1
|
Gerasimovskaya E, Patil RS, Davies A, Maloney ME, Simon L, Mohamed B, Cherian-Shaw M, Verin AD. Extracellular purines in lung endothelial permeability and pulmonary diseases. Front Physiol 2024; 15:1450673. [PMID: 39234309 PMCID: PMC11372795 DOI: 10.3389/fphys.2024.1450673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
The purinergic signaling system is an evolutionarily conserved and critical regulatory circuit that maintains homeostatic balance across various organ systems and cell types by providing compensatory responses to diverse pathologies. Despite cardiovascular diseases taking a leading position in human morbidity and mortality worldwide, pulmonary diseases represent significant health concerns as well. The endothelium of both pulmonary and systemic circulation (bronchial vessels) plays a pivotal role in maintaining lung tissue homeostasis by providing an active barrier and modulating adhesion and infiltration of inflammatory cells. However, investigations into purinergic regulation of lung endothelium have remained limited, despite widespread recognition of the role of extracellular nucleotides and adenosine in hypoxic, inflammatory, and immune responses within the pulmonary microenvironment. In this review, we provide an overview of the basic aspects of purinergic signaling in vascular endothelium and highlight recent studies focusing on pulmonary microvascular endothelial cells and endothelial cells from the pulmonary artery vasa vasorum. Through this compilation of research findings, we aim to shed light on the emerging insights into the purinergic modulation of pulmonary endothelial function and its implications for lung health and disease.
Collapse
Affiliation(s)
| | - Rahul S Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Adrian Davies
- Department of Internal Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - McKenzie E Maloney
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Office of Academic Affairs, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Liselle Simon
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Basmah Mohamed
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Mary Cherian-Shaw
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Alexander D Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
2
|
Della-Morte D, Pacifici F, Simonetto M, Dong C, Dueker N, Blanton SH, Wang L, Rundek T. The role of sirtuins and uncoupling proteins on vascular aging: The Northern Manhattan Study experience. Free Radic Biol Med 2024; 220:262-270. [PMID: 38729451 DOI: 10.1016/j.freeradbiomed.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Aging affects all organs. Arteries, in particular, are among the most affected. Vascular aging (VA) is defined as age-associated changes in function and structure of vessels. Classical VA phenotypes are carotid intima-media thickness (IMT), carotid plaque (CP), and arterial stiffness (STIFF). Individuals have different predisposition to these VA phenotypes and their associated risk of cardiovascular events. Some develop an early vascular aging (EVA), and others are protected and identified as having supernormal vascular aging (SUPERNOVA). The mechanisms leading to these phenotypes are not well understood. In the Northern Manhattan Study (NOMAS), we found genetic variants in the 7 Sirtuins (SIRT) and 5 Uncoupling Proteins (UCP) to be differently associated with risk to developing VA phenotypes. In this article, we review the results of genetic-epidemiology studies to better understand which of the single nucleotide polymorphisms (SNPs) in SIRT and UCP are responsible for both EVA and SUPERNOVA.
Collapse
Affiliation(s)
- David Della-Morte
- Department of Systems Medicine, School of Medicine, University of Rome Tor Vergata, 00133, Rome, Italy; Department of Neurology, The Evelyn McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166, Rome, Italy.
| | - Francesca Pacifici
- Department of Systems Medicine, School of Medicine, University of Rome Tor Vergata, 00133, Rome, Italy; Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166, Rome, Italy
| | - Marialaura Simonetto
- Department of Neurology, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY, 10021, USA
| | - Chuanhui Dong
- Department of Neurology, The Evelyn McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Nicole Dueker
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA; Dr. John T. Macdonald, Department of Human Genetics, University of Miami, Miami, FL, 33136, USA
| | - Susan H Blanton
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA; Dr. John T. Macdonald, Department of Human Genetics, University of Miami, Miami, FL, 33136, USA
| | - Liyong Wang
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA; Dr. John T. Macdonald, Department of Human Genetics, University of Miami, Miami, FL, 33136, USA
| | - Tatjana Rundek
- Department of Neurology, The Evelyn McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| |
Collapse
|
3
|
Matsui C, Tsukuura R, Sakai H, Escandón JM, Mohammad A, Yamamoto T. Evaluation of the Superficial Collecting Lymph Vessels' Vasa Vasorum in Lymphoedematous Limbs Using Video Capillaroscopy. Eur J Vasc Endovasc Surg 2024; 67:1008-1014. [PMID: 38000693 DOI: 10.1016/j.ejvs.2023.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/06/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
OBJECTIVE The pre-collecting and collecting lymph vessels have smooth muscle cells, and sufficient perfusion is vital to maintain their function. Although the vasa vasorum of the collecting lymph vessels (VVCL) have been histologically investigated, little is known about their physiology. This study aimed to investigate the relationship between morphology and blood flow of the VVCL in lymphoedematous limbs. METHODS Medical records of lower extremity lymphoedema patients who underwent video capillaroscopy observation during supermicrosurgical lymphaticovenous anastomosis (LVA) surgery were reviewed. The collecting lymph vessels, dissected for LVA, were examined under video capillaroscopy (GOKO Bscan-ZD, GOKO Imaging Devices Co., Japan) with a magnification of 175x and 620x. Blood flow velocity of the VVCL was calculated by measuring the red blood cell movement using software (GOKO-VIP ver. 1.0.0.4, GOKO Imaging Devices Co., Japan). Based on the video capillaroscopy findings, the VVCL were grouped according to their morphology; the VVCL morphology types and blood flow velocity were then compared according to the lymphosclerosis severity grade. RESULTS Sixty-seven lymph vessels in 20 lower extremity lymphoedema patients were evaluated, including s0 in 19 (28.4%), s1 in 34 (50.7%), s2 in 10 (14.9%), and s3 in four (6.0%) lymph vessels. The VVCLs were grouped into four types: type 1 (n = 4), type 2 (n = 37), type 3 (n = 19), and type 4 (n = 7). Blood flow velocity of the VVCL ranged 0 - 189.3 μm/sec (average 26.40 μm/sec). There were statistically significant differences in VVCL morphology (p < .001) and blood flow velocity (p < .001) according to lymphosclerotic severity. CONCLUSION Vasa vasorum of the collecting lymph vessels could be grouped into four types with different characteristics. Morphological and physiological changes of the VVCL were related to sclerotic changes of the collecting lymph vessels.
Collapse
Affiliation(s)
- Chihiro Matsui
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan; Department of Plastic and Reconstructive Surgery, National Centre for Global Health and Medicine, Tokyo, Japan
| | - Reiko Tsukuura
- Department of Plastic and Reconstructive Surgery, National Centre for Global Health and Medicine, Tokyo, Japan
| | - Hayahito Sakai
- Department of Plastic and Reconstructive Surgery, National Centre for Global Health and Medicine, Tokyo, Japan
| | - Joseph M Escandón
- Division of Plastic and Reconstructive Surgery, Strong Memorial Hospital, University of Rochester Medical Centre, New York, NY, USA
| | - Arbab Mohammad
- Aarupadai Veedu Medical College and Hospital, Puducherry, India
| | - Takumi Yamamoto
- Department of Plastic and Reconstructive Surgery, National Centre for Global Health and Medicine, Tokyo, Japan.
| |
Collapse
|
4
|
Mota L, Zhu M, Li J, Contreras M, Aridi T, Tomeo JN, Stafford A, Mooney DJ, Pradhan-Nabzdyk L, Ferran C, LoGerfo FW, Liang P. Perivascular CLICK-gelatin delivery of thrombospondin-2 small interfering RNA decreases development of intimal hyperplasia after arterial injury. FASEB J 2024; 38:e23321. [PMID: 38031974 PMCID: PMC10726962 DOI: 10.1096/fj.202301359r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/25/2023] [Accepted: 11/05/2023] [Indexed: 12/01/2023]
Abstract
Bypass graft failure occurs in 20%-50% of coronary and lower extremity bypasses within the first-year due to intimal hyperplasia (IH). TSP-2 is a key regulatory protein that has been implicated in the development of IH following vessel injury. In this study, we developed a biodegradable CLICK-chemistry gelatin-based hydrogel to achieve sustained perivascular delivery of TSP-2 siRNA to rat carotid arteries following endothelial denudation injury. At 21 days, perivascular application of TSP-2 siRNA embedded hydrogels significantly downregulated TSP-2 gene expression, cellular proliferation, as well as other associated mediators of IH including MMP-9 and VEGF-R2, ultimately resulting in a significant decrease in IH. Our data illustrates the ability of perivascular CLICK-gelatin delivery of TSP-2 siRNA to mitigate IH following arterial injury.
