2
|
Vasishta S, Umakanth S, Adiga P, Joshi MB. Extrinsic and intrinsic factors influencing metabolic memory in type 2 diabetes. Vascul Pharmacol 2021; 142:106933. [PMID: 34763098 DOI: 10.1016/j.vph.2021.106933] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/18/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022]
Abstract
Direct and indirect influence of pathological conditions in Type 2 Diabetes (T2D) on vasculature manifests in micro and/or macro vascular complications that act as a major source of morbidity and mortality. Although preventive therapies exist to control hyperglycemia, diabetic subjects are always at risk to accrue vascular complications. One of the hypotheses explained is 'glycemic' or 'metabolic' memory, a process of permanent epigenetic change in different cell types whereby diabetes associated vascular complications continue despite glycemic control by antidiabetic drugs. Epigenetic mechanisms including DNA methylation possess a strong influence on the association between environment and gene expression, thus indicating its importance in the pathogenesis of a complex disease such as T2D. The vascular system is more prone to environmental influences and present high flexibility in response to physiological and pathological challenges. DNA methylation based epigenetic changes during metabolic memory are influenced by sustained hyperglycemia, inflammatory mediators, gut microbiome composition, lifestyle modifications and gene-nutrient interactions. Hence, understanding underlying mechanisms in manifesting vascular complications regulated by DNA methylation is of high clinical importance. The review provides an insight into various extrinsic and intrinsic factors influencing the regulation of DNA methyltransferases contributing to the pathogenesis of vascular complications during T2D.
Collapse
Affiliation(s)
- Sampara Vasishta
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shashikiran Umakanth
- Department of Medicine, Dr. T.M.A. Pai Hospital, Manipal Academy of Higher Education, Udupi 576101, Karnataka, India
| | - Prashanth Adiga
- Department of Reproductive Medicine and Surgery (MARC), Kasturba Hospital, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
3
|
Strand KA, Lu S, Mutryn MF, Li L, Zhou Q, Enyart BT, Jolly AJ, Dubner AM, Moulton KS, Nemenoff RA, Koch KA, LaBarbera DV, Weiser-Evans MCM. High Throughput Screen Identifies the DNMT1 (DNA Methyltransferase-1) Inhibitor, 5-Azacytidine, as a Potent Inducer of PTEN (Phosphatase and Tensin Homolog): Central Role for PTEN in 5-Azacytidine Protection Against Pathological Vascular Remodeling. Arterioscler Thromb Vasc Biol 2020; 40:1854-1869. [PMID: 32580634 DOI: 10.1161/atvbaha.120.314458] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Our recent work demonstrates that PTEN (phosphatase and tensin homolog) is an important regulator of smooth muscle cell (SMC) phenotype. SMC-specific PTEN deletion promotes spontaneous vascular remodeling and PTEN loss correlates with increased atherosclerotic lesion severity in human coronary arteries. In mice, PTEN overexpression reduces plaque area and preserves SMC contractile protein expression in atherosclerosis and blunts Ang II (angiotensin II)-induced pathological vascular remodeling, suggesting that pharmacological PTEN upregulation could be a novel therapeutic approach to treat vascular disease. Approach and Results: To identify novel PTEN activators, we conducted a high-throughput screen using a fluorescence based PTEN promoter-reporter assay. After screening ≈3400 compounds, 11 hit compounds were chosen based on level of activity and mechanism of action. Following in vitro confirmation, we focused on 5-azacytidine, a DNMT1 (DNA methyltransferase-1) inhibitor, for further analysis. In addition to PTEN upregulation, 5-azacytidine treatment increased expression of genes associated with a differentiated SMC phenotype. 5-Azacytidine treatment also maintained contractile gene expression and reduced inflammatory cytokine expression after PDGF (platelet-derived growth factor) stimulation, suggesting 5-azacytidine blocks PDGF-induced SMC de-differentiation. However, these protective effects were lost in PTEN-deficient SMCs. These findings were confirmed in vivo using carotid ligation in SMC-specific PTEN knockout mice treated with 5-azacytidine. In wild type controls, 5-azacytidine reduced neointimal formation and inflammation while maintaining contractile protein expression. In contrast, 5-azacytidine was ineffective in PTEN knockout mice, indicating that the protective effects of 5-azacytidine are mediated through SMC PTEN upregulation. CONCLUSIONS Our data indicates 5-azacytidine upregulates PTEN expression in SMCs, promoting maintenance of SMC differentiation and reducing pathological vascular remodeling in a PTEN-dependent manner.
