1
|
Zhao S, Zheng Q, Wang H, Fan X. Nitrogen in landfills: Sources, environmental impacts and novel treatment approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171725. [PMID: 38492604 DOI: 10.1016/j.scitotenv.2024.171725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/05/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Nitrogen (N) accumulation in landfills is a pressing environmental concern due to its diverse sources and significant environmental impacts. However, there is relatively limited attention and research focus on N in landfills as it is overshadowed by other more prominent pollutants. This study comprehensively examines the sources of N in landfills, including food waste contributing to 390 million tons of N annually, industrial discharges, and sewage treatment plant effluents. The environmental impacts of N in landfills are primarily manifested in N2O emissions and leachate with high N concentrations. To address these challenges, this study presents various mitigation and management strategies, including N2O reduction measures and novel NH4+ removal techniques, such as electrochemical technologies, membrane separation processes, algae-based process, and other advanced oxidation processes. However, a more in-depth understanding of the complexities of N cycling in landfills is required, due to the lack of long-term monitoring data and the presence of intricate interactions and feedback mechanisms. To ultimately achieve optimized N management and minimized adverse environmental impacts in landfill settings, future prospects should emphasize advancements in monitoring and modeling technologies, enhanced understanding of microbial ecology, implementation of circular economy principles, application of innovative treatment technologies, and comprehensive landfill design and planning.
Collapse
Affiliation(s)
- Shan Zhao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Qiteng Zheng
- College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Hao Wang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Xinyao Fan
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| |
Collapse
|
2
|
Khan A, Ibrar I, Mirdad A, Al-Juboori RA, Deka P, Subbiah S, Altaee A. Novel Approach to Landfill Wastewater Treatment Fouling Mitigation: Air Gap Membrane Distillation with Tin Sulfide-Coated PTFE Membrane. MEMBRANES 2023; 13:membranes13050483. [PMID: 37233544 DOI: 10.3390/membranes13050483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023]
Abstract
This study addressed the fouling issue in membrane distillation (M.D.) technology, a promising method for water purification and wastewater reclamation. To enhance the anti-fouling properties of the M.D. membrane, a tin sulfide (TS) coating onto polytetrafluoroethylene (PTFE) was proposed and evaluated with air gap membrane distillation (AGMD) using landfill leachate wastewater at high recovery rates (80% and 90%). The presence of TS on the membrane surface was confirmed using various techniques, such as Field Emission Scanning Electron Microscopy (FE-SEM), Fourier Transform Infrared Spectroscopy (FT-IR), Energy Dispersive Spectroscopy (EDS), contact angle measurement, and porosity analysis. The results indicated the TS-PTFE membrane exhibited better anti-fouling properties than the pristine PTFE membrane, and its fouling factors (FFs) were 10.4-13.1% compared to 14.4-16.5% for the PTFE membrane. The fouling was attributed to pore blockage and cake formation of carbonous and nitrogenous compounds. The study also found that physical cleaning with deionized (DI) water effectively restored the water flux, with more than 97% recovered for the TS-PTFE membrane. Additionally, the TS-PTFE membrane showed better water flux and product quality at 55 °C and excellent stability in maintaining the contact angle over time compared to the PTFE membrane.