Collapse
Affiliation(s)
- Lucas Mota
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston MA
| | - Max Zhu
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston MA
| | - Jennifer Li
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston MA
| | - Mauricio Contreras
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston MA
| | - Tarek Aridi
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston MA
| | - John N. Tomeo
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston MA
| | - Alexander Stafford
- John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, MA
| | - David J. Mooney
- John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, MA
| | - Leena Pradhan-Nabzdyk
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston MA
| | - Christiane Ferran
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston MA
- The Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston MA
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston MA
| | - Frank W. LoGerfo
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston MA
| | - Patric Liang
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston MA
| |
Collapse
|
5
|
Burns N, Nijmeh H, Lapel M, Riddle S, Yegutkin GG, Stenmark KR, Gerasimovskaya E. Isolation of vasa vasorum endothelial cells from pulmonary artery adventitia: Implementation to vascular biology research. Microvasc Res 2023; 147:104479. [PMID: 36690271 DOI: 10.1016/j.mvr.2023.104479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Isolated endothelial cells are valuable in vitro model for vascular research. At present, investigation of disease-relevant changes in vascular endothelium at the molecular level requires established endothelial cell cultures, preserving vascular bed-specific phenotypic characteristics. Vasa vasorum (VV) form a microvascular network around large blood vessels, in both the pulmonary and systemic circulations, that are critically important for maintaining the integrity and oxygen supply of the vascular wall. However, despite the pathophysiological significance of the VV, methods for the isolation and culture of vasa vasorum endothelial cells (VVEC) have not yet been reported. In our prior studies, we demonstrated the presence of hypoxia-induced angiogenic expansion of the VV in the pulmonary artery (PA) of neonatal calves; an observation which has been followed by a series of in vitro studies on isolated PA VVEC. Here we present a detailed protocol for reproducible isolation, purification, and culture of PA VVEC. We show these cells to express generic endothelial markers, (vWF, eNOS, VEGFR2, Tie1, and CD31), as well as progenitor markers (CD34 and CD133), bind lectin Lycopersicon Esculentum, and incorporate acetylated low-density lipoproteins labeled with acetylated LDL (DiI-Ac-LDL). qPCR analysis additionally revealed the expression of CD105, VCAM-1, ICAM-1, MCAM, and NCAM. Ultrastructural electron microscopy and immunofluorescence staining demonstrated that VVEC are morphologically characterized by a developed actin and microtubular cytoskeleton, mitochondrial network, abundant intracellular vacuolar/secretory system, and cell-surface filopodia. VVEC exhibit exponential growth in culture and can be mitogenically activated by multiple growth factors. Thus, our protocol provides the opportunity for VVEC isolation from the PA, and potentially from other large vessels, enabling advances in VV research.
Collapse
Affiliation(s)
- Nana Burns
- Department of Pediatric Critical Care Medicine, University of Colorado Denver, Aurora, CO, United States of America
| | - Hala Nijmeh
- Department of Pediatric Critical Care Medicine, University of Colorado Denver, Aurora, CO, United States of America
| | - Martin Lapel
- Department of Pediatric Critical Care Medicine, University of Colorado Denver, Aurora, CO, United States of America
| | - Suzette Riddle
- Department of Pediatric Critical Care Medicine, University of Colorado Denver, Aurora, CO, United States of America
| | - Gennady G Yegutkin
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland
| | - Kurt R Stenmark
- Department of Pediatric Critical Care Medicine, University of Colorado Denver, Aurora, CO, United States of America
| | - Evgenia Gerasimovskaya
- Department of Pediatric Critical Care Medicine, University of Colorado Denver, Aurora, CO, United States of America.
| |
Collapse
|
6
|
Pulmonary Vascular Remodeling in Pulmonary Hypertension. J Pers Med 2023; 13:jpm13020366. [PMID: 36836600 PMCID: PMC9967990 DOI: 10.3390/jpm13020366] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Pulmonary vascular remodeling is the critical structural alteration and pathological feature in pulmonary hypertension (PH) and involves changes in the intima, media and adventitia. Pulmonary vascular remodeling consists of the proliferation and phenotypic transformation of pulmonary artery endothelial cells (PAECs) and pulmonary artery smooth muscle cells (PASMCs) of the middle membranous pulmonary artery, as well as complex interactions involving external layer pulmonary artery fibroblasts (PAFs) and extracellular matrix (ECM). Inflammatory mechanisms, apoptosis and other factors in the vascular wall are influenced by different mechanisms that likely act in concert to drive disease progression. This article reviews these pathological changes and highlights some pathogenetic mechanisms involved in the remodeling process.
Collapse
|
7
|
Abstract
Despite enormous advances, cardiovascular disorders are still a major threat to global health and are responsible for one-third of deaths worldwide. Research for new therapeutics and the investigation of their effects on vascular parameters is often limited by species-specific pathways and a lack of high-throughput methods. The complex 3-dimensional environment of blood vessels, intricate cellular crosstalks, and organ-specific architectures further complicate the quest for a faithful human in vitro model. The development of novel organoid models of various tissues such as brain, gut, and kidney signified a leap for the field of personalized medicine and disease research. By utilizing either embryonic- or patient-derived stem cells, different developmental and pathological mechanisms can be modeled and investigated in a controlled in vitro environment. We have recently developed self-organizing human capillary blood vessel organoids that recapitulate key processes of vasculogenesis, angiogenesis, and diabetic vasculopathy. Since then, this organoid system has been utilized as a model for other disease processes, refined, and adapted for organ specificity. In this review, we will discuss novel and alternative approaches to blood vessel engineering and explore the cellular identity of engineered blood vessels in comparison to in vivo vasculature. Future perspectives and the therapeutic potential of blood vessel organoids will be discussed.
Collapse
Affiliation(s)
- Kirill Salewskij
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna (K.S., J.M.P.).,Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Austria (K.S.)
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna (K.S., J.M.P.).,Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada (J.M.P.)
| |
Collapse
|
8
|
Markova V, Bogdanov L, Velikanova E, Kanonykina A, Frolov A, Shishkova D, Lazebnaya A, Kutikhin A. Endothelial Cell Markers Are Inferior to Vascular Smooth Muscle Cells Markers in Staining Vasa Vasorum and Are Non-Specific for Distinct Endothelial Cell Lineages in Clinical Samples. Int J Mol Sci 2023; 24:ijms24031959. [PMID: 36768296 PMCID: PMC9916324 DOI: 10.3390/ijms24031959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Current techniques for the detection of vasa vasorum (VV) in vascular pathology include staining for endothelial cell (EC) markers such as CD31 or VE-cadherin. However, this approach does not permit an objective assessment of vascular geometry upon vasospasm and the clinical relevance of endothelial specification markers found in developmental biology studies remains unclear. Here, we performed a combined immunostaining of rat abdominal aorta (rAA) and human saphenous vein (hSV) for various EC or vascular smooth muscle cell (VSMC) markers and found that the latter (e.g., alpha smooth muscle actin (α-SMA) or smooth muscle myosin heavy chain (SM-MHC)) ensure a several-fold higher signal-to-noise ratio irrespective of the primary antibody origin, fluorophore, or VV type (arterioles, venules, or capillaries). Further, α-SMA or SM-MHC staining allowed unbiased evaluation of the VV area under vasospasm. Screening of the molecular markers of endothelial heterogeneity (mechanosensitive transcription factors KLF2 and KLF4, arterial transcription factors HES1, HEY1, and ERG, venous transcription factor NR2F2, and venous/lymphatic markers PROX1, LYVE1, VEGFR3, and NRP2) have not revealed specific markers of any lineage in hSV (although KLF2 and PROX1 were restricted to venous endothelium in rAA), suggesting the need in high-throughput searches for the clinically relevant signatures of arterial, venous, lymphatic, or capillary differentiation.
Collapse
|
9
|
Sun L, Jiang Q, Xie Y, Wang S, Zhang Z. Optical coherence tomography of the pulmonary arteries in children with congenital heart diseases: A systematic review. Pediatr Investig 2022; 6:264-270. [PMID: 36582270 PMCID: PMC9789933 DOI: 10.1002/ped4.12353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/14/2022] [Indexed: 12/05/2022] Open
Abstract
Importance Optical coherence tomography (OCT) is a high-resolution intravascular imaging tool and has shown promise for providing real-time quantitative and qualitative descriptions of pulmonary vascular structures in vivo in adult pulmonary hypertension (PH), while not popular in pediatric patients with congenital heart diseases (CHD). Objective The aim of this review is to summarize all the available evidence on the use of OCT for imaging pulmonary vascular remodeling in pediatric patients. Methods We conducted the systematic literature resources (Cochran Library database, Medline via PubMed, EMBASE, and Web of Knowledge) from January 2010 to December 2021 and the search terms were "PH", "child", "children", "pediatric", "OCT", "CHD", "pulmonary vessels", "pulmonary artery wall". Studies in which OCT was used to image the pulmonary vessels in pediatric patients with CHD were considered for inclusion. Results Five studies met the inclusion criteria. These five papers discussed the study of OCT in the pulmonary vasculature of different types of CHD, including common simple CHD, complex cyanotic CHD, and Williams-Beuren syndrome. In biventricular anatomy, pulmonary vascular remodeling was primarily reflected by pulmonary intima thickening from two-dimensional OCT. In single-ventricle anatomy, due to the state of hypoxia, the morphology of pulmonary vessels was indirectly reflected by the number and shape of nourishing vessels from three-dimensional OCT. Interpretation OCT may be an adequate imaging procedure for the demonstration of pulmonary vascular structures and provide additional information in pediatric patients.