Collapse
Affiliation(s)
- Keith A Strand
- From the Division of Renal Diseases and Hypertension, Department of Medicine (K.A.S., S.L., M.F.M., A.J.J., A.M.D., R.A.N., M.C.M.W.-E.), University of Colorado, Anschutz Medical Campus, Aurora
| | - Sizhao Lu
- From the Division of Renal Diseases and Hypertension, Department of Medicine (K.A.S., S.L., M.F.M., A.J.J., A.M.D., R.A.N., M.C.M.W.-E.), University of Colorado, Anschutz Medical Campus, Aurora
| | - Marie F Mutryn
- From the Division of Renal Diseases and Hypertension, Department of Medicine (K.A.S., S.L., M.F.M., A.J.J., A.M.D., R.A.N., M.C.M.W.-E.), University of Colorado, Anschutz Medical Campus, Aurora
| | - Linfeng Li
- School of Pharmacy and Pharmaceutical Sciences (L.L., Q.Z., D.V.L.), University of Colorado, Anschutz Medical Campus, Aurora
| | - Qiong Zhou
- School of Pharmacy and Pharmaceutical Sciences (L.L., Q.Z., D.V.L.), University of Colorado, Anschutz Medical Campus, Aurora
| | - Blake T Enyart
- School of Medicine, Consortium for Fibrosis Research & Translation (B.T.E., K.S.M., R.A.N., K.A.K., M.C.M.W.-E.), University of Colorado, Anschutz Medical Campus, Aurora.,Division of Cardiology, Department of Medicine (B.T.E., K.S.M., K.A.K.), University of Colorado, Anschutz Medical Campus, Aurora
| | - Austin J Jolly
- From the Division of Renal Diseases and Hypertension, Department of Medicine (K.A.S., S.L., M.F.M., A.J.J., A.M.D., R.A.N., M.C.M.W.-E.), University of Colorado, Anschutz Medical Campus, Aurora
| | - Allison M Dubner
- From the Division of Renal Diseases and Hypertension, Department of Medicine (K.A.S., S.L., M.F.M., A.J.J., A.M.D., R.A.N., M.C.M.W.-E.), University of Colorado, Anschutz Medical Campus, Aurora
| | - Karen S Moulton
- School of Medicine, Consortium for Fibrosis Research & Translation (B.T.E., K.S.M., R.A.N., K.A.K., M.C.M.W.-E.), University of Colorado, Anschutz Medical Campus, Aurora.,Division of Cardiology, Department of Medicine (B.T.E., K.S.M., K.A.K.), University of Colorado, Anschutz Medical Campus, Aurora
| | - Raphael A Nemenoff
- From the Division of Renal Diseases and Hypertension, Department of Medicine (K.A.S., S.L., M.F.M., A.J.J., A.M.D., R.A.N., M.C.M.W.-E.), University of Colorado, Anschutz Medical Campus, Aurora.,School of Medicine, Consortium for Fibrosis Research & Translation (B.T.E., K.S.M., R.A.N., K.A.K., M.C.M.W.-E.), University of Colorado, Anschutz Medical Campus, Aurora
| | - Keith A Koch
- School of Medicine, Consortium for Fibrosis Research & Translation (B.T.E., K.S.M., R.A.N., K.A.K., M.C.M.W.-E.), University of Colorado, Anschutz Medical Campus, Aurora.,Division of Cardiology, Department of Medicine (B.T.E., K.S.M., K.A.K.), University of Colorado, Anschutz Medical Campus, Aurora
| | - Daniel V LaBarbera
- School of Pharmacy and Pharmaceutical Sciences (L.L., Q.Z., D.V.L.), University of Colorado, Anschutz Medical Campus, Aurora
| | - Mary C M Weiser-Evans
- From the Division of Renal Diseases and Hypertension, Department of Medicine (K.A.S., S.L., M.F.M., A.J.J., A.M.D., R.A.N., M.C.M.W.-E.), University of Colorado, Anschutz Medical Campus, Aurora.,School of Medicine, Consortium for Fibrosis Research & Translation (B.T.E., K.S.M., R.A.N., K.A.K., M.C.M.W.-E.), University of Colorado, Anschutz Medical Campus, Aurora
| |
Collapse
|
7
|
Gevaert AB, Boen JRA, Segers VF, Van Craenenbroeck EM. Heart Failure With Preserved Ejection Fraction: A Review of Cardiac and Noncardiac Pathophysiology. Front Physiol 2019; 10:638. [PMID: 31191343 PMCID: PMC6548802 DOI: 10.3389/fphys.2019.00638] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is one of the largest unmet clinical needs in 21st-century cardiology. It is a complex disorder resulting from the influence of several comorbidities on the endothelium. A derangement in nitric oxide bioavailability leads to an intricate web of physiological abnormalities in the heart, blood vessels, and other organs. In this review, we examine the contribution of cardiac and noncardiac factors to the development of HFpEF. We zoom in on recent insights on the role of comorbidities and microRNAs in HFpEF. Finally, we address the potential of exercise training, which is currently the only available therapy to improve aerobic capacity and quality of life in HFpEF patients. Unraveling the underlying mechanisms responsible for this improvement could lead to new biomarkers and therapeutic targets for HFpEF.