Collapse
Affiliation(s)
- Abdulaziz Khan
- Mechanical and Mechatronic Engineering (MME), University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
- Mechanical Department at Taif Technical College, Technical and Vocational Training Corporation (TVTC), Riyadh 11564, Saudi Arabia
| | - Ibrar Ibrar
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
| | - Abeer Mirdad
- Faculty of Engineering and Information Technology, University of Technology Sydney, 5 Broadway, Sydney, NSW 2007, Australia
| | - Raed A Al-Juboori
- NYUAD Water Research Centre, New York University-Abu Dhabi Campus, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Priyamjeet Deka
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Senthilmurugan Subbiah
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Ali Altaee
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
| |
Collapse
|
3
|
de Almeida R, Porto RF, Quintaes BR, Bila DM, Lavagnolo MC, Campos JC. A review on membrane concentrate management from landfill leachate treatment plants: The relevance of resource recovery to close the leachate treatment loop. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:264-284. [PMID: 35924944 PMCID: PMC9972246 DOI: 10.1177/0734242x221116212] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/25/2022] [Indexed: 05/19/2023]
Abstract
Membrane filtration processes have been used to treat landfill leachate. On the other hand, closing the leachate treatment loop and finding a final destination for landfill leachate membrane concentrate (LLMC) - residual stream of membrane systems - is challenging for landfill operators. The re-introduction of LLMC into the landfill is typical; however, this approach is critical as concentrate pollutants may accumulate in the leachate treatment facility. From that, leachate concentrate management based on resource recovery rather than conventional treatment and disposal is recommended. This work comprehensively reviews the state-of-the-art of current research on LLMC management from leachate treatment plants towards a resource recovery approach. A general recovery train based on the main LLMC characteristics for implementing the best recovery scheme is presented in this context. LLMCs could be handled by producing clean water and add-value materials. This paper offers critical insights into LLMC management and highlights future research trends.
Collapse
Affiliation(s)
- Ronei de Almeida
- School of Chemistry, Inorganic
Processes Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro,
Brazil
- Department of Civil, Environmental and
Architectural Engineering, University of Padova, Padova, Italy
- Ronei de Almeida, School of Chemistry,
Inorganic Processes Department, Universidade Federal do Rio de Janeiro, 149
Athos da Silveira Ramos Avenue, laboratory I-124, Rio de Janeiro, RJ 21941-909,
Brazil.
| | - Raphael Ferreira Porto
- School of Chemistry, Inorganic
Processes Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro,
Brazil
| | | | - Daniele Maia Bila
- Department of Sanitary and Environment
Engineering, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Cristina Lavagnolo
- Department of Civil, Environmental and
Architectural Engineering, University of Padova, Padova, Italy
| | - Juacyara Carbonelli Campos
- School of Chemistry, Inorganic
Processes Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro,
Brazil
| |
Collapse
|
4
|
Tałałaj IA. Performance of integrated sequencing batch reactor (SBR) and reverse osmosis (RO) process for leachate treatment: effect of pH. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:419-429. [PMID: 35669807 PMCID: PMC9163213 DOI: 10.1007/s40201-022-00788-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/01/2022] [Indexed: 06/15/2023]
Abstract
Purpose In this paper the performance and effectiveness of the reverse osmosis (RO) process for the biologically pretreated leachate was investigated. The RO process was carried out separately for two different pH: 8.0 and 9.3. Methods A general pollution parameters as well as organic and inorganic indicators were determined in raw, biologically pretreated and RO treated leachate. The performance characteristics of the reverse osmosis system were made on the basis of permeate flux, electroconductivity removal rate, concentration factor and efficiency in removal of analyzed parameters. Results The use of SBR pretreatment had very good efficiency in BOD (97.3%) and ammonia nitrogen (95.4%) removal. The lowest effectivity was observed for chloride (11.6%), boron (3.9%) and TDS (1.2%). Pretreated leachate was subjected to RO system. The normalized average flux was 0.53 (42.3 L/m2·h) for pH = 8.0 and 0.68 (33.5 L/m2·h) for pH = 9.3. The lower membrane fouling at higher pH can be explained by electrostatic repulsion between the negatively charged membrane surface and organic substances. Independently of the process pH, a two-step membrane fouling was observed. The greatest differences in removal rates were observed for boron, which had a higher retention rate at higher pH, and ammonia nitrogen, whose removal rate decreased at higher pH. The obtained permeate pH after RO process was lower than the feed pH in two analyzed value of pH. Conclusions The higher flux value at pH = 9.3 is result of high content of organic matter in leachate, which is better rejected at higher pH because of higher electrostatic repulsion between organic matter and membrane surface. This indicates that the organic matter content should be taken into account when determining the operating parameters (pH values) of the RO system.