Collapse
Affiliation(s)
- Ling Sun
- Department of Pediatric CardiologyGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangdong Cardiovascular InstituteGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouGuangdongChina
| | - Qiuping Jiang
- Department of Pediatric CardiologyGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangdong Cardiovascular InstituteGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouGuangdongChina
| | - Yumei Xie
- Department of Pediatric CardiologyGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangdong Cardiovascular InstituteGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouGuangdongChina
| | - Shushui Wang
- Department of Pediatric CardiologyGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangdong Cardiovascular InstituteGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouGuangdongChina
| | - Zhiwei Zhang
- Department of Pediatric CardiologyGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangdong Cardiovascular InstituteGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouGuangdongChina
| |
Collapse
|
10
|
Adam CA, Șalaru DL, Prisacariu C, Marcu DTM, Sascău RA, Stătescu C. Novel Biomarkers of Atherosclerotic Vascular Disease-Latest Insights in the Research Field. Int J Mol Sci 2022; 23:ijms23094998. [PMID: 35563387 PMCID: PMC9103799 DOI: 10.3390/ijms23094998] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023] Open
Abstract
The atherosclerotic vascular disease is a cardiovascular continuum in which the main role is attributed to atherosclerosis, from its appearance to its associated complications. The increasing prevalence of cardiovascular risk factors, population ageing, and burden on both the economy and the healthcare system have led to the development of new diagnostic and therapeutic strategies in the field. The better understanding or discovery of new pathophysiological mechanisms and molecules modulating various signaling pathways involved in atherosclerosis have led to the development of potential new biomarkers, with key role in early, subclinical diagnosis. The evolution of technological processes in medicine has shifted the attention of researchers from the profiling of classical risk factors to the identification of new biomarkers such as midregional pro-adrenomedullin, midkine, stromelysin-2, pentraxin 3, inflammasomes, or endothelial cell-derived extracellular vesicles. These molecules are seen as future therapeutic targets associated with decreased morbidity and mortality through early diagnosis of atherosclerotic lesions and future research directions.
Collapse
Affiliation(s)
- Cristina Andreea Adam
- Institute of Cardiovascular Diseases “Prof. Dr. George I.M. Georgescu”, 700503 Iași, Romania; (C.A.A.); (C.P.); (R.A.S.); (C.S.)
| | - Delia Lidia Șalaru
- Institute of Cardiovascular Diseases “Prof. Dr. George I.M. Georgescu”, 700503 Iași, Romania; (C.A.A.); (C.P.); (R.A.S.); (C.S.)
- Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania;
- Correspondence:
| | - Cristina Prisacariu
- Institute of Cardiovascular Diseases “Prof. Dr. George I.M. Georgescu”, 700503 Iași, Romania; (C.A.A.); (C.P.); (R.A.S.); (C.S.)
- Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania;
| | - Dragoș Traian Marius Marcu
- Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania;
| | - Radu Andy Sascău
- Institute of Cardiovascular Diseases “Prof. Dr. George I.M. Georgescu”, 700503 Iași, Romania; (C.A.A.); (C.P.); (R.A.S.); (C.S.)
- Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania;
| | - Cristian Stătescu
- Institute of Cardiovascular Diseases “Prof. Dr. George I.M. Georgescu”, 700503 Iași, Romania; (C.A.A.); (C.P.); (R.A.S.); (C.S.)
- Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania;
| |
Collapse
|
11
|
Das S, Nayak GK, Saba L, Kalra M, Suri JS, Saxena S. An artificial intelligence framework and its bias for brain tumor segmentation: A narrative review. Comput Biol Med 2022; 143:105273. [PMID: 35228172 DOI: 10.1016/j.compbiomed.2022.105273] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Artificial intelligence (AI) has become a prominent technique for medical diagnosis and represents an essential role in detecting brain tumors. Although AI-based models are widely used in brain lesion segmentation (BLS), understanding their effectiveness is challenging due to their complexity and diversity. Several reviews on brain tumor segmentation are available, but none of them describe a link between the threats due to risk-of-bias (RoB) in AI and its architectures. In our review, we focused on linking RoB and different AI-based architectural Cluster in popular DL framework. Further, due to variance in these designs and input data types in medical imaging, it is necessary to present a narrative review considering all facets of BLS. APPROACH The proposed study uses a PRISMA strategy based on 75 relevant studies found by searching PubMed, Scopus, and Google Scholar. Based on the architectural evolution, DL studies were subsequently categorized into four classes: convolutional neural network (CNN)-based, encoder-decoder (ED)-based, transfer learning (TL)-based, and hybrid DL (HDL)-based architectures. These studies were then analyzed considering 32 AI attributes, with clusters including AI architecture, imaging modalities, hyper-parameters, performance evaluation metrics, and clinical evaluation. Then, after these studies were scored for all attributes, a composite score was computed, normalized, and ranked. Thereafter, a bias cutoff (AP(ai)Bias 1.0, AtheroPoint, Roseville, CA, USA) was established to detect low-, moderate- and high-bias studies. CONCLUSION The four classes of architectures, from best-to worst-performing, are TL > ED > CNN > HDL. ED-based models had the lowest AI bias for BLS. This study presents a set of three primary and six secondary recommendations for lowering the RoB.
Collapse
Affiliation(s)
- Suchismita Das
- CSE Department, International Institute of Information Technology, Bhubaneswar, Odisha, India; CSE Department, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - G K Nayak
- CSE Department, International Institute of Information Technology, Bhubaneswar, Odisha, India
| | - Luca Saba
- Department of Radiology, AOU, University of Cagliari, Cagliari, Italy
| | - Mannudeep Kalra
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, USA
| | - Jasjit S Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™ LLC, Roseville, CA, USA.
| | - Sanjay Saxena
- CSE Department, International Institute of Information Technology, Bhubaneswar, Odisha, India
| |
Collapse
|
12
|
Krohn JB, Nguyen YN, Akhavanpoor M, Erbel C, Domschke G, Linden F, Kleber ME, Delgado G, März W, Katus HA, Gleissner CA. Identification of Specific Coronary Artery Disease Phenotypes Implicating Differential Pathophysiologies. Front Cardiovasc Med 2022; 9:778206. [PMID: 35355960 PMCID: PMC8960070 DOI: 10.3389/fcvm.2022.778206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/14/2022] [Indexed: 12/26/2022] Open
Abstract
Background and Aims The roles of multiple risk factors of coronary artery disease (CAD) are well established. Commonly, CAD is considered as a single disease entity. We wish to examine whether coronary angiography allows to identify distinct CAD phenotypes associated with major risk factors and differences in prognosis. Methods In a cohort of 4,344 patients undergoing coronary angiography at Heidelberg University Hospital between 2014 and 2016, cluster analysis of angiographic reports identified subgroups with similar patterns of spatial distribution of high-grade stenoses. Clusters were independently confirmed in 3,129 patients from the LURIC study. Results Four clusters were identified: cluster one lacking critical stenoses comprised the highest percentage of women with the lowest cardiovascular risk. Patients in cluster two exhibiting high-grade stenosis of the proximal RCA had a high prevalence of the metabolic syndrome, and showed the highest levels of inflammatory biomarkers. Cluster three with predominant proximal LAD stenosis frequently presented with acute coronary syndrome and elevated troponin levels. Cluster four with high-grade stenoses throughout had the oldest patients with the highest overall cardiovascular risk. All-cause and cardiovascular mortality differed significantly between the clusters. Conclusions We identified four phenotypic subgroups of CAD bearing distinct demographic and biochemical characteristics with differences in prognosis, which may indicate multiple disease entities currently summarized as CAD.
Collapse
Affiliation(s)
- Jona B. Krohn
- Department of Cardiology, Pulmonology and Angiology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Y Nhi Nguyen
- Department of Cardiology, Pulmonology and Angiology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | | | - Christian Erbel
- Department of Cardiology, Pulmonology and Angiology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Gabriele Domschke
- Department of Cardiology, Pulmonology and Angiology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Fabian Linden
- Department of Cardiology, Pulmonology and Angiology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Marcus E. Kleber
- Medical Clinic V, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Graciela Delgado
- Medical Clinic V, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Winfried März
- Medical Clinic V, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University Graz, Graz, Austria
- Synlab Academy, Synlab Holding Deutschland GmbH, Mannheim, Germany
| | - Hugo A. Katus
- Department of Cardiology, Pulmonology and Angiology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Christian A. Gleissner
- Department of Cardiology, Pulmonology and Angiology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- Department of Cardiology and Stroke Centre, Rottal-Inn Kliniken, Eggenfelden, Germany
- *Correspondence: Christian A. Gleissner
| |
Collapse
|
13
|
Botts SR, Fish JE, Howe KL. Dysfunctional Vascular Endothelium as a Driver of Atherosclerosis: Emerging Insights Into Pathogenesis and Treatment. Front Pharmacol 2021; 12:787541. [PMID: 35002720 PMCID: PMC8727904 DOI: 10.3389/fphar.2021.787541] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/06/2021] [Indexed: 12/28/2022] Open
Abstract
Atherosclerosis, the chronic accumulation of cholesterol-rich plaque within arteries, is associated with a broad spectrum of cardiovascular diseases including myocardial infarction, aortic aneurysm, peripheral vascular disease, and stroke. Atherosclerotic cardiovascular disease remains a leading cause of mortality in high-income countries and recent years have witnessed a notable increase in prevalence within low- and middle-income regions of the world. Considering this prominent and evolving global burden, there is a need to identify the cellular mechanisms that underlie the pathogenesis of atherosclerosis to discover novel therapeutic targets for preventing or mitigating its clinical sequelae. Despite decades of research, we still do not fully understand the complex cell-cell interactions that drive atherosclerosis, but new investigative approaches are rapidly shedding light on these essential mechanisms. The vascular endothelium resides at the interface of systemic circulation and the underlying vessel wall and plays an essential role in governing pathophysiological processes during atherogenesis. In this review, we present emerging evidence that implicates the activated endothelium as a driver of atherosclerosis by directing site-specificity of plaque formation and by promoting plaque development through intracellular processes, which regulate endothelial cell proliferation and turnover, metabolism, permeability, and plasticity. Moreover, we highlight novel mechanisms of intercellular communication by which endothelial cells modulate the activity of key vascular cell populations involved in atherogenesis, and discuss how endothelial cells contribute to resolution biology - a process that is dysregulated in advanced plaques. Finally, we describe important future directions for preclinical atherosclerosis research, including epigenetic and targeted therapies, to limit the progression of atherosclerosis in at-risk or affected patients.