Collapse
Affiliation(s)
- Andreas B Gevaert
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Antwerp, Belgium.,Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium.,Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Jente R A Boen
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Antwerp, Belgium.,Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Vincent F Segers
- Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium.,Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Emeline M Van Craenenbroeck
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Antwerp, Belgium.,Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium.,Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
8
|
Giurgescu C, Nowak AL, Gillespie S, Nolan TS, Anderson CM, Ford JL, Hood DB, Williams KP. Neighborhood Environment and DNA Methylation: Implications for Cardiovascular Disease Risk. J Urban Health 2019; 96:23-34. [PMID: 30635842 PMCID: PMC6430282 DOI: 10.1007/s11524-018-00341-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Exposure to chronic stress such as living in disadvantaged neighborhoods has been related to cardiovascular disease (CVD). Chronic stress may increase the risk for CVD by increasing levels of systemic inflammation (e.g., higher levels of pro-inflammatory cytokines). Differential DNA methylation of inflammation-related candidate genes is also related to higher risk for CVD. Thus, the purpose of this review was to examine the association of neighborhood disadvantage with DNA methylation. A search of literature was conducted using Scopus, CINAHL, PubMed, Medline, and Embase databases. The keywords neighborhood, neighborhood disorder, neighborhood crime, neighborhood violence, neighborhood safety, built environment, and housing vacancy were combined with the keywords DNA methylation and epigenetics. Five studies were included in this review (n = 3 adult blood samples and n = 2 fetal blood samples). Four of the five studies reported an association of neighborhood socioeconomic status, social environment, and crime with either global or gene-specific DNA methylation. Only two studies examined the association of neighborhood disadvantage with inflammation-related candidate genes. One of these studies found a significant association of neighborhood socioeconomic disadvantage and social environment with DNA methylation in inflammation-related candidate genes. Thus, data are limited on the association between neighborhood disadvantage and DNA methylation of inflammation-related candidate genes, as well as genes in other potential mechanistic pathways including psychosocial stress, toxin response, and adiposity. Future studies should examine these associations and the potential epigenetic mechanisms by which neighborhood disadvantage increases the risk for CVD.
Collapse
Affiliation(s)
- Carmen Giurgescu
- College of Nursing, The Ohio State University, Columbus, OH, USA.
| | | | | | - Timiya S Nolan
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Cindy M Anderson
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Jodi L Ford
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Daryl B Hood
- College of Public Health, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
9
|
Portelli SS, Robertson EN, Malecki C, Liddy KA, Hambly BD, Jeremy RW. Epigenetic influences on genetically triggered thoracic aortic aneurysm. Biophys Rev 2018; 10:1241-1256. [PMID: 30267337 PMCID: PMC6233334 DOI: 10.1007/s12551-018-0460-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022] Open
Abstract
Genetically triggered thoracic aortic aneurysms (TAAs) account for 30% of all TAAs and can result in early morbidity and mortality in affected individuals. Epigenetic factors are now recognised to influence the phenotype of many genetically triggered conditions and have become an area of interest because of the potential for therapeutic manipulation. Major epigenetic modulators include DNA methylation, histone modification and non-coding RNA. This review examines epigenetic modulators that have been significantly associated with genetically triggered TAAs and their potential utility for translation to clinical practice.
Collapse
Affiliation(s)
- Stefanie S Portelli
- Discipline of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Elizabeth N Robertson
- Discipline of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- Cardiology Department, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Cassandra Malecki
- Discipline of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kiersten A Liddy
- Discipline of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Brett D Hambly
- Discipline of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Richmond W Jeremy
- Discipline of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- Cardiology Department, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|