Collapse
Affiliation(s)
- Izabela Anna Tałałaj
- Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland
| |
Collapse
|
5
|
Wijekoon P, Koliyabandara PA, Cooray AT, Lam SS, Athapattu BCL, Vithanage M. Progress and prospects in mitigation of landfill leachate pollution: Risk, pollution potential, treatment and challenges. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126627. [PMID: 34343881 DOI: 10.1016/j.jhazmat.2021.126627] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/22/2021] [Accepted: 07/08/2021] [Indexed: 05/23/2023]
Abstract
The escalating loads of municipal solid waste (MSW) end up in open dumps and landfills, producing continuous flows of landfill leachate. The risk of incorporating highly toxic landfill leachate into environment is important to be evaluated and measured in order to facilitate decision making for landfill leachate management and treatment. Leachate pollution index (LPI) provides quantitative measures of the potential environmental pollution by landfill leachate and information about the environmental quality adjacent to a particular landfill. According to LPI values, most developing countries show high pollution potentials from leachate, mainly due to high organic waste composition and low level of waste management techniques. A special focus on leachate characterization studies with LPI and its integration to treatment, which has not been focused in previous reviews on landfill leachate, is given here. Further, the current review provides a summary related to leachate generation, composition, characterization, risk assessment and treatment together with challenges and perspectives in the sector with its focus to developing nations. Potential commercial and industrial applications of landfill leachate is discussed in the study to provide insights into its sustainable management which is original for the study.
Collapse
Affiliation(s)
- Prabuddhi Wijekoon
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | | | - Asitha T Cooray
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Bandunee C L Athapattu
- Department of Civil Engineering, Faculty of Engineering Technology, The Open University of Sri Lanka, Nawala, Nugegoda 10250, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka.
| |
Collapse
|
6
|
Ibrar I, Yadav S, Ganbat N, Samal AK, Altaee A, Zhou JL, Nguyen TV. Feasibility of H 2O 2 cleaning for forward osmosis membrane treating landfill leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:113024. [PMID: 34139645 DOI: 10.1016/j.jenvman.2021.113024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/12/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
This study reports landfill leachate treatment by the forward osmosis (FO) process using hydrogen peroxide (H2O2) for membrane cleaning. Although chemical cleaning is an effective method for fouling control, it could compromise membrane integrity. Thus, understanding the impact of chemical cleaning on the forward osmosis membrane is essential to improving the membrane performance and lifespan. Preliminary results revealed a flux recovery of 98% in the AL-FS mode (active layer facing feed solution) and 90% in the AL-DS (draw solution faces active layer) using 30% H2O2 solution diluted to 3% by pure water. The experimental work investigated the effects of chemical cleaning on the polyamide active and polysulfone support layers since the FO membrane could operate in both orientations. Results revealed that polysulfone support layer was more sensitive to H2O2 damage than the polyamide active at a neutral pH. The extended exposure of thin-film composite (TFC) FO membrane to H2O2 was investigated, and the active layer tolerated H2O2 for 72 h, and the support layer for only 40 h. Extended operation of the TFC FO membrane in the AL-FS based on a combination of physical (hydraulic flushing with DI water) and H2O2 was reported, and chemical cleaning with H2O2 could still recover 92% of the flux.
Collapse
Affiliation(s)
- Ibrar Ibrar
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Sudesh Yadav
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Namuun Ganbat
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Akshaya K Samal
- Centre for Nano and Material Science (CNMS), Jain University, India
| | - Ali Altaee
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia.