Collapse
Affiliation(s)
- Steven R. Botts
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jason E. Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Kathryn L. Howe
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Division of Vascular Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
El Hadri K, Smith R, Duplus E, El Amri C. Inflammation, Oxidative Stress, Senescence in Atherosclerosis: Thioredoxine-1 as an Emerging Therapeutic Target. Int J Mol Sci 2021; 23:ijms23010077. [PMID: 35008500 PMCID: PMC8744732 DOI: 10.3390/ijms23010077] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/19/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular diseases (CVD) worldwide and intimately linked to aging. This pathology is characterized by chronic inflammation, oxidative stress, gradual accumulation of low-density lipoproteins (LDL) particles and fibrous elements in focal areas of large and medium arteries. These fibrofatty lesions in the artery wall become progressively unstable and thrombogenic leading to heart attack, stroke or other severe heart ischemic syndromes. Elevated blood levels of LDL are major triggering events for atherosclerosis. A cascade of molecular and cellular events results in the atherosclerotic plaque formation, evolution, and rupture. Moreover, the senescence of multiple cell types present in the vasculature were reported to contribute to atherosclerotic plaque progression and destabilization. Classical therapeutic interventions consist of lipid-lowering drugs, anti-inflammatory and life style dispositions. Moreover, targeting oxidative stress by developing innovative antioxidant agents or boosting antioxidant systems is also a well-established strategy. Accumulation of senescent cells (SC) is also another important feature of atherosclerosis and was detected in various models. Hence, targeting SCs appears as an emerging therapeutic option, since senolytic agents favorably disturb atherosclerotic plaques. In this review, we propose a survey of the impact of inflammation, oxidative stress, and senescence in atherosclerosis; and the emerging therapeutic options, including thioredoxin-based approaches such as anti-oxidant, anti-inflammatory, and anti-atherogenic strategy with promising potential of senomodulation.
Collapse
|
15
|
Jansen S, Doyle B, Lawrence-Brown M. Arterial tissue stress and the geography of atheroma. ANZ J Surg 2021; 91:2237-2238. [PMID: 34766687 DOI: 10.1111/ans.16965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Shirley Jansen
- Department of Vascular and Endovascular Surgery, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,Heart and Vascular Research Institute, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia.,Medical School, Curtin University Bentley Campus, Perth, Western Australia, Australia.,Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Barry Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia.,School of Engineering, The University of Western Australia, Perth, Western Australia, Australia.,British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.,UWA Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia.,Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | | |
Collapse
|
16
|
Wang G, Han B, Zhang R, Liu Q, Wang X, Huang X, Liu D, Qiao W, Yang M, Luo X, Hou J, Yu B. C1q/TNF-Related Protein 9 Attenuates Atherosclerosis by Inhibiting Hyperglycemia-Induced Endothelial Cell Senescence Through the AMPKα/KLF4 Signaling Pathway. Front Pharmacol 2021; 12:758792. [PMID: 34744738 PMCID: PMC8569937 DOI: 10.3389/fphar.2021.758792] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Abstract
Hyperglycemia-induced endothelial cell senescence has been widely reported to be involved in the pathogenesis of type 2 diabetes mellitus‒accelerated atherosclerosis. Thus, understanding the underlying mechanisms and identifying potential therapeutic targets for endothelial cell senescence are valuable for attenuating atherosclerosis progression. C1q/tumor necrosis factor-related protein 9 (CTRP9), an emerging potential cardiokine, exerts a significant protective effect with respect to atherosclerosis, particularly in endothelial cells. However, the exact mechanism by which CTRP9 prevents endothelial cells from hyperglycemia-induced senescence remains unclear. This study aimed to investigate the effects of CTRP9 on hyperglycemia-induced endothelial cell senescence and atherosclerotic plaque formation in diabetic apolipoprotein E knockout (ApoE KO) mice. Human umbilical vein endothelial cells (HUVECs) were cultured in normal glucose (5.5 mM) and high glucose (40 mM) with or without recombinant human CTRP9 protein (3 μg/ml) for 48 h. Purified lentiviruses overexpressing CTRP9 (Lv-CTRP9) and control vectors containing green fluorescent protein (Lv-GFP) were injected via the tail vein into streptozotocin-induced diabetic ApoE KO mice. Results revealed that exposure of HUVECs to HG significantly increased the expression of Krüppel-like factor 4 (KLF4) and cyclin-dependent kinase inhibitor p21 (p21) and decreased that of telomerase reverse transcriptase (TERT). Treatment with recombinant human CTRP9 protein protected HUVECs from HG-induced premature senescence and dysfunction. CTRP9 promoted the phosphorylation of AMP-activated kinase (AMPK), attenuated the expression of KLF4 and p21 induced by HG, and increased the expression of TERT in HUVECs. Furthermore, in the background of AMPKα knockdown or KLF4 activation, the protective effects of CTRP9 were abolished. In-vivo experiments showed that the overexpression of CTRP9 inhibited vascular senescence and reduced atherosclerotic plaque formation in ApoE KO mice with diabetes. In conclusion, we demonstrate that KLF4 upregulation plays a crucial role in HG-induced endothelial senescence. This anti-atherosclerotic effect of CTRP9 may be partly attributed to the inhibition of HG-induced endothelial senescence through an AMPKα/KLF4-dependent mechanism, suggesting that CTRP9 could benefit further therapeutic approaches for type 2 diabetes mellitus‒accelerated atherosclerosis.
Collapse
Affiliation(s)
- Gang Wang
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, China.,Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baihe Han
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, China.,Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruoxi Zhang
- Department of Cardiology, Harbin Yinghua Hospital, Harbin, China
| | - Qi Liu
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, China.,Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuedong Wang
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, China.,Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xingtao Huang
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, China.,Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dandan Liu
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, China.,Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weishen Qiao
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, China.,Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mengyue Yang
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, China.,Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xing Luo
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, China.,Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingbo Hou
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, China.,Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Yu
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, China.,Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
17
|
Hayabuchi Y, Homma Y, Kagami S. Three-dimensional imaging of pulmonary arterial vasa vasorum using optical coherence tomography in patients after bidirectional Glenn and Fontan procedures. Eur Heart J Cardiovasc Imaging 2021; 22:941-949. [PMID: 32413104 DOI: 10.1093/ehjci/jeaa098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/31/2020] [Accepted: 04/16/2020] [Indexed: 11/13/2022] Open
Abstract
AIMS We evaluated pulmonary arterial (PA) vasa vasorum (VV) in Fontan candidate patients with a novel three-dimensional (3D) imaging technique using optical coherence tomography (OCT). METHODS AND RESULTS This prospective study assessed the development of adventitial VV in the distal PA of 10 patients with bidirectional Glenn circulation (BDG group, 1.6 ± 0.3 years) and Fontan circulation (Fontan group, 3.3 ± 0.3 years), and in 20 children with normal PA haemodynamics and morphology (Control group, 1.5 ± 0.3 years). We assessed the PA VV with two-dimensional (2D) cross-sectional, multi-planar reconstruction (MPR), and volume rendering (VR) imaging. VV development was evaluated by the VV area/volume ratio, defined as the VV area/volume divided by the adventitial area/volume. Compared to the control group, the observed VV number and diameter on 3D images of MPR and VR were significantly higher, and curved and torturous-shaped VV were more frequently observed in the BDG and Fontan groups (P < 0.001, all). The median VV volume ratio was significantly greater in the BDG than in the control group (3.38% vs. 0.61%; P < 0.001). Although the VV volume ratio decreased significantly after the Fontan procedure (2.64%, P = 0.005 vs. BDG), the ratio remained higher than in the control group (P < 0.001 vs. control). CONCLUSION 3D OCT imaging is a novel method that can be used to evaluate adventitial PA VV and may provide pathophysiological insight into the role of the PA VV in these patients.
Collapse
Affiliation(s)
- Yasunobu Hayabuchi
- Department of Pediatrics, Tokushima University, Kuramoto-cho-3, Tokushima 770-8503, Japan
| | - Yukako Homma
- Department of Pediatrics, Tokushima University, Kuramoto-cho-3, Tokushima 770-8503, Japan
| | - Shoji Kagami
- Department of Pediatrics, Tokushima University, Kuramoto-cho-3, Tokushima 770-8503, Japan
| |
Collapse
|
18
|
Owusu J, Barrett E. Early Microvascular Dysfunction: Is the Vasa Vasorum a "Missing Link" in Insulin Resistance and Atherosclerosis. Int J Mol Sci 2021; 22:ijms22147574. [PMID: 34299190 PMCID: PMC8303323 DOI: 10.3390/ijms22147574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 11/16/2022] Open
Abstract
The arterial vasa vasorum is a specialized microvasculature that provides critical perfusion required for the health of the arterial wall, and is increasingly recognized to play a central role in atherogenesis. Cardio-metabolic disease (CMD) (including hypertension, metabolic syndrome, obesity, diabetes, and pre-diabetes) is associated with insulin resistance, and characteristically injures the microvasculature in multiple tissues, (e.g., the eye, kidney, muscle, and heart). CMD also increases the risk for atherosclerotic vascular disease. Despite this, the impact of CMD on vasa vasorum structure and function has been little studied. Here we review emerging information on the early impact of CMD on the microvasculature in multiple tissues and consider the potential impact on atherosclerosis development and progression, if vasa vasorum is similarly affected.
