Paul M Vanhoutte
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China; and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China
| | - Yuansheng Gao
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China;
| |
Collapse
|