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Tien Vinh Nguyen
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| |
Collapse
|
7
|
Bai F, Tian H, Ma J. Landfill leachate treatment through the combination of genetically engineered bacteria Rhodococcus erythropolis expressing Nirs and AMO and membrane filtration processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114061. [PMID: 32268229 DOI: 10.1016/j.envpol.2020.114061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 06/11/2023]
Abstract
This study developed a process of genetically engineered bacteria Rhodococcus erythropolis expressing Nirs and AMO combined with membrane bioreactor (MBR), nanofiltration (NF) and reverse osmosis (RO) membrane (pRho-NA-MNR) for advanced treatment of landfill leachate. Results demonstrated that pRho-NA-MNR presented higher removal rate of chemical oxygen demand (COD), biological oxygen demand (BOD), ammonia nitrogen (N-NH4), total nitrogen (TN) and total organic carbon (TOC) than activated sludge (AS-MNR) system. Administration of pRho-NA increased nitrification by converting N-NH4 to nitrite (N-NO2) and Nitrate (N-NO3), and promoting denitrification by converting N-NO2 to nitrogen (N2) in the landfill leachate treatment, promoted the pH control, increased sludge activity and effluent yield, shortened phase length adaptation under alternating aerobic-anoxic conditions. pRho-NA increased the nitration and denitrifying rate in the aerobic and anaerobic stage in the system by increasing Cyt cd1 and Cyt c expression in the activated sludge. Nitrogen removal by nitrification and denitrification was positively correlated to the concentration of Nirs and AMO expression. Treatment with pRho-NA promoted pollutant removal efficiency of membrane bioreactor, nanofiltration and reverse osmosis membrane processes in landfill leachate. In conclusion, data suggest that pRho-NA-MNR facilitates the formation of granular sludge and enhances comparable removal of nitrogen and organic compounds, indicating the practice of this process should be considered in landfill leachate treatment system.
Collapse
Affiliation(s)
- Fuliang Bai
- State Key Laboratory of Urban Water and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China; Lubin Environmental Protection Equipment (Shanghai) Co., Ltd, Shanghai, PR China
| | - Hui Tian
- School of Life Science, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China.
| |
Collapse
|
8
|
Cingolani D, Fatone F, Frison N, Spinelli M, Eusebi AL. Pilot-scale multi-stage reverse osmosis (DT-RO) for water recovery from landfill leachate. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 76:566-574. [PMID: 29551229 DOI: 10.1016/j.wasman.2018.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
Recovery of high quality water from municipal landfill leachate was studied by three-stage disc tube reverse osmosis optimized in pilot-scale. Following UF-membrane-assisted activated sludge plant, overall 46.5 tons of leachate were post-treated in real environment and analyzed for conventional contaminants and hazardous compounds (e.g. heavy metals, boron, selenium) throughout operation of membrane system. Operating pressure ranged from 21 to 76 bar, while permeate flux varied in the range 7.1-32.5 L m-2 h-1. Rejection factors of specific ions were related to the pressure and global removals were assessed for each stage (e.g. E%COD = 92.4-99.2%, E%NH4 = 46.2-95.8%, E%NOx = 84.8-97.9%; E%TDS = 88-95.5%). Boron removal was assessed in the range 34-48%, so as to require the third stage to reach standard for discharge or reuse. Two stages were sufficient to reach water recovery higher than 91%. Long-term operation and mathematical modeling demonstrated how the Δπ/ΔP ratio can support the decisions for membrane cleaning and predictive maintenance: permeability decline was associated to the ratio increase from 0.72 to 0.73 to 1.13-1.21.