Collapse
Affiliation(s)
- Jeanette Owusu
- Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA;
| | - Eugene Barrett
- Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA;
- Department of Pediatrics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Correspondence: ; Tel.: +1-434-924-1263
| |
Collapse
|
19
|
Gautier EL, Askia H, Murcy F, Yvan-Charvet L. Macrophage ontogeny and functional diversity in cardiometabolic diseases. Semin Cell Dev Biol 2021; 119:119-129. [PMID: 34229949 DOI: 10.1016/j.semcdb.2021.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/01/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022]
Abstract
Macrophages are the dominant immune cell types in the adipose tissue, the liver or the aortic wall and they were originally believed to mainly derived from monocytes to fuel tissue inflammation in cardiometabolic diseases. However, over the last decade the identification of tissue resident macrophages (trMacs) from embryonic origin in these metabolic tissues has provided a breakthrough in the field forcing to better comprehend macrophage diversity during pathological states. Infiltrated monocyte-derived macrophages (moMacs), similar to trMacs, adapt to the local metabolic environment that eventually shapes their functions. In this review, we will summarize the emerging versatility of macrophages in cardiometabolic diseases with a focus in the control of adipose tissue, liver and large vessels homeostasis.
Collapse
Affiliation(s)
- Emmanuel L Gautier
- Institut National de la Santé et de la Recherche Médicale (Inserm) UMR-S 1166, Sorbonne Université, 75013 Paris, France.
| | - Haoussa Askia
- Institut National de la Santé et de la Recherche Médicale (Inserm) UMR-S 1166, Sorbonne Université, 75013 Paris, France
| | - Florent Murcy
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204 Nice, France
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204 Nice, France.
| |
Collapse
|
20
|
Yang X, Wang L, Zhang Z, Hu J, Liu X, Wen H, Liu M, Zhang X, Dai H, Ni M, Li R, Guo R, Zhang L, Luan X, Lin H, Dong M, Lu H. Ginsenoside Rb 1 Enhances Plaque Stability and Inhibits Adventitial Vasa Vasorum via the Modulation of miR-33 and PEDF. Front Cardiovasc Med 2021; 8:654670. [PMID: 34124194 PMCID: PMC8192703 DOI: 10.3389/fcvm.2021.654670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/20/2021] [Indexed: 01/25/2023] Open
Abstract
Background: Atherosclerosis is closely associated with proliferation of the adventitial vasa vasorum, leading to the atherosclerotic plaque progression and vulnerability. In this report, we investigated the role of Ginsenoside Rb1 (Rb1) on atherosclerotic plaque stabilization and adventitial vasa vasorum (VV) along with the mechanisms involved. Methods and Results: Apolipoprotein E-deficient (ApoE-/-) mice were fed with a high-fat diet for 20 weeks, and then Ginsenoside Rb1 (50 mg/kg/d, intraperitoneal) was given for 4 weeks. Rb1 treatment significantly inhibited adventitial VV proliferation, alleviated inflammation, decreased plaque burden, and stabilized atherosclerotic plaques in apoE-/- mice. However, the beneficial effects of Rb1 on atherosclerotic lesion was attenuated by overexpression of miR-33. The analysis from atherosclerotic plaque revealed that Rb1 treatment could result in an induction of Pigment epithelium-derived factor (PEDF) expression and reduction of the miR-33 generation. Overexpression of miR-33 significantly reverted the Rb1-mediated elevation of PEDF and anti-angiogenic effect. Conclusions: Ginsenoside Rb1 attenuates plaque growth and enhances plaque stability partially through inhibiting adventitial vasa vasorum proliferation and inflammation in apoE-/- mice. The anti-angiogenic and anti-inflammation effects of Rb1 are exerted via the modulation of miR-33 and its target gene PEDF.
Collapse
Affiliation(s)
- Xiaoyan Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Cardiology, Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Lei Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zihao Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiayi Hu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoling Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hao Wen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The Second School of Clinical Medicine, Binzhou Medical University, Yantai, China
| | - Minghao Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Cardiology, Qingdao Municipal Hospital, Qingdao, China
| | - Hongyan Dai
- Department of Cardiology, Qingdao Municipal Hospital, Qingdao, China
| | - Mei Ni
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Rui Li
- Department of Cardiology, China-Japan Friendship Hospital, Ministry of Health, Beijing, China
| | - Rong Guo
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Lei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaorong Luan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huili Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Mei Dong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huixia Lu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
21
|
Stojanović SD, Fiedler J, Bauersachs J, Thum T, Sedding DG. Senescence-induced inflammation: an important player and key therapeutic target in atherosclerosis. Eur Heart J 2021; 41:2983-2996. [PMID: 31898722 PMCID: PMC7453834 DOI: 10.1093/eurheartj/ehz919] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/13/2019] [Accepted: 12/12/2019] [Indexed: 12/21/2022] Open
Abstract
Inflammation is a hallmark and potent driver of pathological vascular remodelling in atherosclerosis. However, current anti-inflammatory therapeutic strategies have shown mixed results. As an alternative perspective on the conundrum of chronic inflammation emerging evidence points towards a small subset of senescent cells as a critical player and central node driving atherosclerosis. Senescent cells belonging to various cell types are a dominant and chronic source of a large array of pro-inflammatory cytokines and various additional plaque destabilizing factors, being involved with various aspects of atherosclerosis pathogenesis. Antagonizing these key agitators of local chronic inflammation and plaque instability may provide a causative and multi-purpose therapeutic strategy to treat atherosclerosis. Anti-senescence treatment options with translational potential are currently in development. However, several questions and challenges remain to be addressed before these novel treatment approaches may enter the clinical setting.
Collapse
Affiliation(s)
- Stevan D Stojanović
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.,Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Jan Fiedler
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Daniel G Sedding
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Martin-Luther-University Halle (Saale), Ernst-Grube-Strasse 40, 06120 Halle (Saale), Germany
| |
Collapse
|
22
|
Horiuchi K, Kano K, Minoshima A, Hayasaka T, Yamauchi A, Tatsukawa T, Matsuo R, Yoshida Y, Tomita Y, Kabara M, Nakagawa N, Takehara N, Hasebe N, Kawabe JI. Pericyte-specific deletion of ninjurin-1 induces fragile vasa vasorum formation and enhances intimal hyperplasia of injured vasculature. Am J Physiol Heart Circ Physiol 2021; 320:H2438-H2447. [PMID: 33961504 DOI: 10.1152/ajpheart.00931.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adventitial abnormalities including enhanced vasa vasorum malformation are associated with development and vulnerability of atherosclerotic plaque. However, the mechanisms of vasa vasorum malformation and its role in vascular remodeling have not been fully clarified. We recently reported that ninjurin-1 (Ninj1) is a crucial adhesion molecule for pericytes to form matured neovessels. The purpose is to examine if Ninj1 regulates adventitial angiogenesis and affects the vascular remodeling of injured vessels using pericyte-specific Ninj1 deletion mouse model. Mouse femoral arteries were injured by insertion of coiled wire. Four weeks after vascular injury, fixed arteries were decolorized. Vascular remodeling, including intimal hyperplasia and adventitial microvessel formation were estimated in a three-dimensional view. Vascular fragility, including blood leakiness was estimated by extravasation of fluorescein isothiocyanate (FITC)-lectin or FITC-dextran from microvessels. Ninj1 expression was increased in pericytes in response to vascular injury. NG2-CreER/Ninj1loxp mice were treated with tamoxifen (Tam) to induce deletion of Ninj1 in pericyte (Ninj1 KO). Tam-treated NG2-CreER or Tam-nontreated NG2-CreER/Ninj1loxp mice were used as controls. Intimal hyperplasia was significantly enhanced in Ninj1 KO compared with controls. Vascular leakiness was significantly enhanced in Ninj1 KO. In Ninj1 KO, the number of infiltrated macrophages in adventitia was increased, along with the expression of inflammatory cytokines. In conclusion, deletion of Ninj1 in pericytes induces the immature vasa vasorum formation of injured vasculature and exacerbates adventitial inflammation and intimal hyperplasia. Thus, Ninj1 contributes to the vasa vasorum maturation in response to vascular injury and to reduction of vascular remodeling.NEW & NOTEWORTHY Although abnormalities of adventitial vasa vasorum are associated with vascular remodeling such as atherosclerosis, the mechanisms of vasa vasorum malformation and its role in vascular remodeling have not been fully clarified. The present study provides a line of novel evidence that ninjurin-1 contributes to adventitial microvascular maturation during vascular injury and regulates vascular remodeling.
Collapse
Affiliation(s)
- Kiwamu Horiuchi
- Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan.,Division of Cardiovascular, Respiratory, and Neurology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Kohei Kano
- Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan.,Division of Cardiovascular, Respiratory, and Neurology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Akiho Minoshima
- Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan.,Division of Cardiovascular, Respiratory, and Neurology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Taiki Hayasaka
- Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan.,Division of Cardiovascular, Respiratory, and Neurology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Atsushi Yamauchi
- Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, Japan
| | - Takamitsu Tatsukawa
- Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, Japan.,Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Risa Matsuo
- Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan.,Department of Dermatology, Asahikawa Medical University, Asahikawa, Japan
| | - Yuri Yoshida
- Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Yui Tomita
- Department of Radiology, Asahikawa Medical University, Asahikawa, Japan
| | - Maki Kabara
- Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, Japan
| | - Naoki Nakagawa
- Division of Cardiovascular, Respiratory, and Neurology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Naofumi Takehara
- Division of Cardiovascular, Respiratory, and Neurology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Naoyuki Hasebe
- Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, Japan.,Division of Cardiovascular, Respiratory, and Neurology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Jun-Ichi Kawabe
- Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan.,Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
23
|
Li M, Qi Z, Zhang J, Zhu K, Wang Y. Effect and Mechanism of Si-Miao-Yong-An on Vasa Vasorum Remodeling in ApoE -/- Mice with Atherosclerosis Vulnerable Plague. Front Pharmacol 2021; 12:634611. [PMID: 33935723 PMCID: PMC8080061 DOI: 10.3389/fphar.2021.634611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/26/2021] [Indexed: 01/20/2023] Open
Abstract
Objective: To observe the effect of Si-Miao-Yong-An (SMYA) on atherosclerosis (AS) vulnerable plaques, and to further explore the mechanism by vasa vasorum (VV) angiogenesis and maturation as an entry point. Methods: SPF-class healthy male ApoE−/− mice were randomized into model group, simvastatin group and SMYA group, and C57BL/6 mice were used as the control group. After 8 weeks of intervention, the pathological morphology of plaque was observed by HE staining; the VV density in plaque and aortic adventitia were observed by immunohistochemistry; VV maturation was measured by double-labelling immunofluorescence; the critical proteins of HIF-1α-Apelin/APJ and Ang-1/Tie signal pathways were detected by western blotting. Results: SMYA decreased the plaque area and the ratio of plaque to lumen area; increased the minimum thickness of fibrous cap and its effect was greater than simvastatin. SMYA suppressed the VV neovascularization; promoted smooth muscle cells recruitment and VV maturation, which maintained plaque stability; its effect was obviously superior to simvastatin. SMYA deceased the expression of HIF-1α, Apelin, APJ, Phospho-MEK1/2 (Ser217/221), Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204), Phospho-p70 S6 Kinase (Thr421/Ser424), Ang-2 and Tie-2; it also increased the expression of Ang-1, Phospho-Akt (Ser473), Phospho-FOXO1 (Ser256) and Survivin. Conclusions: SMYA can decrease the AS plaque area in ApoE−/− mice, suppress the VV neovascularization and promote the VV maturation, and stabilize AS vulnerable plaque. The mechanism could be regulating the HIF-1α-Apelin/APJ and Ang-1/Tie signal pathways.
Collapse
Affiliation(s)
- Meng Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhongwen Qi
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ke Zhu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yueyao Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
24
|
Sophie Zhao B, Belhoul‐Fakir H, Jansen S, Hamzah J, Mishani S, Lawrence Brown M. Major gaps in human evidence for structure and function of the vasa vasora limit our understanding of the link with atherosclerosis. J Anat 2021; 238:785-793. [PMID: 33084089 PMCID: PMC7855071 DOI: 10.1111/joa.13324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 11/28/2022] Open
Abstract
Atherosclerosis is the major pathology causing death in the developed world and, although risk factor modification has improved outcomes over the last decade, there is no cure. The role of the vasa vasora (VV) in the pathogenesis of atherosclerotic plaque is unclear but must relate to the predictability of diseased sites in the arterial tree. VV are small vessels found on major arteries and veins which supply nutrients and oxygen to the vessel wall itself while removing waste. Numerous studies have been carried out to investigate the anatomy and function of the VV as well as their significance in vascular disease. There is convincing evidence that VV are related to atherosclerotic plaque progression and vessel thrombosis, however, their link to the pathology of plaque initiation remains an interesting but neglected topic. We aim to present the evidence on the anatomy and functional behaviour of VV as well as their relationship to the initiation of atherosclerosis. At the same time, we wish to highlight inconsistencies in, and limitations of, the evidence available.
Collapse
Affiliation(s)
- Bichen Sophie Zhao
- Department of Vascular and Endovascular SurgerySir Charles Gairdner HospitalNedlandsWAAustralia
| | - Hanane Belhoul‐Fakir
- Targeted Drug Delivery, Imaging & Therapy LaboratoryHarry Perkins Institute of Medical ResearchPerthWAAustralia
- School of Public Health, Faculty of Health SciencesCurtin UniversityPerthWAAustralia
| | - Shirley Jansen
- Department of Vascular and Endovascular SurgerySir Charles Gairdner HospitalNedlandsWAAustralia
- Curtin Medical SchoolCurtin UniversityPerthWAAustralia
- Heart and Vascular Research InstituteHarry Perkins Institute for Medical ResearchPerthWAAustralia
- Faculty Health SciencesUniversity of Western AustraliaPerthWAAustralia
| | - Juliana Hamzah
- Targeted Drug Delivery, Imaging & Therapy LaboratoryHarry Perkins Institute of Medical ResearchPerthWAAustralia
| | - Siamak Mishani
- WA School of Mines: MECEFaculty of Science & EngineeringCurtin UniversityPerthWAAustralia
| | | |
Collapse
|
25
|
Aortic dissection is a disease of the vasa vasorum. JTCVS OPEN 2021; 5:30-32. [PMID: 36003172 PMCID: PMC9390580 DOI: 10.1016/j.xjon.2020.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 12/28/2022]
|
26
|
Shimizu K, Takahashi M, Sato S, Saiki A, Nagayama D, Harada M, Miyazaki C, Takahara A, Shirai K. Rapid Rise of Cardio-Ankle Vascular Index May Be a Trigger of Cerebro-Cardiovascular Events: Proposal of Smooth Muscle Cell Contraction Theory for Plaque Rupture. Vasc Health Risk Manag 2021; 17:37-47. [PMID: 33603388 PMCID: PMC7886257 DOI: 10.2147/vhrm.s290841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/22/2021] [Indexed: 11/23/2022] Open
Abstract
Cardiovascular diseases have been recognized as the main cause of death all over the world. Recently, the established cardio-ankle vascular index (CAVI) has become known as an index of arterial stiffness of the arterial tree from the origin of the aorta to the ankle. CAVI reflects the progress of arteriosclerosis, and a rapid rise in CAVI indicates arterial smooth muscle cell contraction. Considering the vasculature of the atheroma where vasa vasorum penetrates the smooth muscle cell layer and supplies blood to the intimal atheromatous lesion, a rapid rise of CAVI means "choked" atheroma. Thus, we proposed a "smooth muscle cell contraction" hypothesis of plaque rupture.
Collapse
Affiliation(s)
- Kazuhiro Shimizu
- Department of Internal Medicine, Toho University Sakura Medical Center, Sakura, Chiba, Japan
| | - Mao Takahashi
- Department of Internal Medicine, Toho University Sakura Medical Center, Sakura, Chiba, Japan
| | - Shuji Sato
- Department of Internal Medicine, Toho University Sakura Medical Center, Sakura, Chiba, Japan
| | - Atsuhito Saiki
- Department of Internal Medicine, Toho University Sakura Medical Center, Sakura, Chiba, Japan
| | - Daiji Nagayama
- Department of Internal Medicine, Toho University Sakura Medical Center, Sakura, Chiba, Japan
| | - Masashi Harada
- Department of Neurosurgery, Toho University Omori Medical Center, Omori, Tokyo, Japan
| | - Chikao Miyazaki
- Department of Neurosurgery, Toho University Omori Medical Center, Omori, Tokyo, Japan
| | - Akira Takahara
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, Japan
| | - Kohji Shirai
- Department of Internal Medicine, Toho University Sakura Medical Center, Sakura, Chiba, Japan
| |
Collapse
|
27
|
Mechanistic Insights into the Oxidized Low-Density Lipoprotein-Induced Atherosclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5245308. [PMID: 33014272 PMCID: PMC7512065 DOI: 10.1155/2020/5245308] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
Dyslipidaemia has a prominent role in the onset of notorious atherosclerosis, a disease of medium to large arteries. Atherosclerosis is the prime root of cardiovascular events contributing to the most considerable number of morbidity and mortality worldwide. Factors like cellular senescence, genetics, clonal haematopoiesis, sedentary lifestyle-induced obesity, or diabetes mellitus upsurge the tendency of atherosclerosis and are foremost pioneers to definitive transience. Accumulation of oxidized low-density lipoproteins (Ox-LDLs) in the tunica intima triggers the onset of this disease. In the later period of progression, the build-up plaques rupture ensuing thrombosis (completely blocking the blood flow), causing myocardial infarction, stroke, and heart attack, all of which are common atherosclerotic cardiovascular events today. The underlying mechanism is very well elucidated in literature but the therapeutic measures remains to be unleashed. Researchers tussle to demonstrate a clear understanding of treating mechanisms. A century of research suggests that lowering LDL, statin-mediated treatment, HDL, and lipid-profile management should be of prime interest to retard atherosclerosis-induced deaths. We shall brief the Ox-LDL-induced atherogenic mechanism and the treating measures in line to impede the development and progression of atherosclerosis.