Collapse
Affiliation(s)
- D Cingolani
- Department of Science and Engineering of Materials, Environment and Urban Planning (SIMAU), Università Politecnica delle Marche, Via Brecce Bianche, 12, Ancona, Italy.
| | - F Fatone
- Department of Science and Engineering of Materials, Environment and Urban Planning (SIMAU), Università Politecnica delle Marche, Via Brecce Bianche, 12, Ancona, Italy
| | - N Frison
- Department of Biotechnology, University of Verona, Via Le Grazie 15, 37134 Verona, Italy
| | - M Spinelli
- Department of Science and Engineering of Materials, Environment and Urban Planning (SIMAU), Università Politecnica delle Marche, Via Brecce Bianche, 12, Ancona, Italy
| | - A L Eusebi
- Department of Science and Engineering of Materials, Environment and Urban Planning (SIMAU), Università Politecnica delle Marche, Via Brecce Bianche, 12, Ancona, Italy
| |
Collapse
|
9
|
|
10
|
Moody CM, Townsend TG. A comparison of landfill leachates based on waste composition. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 63:267-274. [PMID: 27742232 DOI: 10.1016/j.wasman.2016.09.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 06/06/2023]
Abstract
Samples of leachate were collected from fourteen landfills in the state of Florida, United States that contained primarily putrescible waste (municipal solid waste, MSW, and yard waste), MSW incinerator (MSWI) ash, or a combination of both. Assessment of leachates included trace metals, anions, and nutrients in order to create a mass balance of total dissolved solids (TDS). As expected from previously literature, MSW leached a complex matrix of contaminants while MSWI ash leachate TDS was more than 98% metallic salts. The pH of the MSWI ash leachate samples was slightly acidic or neutral in character, which is contradictory to the results commonly reported in the literature. The cause of this is hypothesized to be a short-circuiting of rainfall in the landfill due to low hydraulic conductivities reported in ash landfills. The difference in pH likely contributed to the findings with respect to MSWI ash-characteristic trace metals in leachates such as aluminum. The authors have concluded that the research findings in this study are an indication of the differences between laboratory leachate quality studies and the conditions encountered in the field. In addition, a characterization of organic matter using qualitative and quantitative analyses determined that COD is not an accurate indicator of organic matter in leachates from landfills with a significant fraction of MSWI ash.
Collapse
Affiliation(s)
- Chris M Moody
- Department of Environmental Engineering Sciences, University of Florida, P.O. Box 116450, Gainesville, FL 32611-6450, USA; Arcadis U.S., 3109 West Dr. Martin Luther King Jr. Suite 350, Tampa, FL 33607, USA
| | - Timothy G Townsend
- Department of Environmental Engineering Sciences, University of Florida, P.O. Box 116450, Gainesville, FL 32611-6450, USA.
| |
Collapse
|
11
|
Jurczyk Ł, Koc-Jurczyk J. Quantitative dynamics of ammonia-oxidizers during biological stabilization of municipal landfill leachate pretreated by Fenton's reagent at neutral pH. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 63:310-326. [PMID: 28159310 DOI: 10.1016/j.wasman.2017.01.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/04/2017] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
The application of multi-stage systems including biological step, for the treatment of leachate from municipal landfills, is economically and technologically justified. When microbial activity is utilized as 2nd stage of treatment, the task of 1st stage is to increase the bioavailability of organic matter. In this work, the effect of advanced oxidation process by Fenton's reagent for treatment efficiency of landfill leachate in the sequencing batch reactor was assessed. The quantitative dynamics of bacteria taking a part in ammonia removal process was evaluated by determination of number of DNA copies of 16S rRNA and amoA. Products of neutral pH chemical oxidation, had a definite positive impact on the quantity of β-proteobacteria 16S rRNA, whereas the same gene specified for Nitrospira sp. as well as amoA did not show a significant increase during the process of biological treatment, regardless of whether the reactor was fed with raw leachate or chemically pre-treated.