Collapse
|
28
|
Wernly B, Pernow J, Kelm M, Jung C. The role of arginase in the microcirculation in cardiovascular disease. Clin Hemorheol Microcirc 2020; 74:79-92. [PMID: 31743994 DOI: 10.3233/ch-199237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the microcirculation, the exchange of nutrients, water, gas, hormones, and waste takes place, and it is divided into the three main sections arterioles, capillaries, and venules. Disturbances in the microcirculation can be measured using surrogate parameters or be visualized either indirectly or directly.Arginase is a manganese metalloenzyme hydrolyzing L-arginine to urea and L-ornithine. It is located in different cell types, including vascular cells, but also in circulating cells such as red blood cells. A variety of pro-inflammatory factors, as well as interleukins, stimulate increased arginase expression. An increase in arginase activity consequently leads to a consumption of L-arginine needed for nitric oxide (NO) production by endothelial NO synthase. A vast body of evidence convincingly showed that increased arginase activity is associated with endothelial dysfunction in larger vessels of the vascular tree. Of note, arginase also influences the microcirculation. Arginase inhibition leads to an increase in the bioavailability of NO and reduces superoxide levels, resulting in improved endothelial function. Arginase inhibition might, therefore, be a potent treatment strategy in cardiovascular medicine. Recently, red blood cells emerged as an influential player in the development from increased arginase activity to endothelial dysfunction. As red blood cells directly interact with the microcirculation in gas exchange, this could constitute a potential link between arginase activity, endothelial dysfunction and microcirculatory disturbances.The aim of this review is to summarize recent findings revealing the role of arginase in regulating vascular function with particular emphasis on the microcirculation.
Collapse
Affiliation(s)
- Bernhard Wernly
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - John Pernow
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Malte Kelm
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Christian Jung
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
29
|
Verin AD, Batori R, Kovacs-Kasa A, Cherian-Shaw M, Kumar S, Czikora I, Karoor V, Strassheim D, Stenmark KR, Gerasimovskaya EV. Extracellular adenosine enhances pulmonary artery vasa vasorum endothelial cell barrier function via Gi/ELMO1/Rac1/PKA-dependent signaling mechanisms. Am J Physiol Cell Physiol 2020; 319:C183-C193. [PMID: 32432925 DOI: 10.1152/ajpcell.00505.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The vasa vasorum (VV), the microvascular network around large vessels, has been recognized as an important contributor to the pathological vascular remodeling in cardiovascular diseases. In bovine and rat models of hypoxic pulmonary hypertension (PH), we have previously shown that chronic hypoxia profoundly increased pulmonary artery (PA) VV permeability, associated with infiltration of inflammatory and progenitor cells in the arterial wall, perivascular inflammation, and structural vascular remodeling. Extracellular adenosine was shown to exhibit a barrier-protective effect on VV endothelial cells (VVEC) via cAMP-independent mechanisms, which involved adenosine A1 receptor-mediated activation of Gi-phosphoinositide 3-kinase-Akt pathway and actin cytoskeleton remodeling. Using VVEC isolated from the adventitia of calf PA, in this study we investigated in more detail the mechanisms linking Gi activation to downstream barrier protection pathways. Using a small-interference RNA (siRNA) technique and transendothelial electrical resistance assay, we found that the adaptor protein, engulfment and cell motility 1 (ELMO1), the tyrosine phosphatase Src homology region 2 domain-containing phosphatase-2, and atypical Gi- and Rac1-mediated protein kinase A activation are implicated in VVEC barrier enhancement. In contrast, the actin-interacting GTP-binding protein, girdin, and the p21-activated kinase 1 downstream target, LIM kinase, are not involved in this response. In addition, adenosine-dependent cytoskeletal rearrangement involves activation of cofilin and inactivation of ezrin-radixin-moesin regulatory cytoskeletal proteins, consistent with a barrier-protective mechanism. Collectively, our data indicate that targeting adenosine receptors and downstream barrier-protective pathways in VVEC may have a potential translational significance in developing pharmacological approach for the VV barrier protection in PH.
Collapse
Affiliation(s)
| | - Robert Batori
- Augusta University Vascular Biology Center, Augusta, Georgia
| | | | | | - Sanjiv Kumar
- Augusta University Vascular Biology Center, Augusta, Georgia
| | - Istvan Czikora
- Augusta University Vascular Biology Center, Augusta, Georgia
| | - Vijaya Karoor
- Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Derek Strassheim
- Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Kurt R Stenmark
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | | |
Collapse
|
30
|
Strassheim D, Karoor V, Nijmeh H, Weston P, Lapel M, Schaack J, Sullivan T, Dempsey EC, Stenmark KR, Gerasimovskaya E. c-Jun, Foxo3a, and c-Myc Transcription Factors are Key Regulators of ATP-Mediated Angiogenic Responses in Pulmonary Artery Vasa Vasorum Endothelial Cells. Cells 2020; 9:cells9020416. [PMID: 32054096 PMCID: PMC7072142 DOI: 10.3390/cells9020416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022] Open
Abstract
Angiogenic vasa vasorum (VV) expansion plays an essential role in the pathogenesis of hypoxia-induced pulmonary hypertension (PH), a cardiovascular disease. We previously showed that extracellular ATP released under hypoxic conditions is an autocrine/paracrine, the angiogenic factor for pulmonary artery (PA) VV endothelial cells (VVECs), acting via P2Y purinergic receptors (P2YR) and the Phosphoinositide 3-kinase (PI3K)-Akt-Mammalian Target of Rapamycin (mTOR) signaling. To further elucidate the molecular mechanisms of ATP-mediated VV angiogenesis, we determined the profile of ATP-inducible transcription factors (TFs) in VVECs using a TranSignal protein/DNA array. C-Jun, c-Myc, and Foxo3 were found to be upregulated in most VVEC populations and formed nodes connecting several signaling networks. siRNA-mediated knockdown (KD) of these TFs revealed their critical role in ATP-induced VVEC angiogenic responses and the regulation of downstream targets involved in tissue remodeling, cell cycle control, expression of endothelial markers, cell adhesion, and junction proteins. Our results showed that c-Jun was required for the expression of ATP-stimulated angiogenic genes, c-Myc was repressive to anti-angiogenic genes, and Foxo3a predominantly controlled the expression of anti-apoptotic and junctional proteins. The findings from our study suggest that pharmacological targeting of the components of P2YR-PI3K-Akt-mTOR axis and specific TFs reduced ATP-mediated VVEC angiogenic response and may have a potential translational significance in attenuating pathological vascular remodeling.
Collapse
Affiliation(s)
- Derek Strassheim
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (V.K.); (T.S.); (E.C.D.); (K.R.S.)
| | - Vijaya Karoor
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (V.K.); (T.S.); (E.C.D.); (K.R.S.)
| | - Hala Nijmeh
- Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA; (H.N.); (P.W.); (M.L.)
| | - Philip Weston
- Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA; (H.N.); (P.W.); (M.L.)
| | - Martin Lapel
- Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA; (H.N.); (P.W.); (M.L.)
| | - Jerome Schaack
- Department of Microbiology, University of Colorado Denver, Aurora, CO 80045, USA;
| | - Timothy Sullivan
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (V.K.); (T.S.); (E.C.D.); (K.R.S.)
| | - Edward C. Dempsey
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (V.K.); (T.S.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Kurt R. Stenmark
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (V.K.); (T.S.); (E.C.D.); (K.R.S.)
- Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA; (H.N.); (P.W.); (M.L.)
| | - Evgenia Gerasimovskaya
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (V.K.); (T.S.); (E.C.D.); (K.R.S.)
- Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA; (H.N.); (P.W.); (M.L.)
- Correspondence: ; Tel.: +1-303-724-5614
| |
Collapse
|
31
|
Tinajero MG, Gotlieb AI. Recent Developments in Vascular Adventitial Pathobiology: The Dynamic Adventitia as a Complex Regulator of Vascular Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:520-534. [PMID: 31866347 DOI: 10.1016/j.ajpath.2019.10.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022]
Abstract
The adventitia, the outer layer of the blood vessel wall, may be the most complex layer of the wall and may be the master regulator of wall physiology and pathobiology. This review proposes a major shift in thinking to apply a functional lens to the adventitia rather than only a structural lens. Human and experimental in vivo and in vitro studies show that the adventitia is a dynamic microenvironment in which adventitial and perivascular adipose tissue cells initiate and regulate important vascular functions in disease, especially intimal hyperplasia and atherosclerosis. Although well away from the blood-wall interface, where much pathology has been identified, the adventitia has a profound influence on the population of intimal and medial endothelial, macrophage, and smooth muscle cell function. Vascular injury and dysfunction of the perivascular adipose tissue promote expansion of the vasa vasorum, activation of fibroblasts, and differentiation of myofibroblasts. This regulates further biologic processes, including fibroblast and myofibroblast migration and proliferation, inflammation, immunity, stem cell activation and regulation, extracellular matrix remodeling, and angiogenesis. A debate exists as to whether the adventitia initiates disease or is just an important participant. We describe a mechanistic model of adventitial function that brings together current knowledge and guides the design of future investigations to test specific hypotheses on adventitial pathobiology.
Collapse
Affiliation(s)
- Maria G Tinajero
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Avrum I Gotlieb
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
32
|
Fayad ZA, Swirski FK, Calcagno C, Robbins CS, Mulder W, Kovacic JC. Monocyte and Macrophage Dynamics in the Cardiovascular System: JACC Macrophage in CVD Series (Part 3). J Am Coll Cardiol 2019; 72:2198-2212. [PMID: 30360828 DOI: 10.1016/j.jacc.2018.08.2150] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/16/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022]
Abstract
It has long been recognized that the bone marrow is the primary site of origin for circulating monocytes that may later become macrophages in atherosclerotic lesions. However, only in recent times has the complex relationship among the bone marrow, monocytes/macrophages, and atherosclerotic plaques begun to be understood. Moreover, the systemic nature of these interactions, which also involves additional compartments such as extramedullary hematopoietic sites (i.e., spleen), is only just becoming apparent. In parallel, progressive advances in imaging and cell labeling techniques have opened new opportunities for in vivo imaging of monocyte/macrophage trafficking in atherosclerotic lesions and at the systemic level. In this Part 3 of a 4-part review series covering the macrophage in cardiovascular disease, the authors intersect systemic biology with advanced imaging techniques to explore monocyte and macrophage dynamics in the cardiovascular system, with an emphasis on how events at the systemic level might affect local atherosclerotic plaque biology.
Collapse
Affiliation(s)
- Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York; The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Filip K Swirski
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Claudia Calcagno
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Clinton S Robbins
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Peter Munk Cardiac Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Willem Mulder
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
33
|
Marchio P, Guerra-Ojeda S, Vila JM, Aldasoro M, Victor VM, Mauricio MD. Targeting Early Atherosclerosis: A Focus on Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8563845. [PMID: 31354915 PMCID: PMC6636482 DOI: 10.1155/2019/8563845] [Citation(s) in RCA: 370] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/10/2019] [Accepted: 05/19/2019] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is a chronic vascular inflammatory disease associated to oxidative stress and endothelial dysfunction. Oxidation of low-density lipoprotein (LDL) cholesterol is one of the key factors for the development of atherosclerosis. Nonoxidized LDL have a low affinity for macrophages, so they are not themselves a risk factor. However, lowering LDL levels is a common clinical practice to reduce oxidation and the risk of major events in patients with cardiovascular diseases (CVD). Atherosclerosis starts with dysfunctional changes in the endothelium induced by disturbed shear stress which can lead to endothelial and platelet activation, adhesion of monocytes on the activated endothelium, and differentiation into proinflammatory macrophages, which increase the uptake of oxidized LDL (oxLDL) and turn into foam cells, exacerbating the inflammatory signalling. The atherosclerotic process is accelerated by a myriad of factors, such as the release of inflammatory chemokines and cytokines, the generation of reactive oxygen species (ROS), growth factors, and the proliferation of vascular smooth muscle cells. Inflammation and immunity are key factors for the development and complications of atherosclerosis, and therefore, the whole atherosclerotic process is a target for diagnosis and treatment. In this review, we focus on early stages of the disease and we address both biomarkers and therapeutic approaches currently available and under research.
Collapse
Affiliation(s)
- Patricia Marchio
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Sol Guerra-Ojeda
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - José M. Vila
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Martín Aldasoro
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Victor M. Victor
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Maria D. Mauricio
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| |
Collapse
|
34
|
Si-Miao-Yong-An on promoting the maturation of Vasa Vasorum and stabilizing atherosclerotic plaque in ApoE-/- mice: An experimental study. Biomed Pharmacother 2019; 114:108785. [DOI: 10.1016/j.biopha.2019.108785] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/23/2019] [Accepted: 03/13/2019] [Indexed: 02/06/2023] Open
|
35
|
Vascular Protection by Ethanol Extract of Morus alba Root Bark: Endothelium-Dependent Relaxation of Rat Aorta and Decrease of Smooth Muscle Cell Migration and Proliferation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7905763. [PMID: 30515235 PMCID: PMC6236707 DOI: 10.1155/2018/7905763] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/23/2018] [Indexed: 11/18/2022]
Abstract
Morus alba (white mulberry) is native to the northern part of Korea and popularly used as a traditional medicine due to its numerous health benefits against human's disease. However, the possibility that M. alba may also affect the cardiovascular system remains unexplored. This study sought to investigate the vascular protective effects of the root bark extract of M. alba (MAE). Vascular reactivity was performed in organ baths using isolated rat thoracic aorta, while platelet derived growth factor (PDGF) induced proliferation and migration of vascular smooth muscle cells (VSMCs) were studied by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) and wound healing assay, respectively. MAE evoked a concentration dependent vasorelaxation following endothelium-dependent pathway. However, vessel relaxations in response to MAE were markedly reduced after endothelium removal; treatment of endothelial nitric oxide synthase inhibitor, guanylyl cyclase inhibitor, and nonspecific potassium channel inhibitor, however, was not altered by cyclooxygenase inhibitor. Furthermore, MAE also significantly blunted contractile response to vasoconstrictor agent, phenylephrine. Taken together, the current evidence revealed that MAE is a potent endothelium-dependent vasodilator and this effect was involved in, at least in part, nitric oxide cyclic-guanosine monophosphate (NO-cGMP) pathway in combination with potassium (K+) channel activation. Moreover, MAE inhibited proliferation and migration of VSMCs induced by PDGF. Therefore, MAE could be a promising candidate of natural medicine for preventing and controlling cardiovascular diseases linked with endothelial dysfunction.
Collapse
|
36
|
Loesch A, Dashwood MR. Vasa vasorum inside out/outside in communication: a potential role in the patency of saphenous vein coronary artery bypass grafts. J Cell Commun Signal 2018; 12:631-643. [PMID: 30078142 PMCID: PMC6235771 DOI: 10.1007/s12079-018-0483-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 07/30/2018] [Indexed: 01/08/2023] Open
Abstract
The saphenous vein (SV) is the most commonly used conduit for revascularization in patients undergoing coronary artery bypass surgery (CABG). The patency rate of this vessel is inferior to the internal thoracic artery (ITA). In the majority of CABG procedures the ITA is removed with its outer pedicle intact whereas the (human) SV (hSV) is harvested with pedicle removed. The vasa vasorum, a microvessel network providing the adventitia and media with oxygen and nutrients, is more pronounced and penetrates deeper towards the lumen in veins than in arteries. When prepared in conventional CABG the vascular trauma caused when removing the hSV pedicle damages the vasa vasorum, a situation affecting transmural flow potentially impacting on graft performance. In patients, where the hSV is harvested with pedicle intact, the vasa vasorum is preserved and transmural blood flow restored at graft insertion and completion of CABG. By maintaining blood supply to the hSV wall, apart from oxygen and nutrients, the vasa vasorum may also transport factors potentially beneficial to graft performance. Studies, using either corrosion casts or India ink, have shown the course of vasa vasorum in animal SV as well as in hSV. In addition, there is some evidence that vasa vasorum of hSV terminate in the vessel lumen based on ex vivo perfusion, histological and ultrastructural studies. This review describes the preparation of the hSV as a bypass conduit in CABG and its performance compared with the ITA as well as how and why its patency might be improved by harvesting with minimal trauma in a way that preserves an intact vasa vasorum.
Collapse
Affiliation(s)
- Andrzej Loesch
- Centre for Rheumatology and Connective Tissue Diseases, Division of Medicine, University College London Medical School, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK.
| | - Michael R Dashwood
- Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London Medical School, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK.
| |
Collapse
|
37
|
Sedding DG, Boyle EC, Demandt JAF, Sluimer JC, Dutzmann J, Haverich A, Bauersachs J. Vasa Vasorum Angiogenesis: Key Player in the Initiation and Progression of Atherosclerosis and Potential Target for the Treatment of Cardiovascular Disease. Front Immunol 2018; 9:706. [PMID: 29719532 PMCID: PMC5913371 DOI: 10.3389/fimmu.2018.00706] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/22/2018] [Indexed: 01/08/2023] Open
Abstract
Plaque microvascularization and increased endothelial permeability are key players in the development of atherosclerosis, from the initial stages of plaque formation to the occurrence of acute cardiovascular events. First, endothelial dysfunction and increased permeability facilitate the entry of diverse inflammation-triggering molecules and particles such as low-density lipoproteins into the artery wall from the arterial lumen and vasa vasorum (VV). Recognition of entering particles by resident phagocytes in the vessel wall triggers a maladaptive inflammatory response that initiates the process of local plaque formation. The recruitment and accumulation of inflammatory cells and the subsequent release of several cytokines, especially from resident macrophages, stimulate the expansion of existing VV and the formation of new highly permeable microvessels. This, in turn, exacerbates the deposition of pro-inflammatory particles and results in the recruitment of even more inflammatory cells. The progressive accumulation of leukocytes in the intima, which trigger proliferation of smooth muscle cells in the media, results in vessel wall thickening and hypoxia, which further stimulates neoangiogenesis of VV. Ultimately, this highly inflammatory environment damages the fragile plaque microvasculature leading to intraplaque hemorrhage, plaque instability, and eventually, acute cardiovascular events. This review will focus on the pivotal roles of endothelial permeability, neoangiogenesis, and plaque microvascularization by VV during plaque initiation, progression, and rupture. Special emphasis will be given to the underlying molecular mechanisms and potential therapeutic strategies to selectively target these processes.
Collapse
Affiliation(s)
- Daniel G Sedding
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Erin C Boyle
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Jasper A F Demandt
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Judith C Sluimer
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands.,BHF Centre for Cardiovascular Science, Edinburgh University, Edinburgh, United Kingdom
| | - Jochen Dutzmann
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|