Collapse
Affiliation(s)
- Łukasz Jurczyk
- University of Rzeszow, Department of Biology and Agriculture, Cwiklinskiej 1b Str., 35-601 Rzeszow, Poland.
| | - Justyna Koc-Jurczyk
- University of Rzeszow, Department of Biology and Agriculture, Cwiklinskiej 1b Str., 35-601 Rzeszow, Poland
| |
Collapse
|
12
|
Zayen A, Schories G, Sayadi S. Incorporation of an anaerobic digestion step in a multistage treatment system for sanitary landfill leachate. WASTE MANAGEMENT (NEW YORK, N.Y.) 2016; 53:32-39. [PMID: 27177466 DOI: 10.1016/j.wasman.2016.04.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 06/05/2023]
Abstract
A combined process of anaerobic digestion (AD), lime precipitation (P), microfiltration (MF) and reverse osmosis (RO) was developed for the treatment of landfill leachate (LFL). The raw LFL contained high amount of organic matter with an elevated humic acids concentration. During the anaerobic digestion step, the organic loading rate was increased progressively up to 3.3gCODL(-1)d(-1). The upflow anaerobic fixed bed reactor showed a great performance in terms of COD removal efficiency and biogas production. During precipitation experiments, lime dose was optimized to obtain the maximum reduction of conductivity to prevent the fouling of RO membranes. This process was compared to a second one in which the AD step was eliminated. Both treatment plans achieved similar removal efficiencies. However, AD step significantly improved the process by reducing the needed lime dose by 50%. It has also increased MF and RO fluxes by 35% and 40% at a steady state, respectively. The dominant fouling mechanism was cake layer formation during both MF tests. This process seems to be a promising approach for the treatment of LFL and its industrial application should be further investigated.
Collapse
Affiliation(s)
- Amal Zayen
- Environmental Bioprocesses Laboratory, LMI Cosys-Med, Centre of Biotechnology of Sfax, BP: « 1177 », 3018 Sfax, Tunisia; ttz Bremerhaven, Water, Energy and Landscape Management, An der Karlstadt 6, 27568 Bremerhaven, Germany
| | - Gerhard Schories
- ttz Bremerhaven, Water, Energy and Landscape Management, An der Karlstadt 6, 27568 Bremerhaven, Germany
| | - Sami Sayadi
- Environmental Bioprocesses Laboratory, LMI Cosys-Med, Centre of Biotechnology of Sfax, BP: « 1177 », 3018 Sfax, Tunisia.
| |
Collapse
|
13
|
Talalaj IA. Removal of nitrogen compounds from landfill leachate using reverse osmosis with leachate stabilization in a buffer tank. ENVIRONMENTAL TECHNOLOGY 2015; 36:1091-1097. [PMID: 25383650 DOI: 10.1080/09593330.2014.982207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this paper, a removal of nitrogen compounds from a landfill leachate during reverse osmosis (RO) was evaluated. The treatment facility consists of a buffer tank and a RO system. The removal rate of N─NH4, [Formula: see text] and [Formula: see text] in the buffer tank reached 14%, 91% and 41%, respectively. The relatively low concentration of organic carbon limits N─NH4 oxidation in the buffer tank. The removal rate for the total organic nitrogen (TON) was 47%. The removal rate in RO was 99% for [Formula: see text], 84.1% for [Formula: see text] and 41% for [Formula: see text]. The accumulation of [Formula: see text] may be the result of a low pH, which before the RO process is reduced to a value of 6.0-6.5. Besides it, the cause for a low removal rate of the [Formula: see text] in the buffer tank and during RO may be free ammonia, which can inhibit the [Formula: see text] oxidation. The removal rates of total inorganic nitrogen and TON in the RO treatment facility were similar being 99% and 98.5%, respectively.
Collapse
Affiliation(s)
- Izabela Anna Talalaj
- a Department of Environmental Engineering Systems , Bialystok University of Technology , Wiejska 45A Street 15-351 Bialystok , Poland
| |
Collapse
|
14
|
Talalaj IA. Mineral and organic compounds in leachate from landfill with concentrate recirculation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:2622-2633. [PMID: 25194843 DOI: 10.1007/s11356-014-3533-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/28/2014] [Indexed: 06/03/2023]
Abstract
The effect of a reverse osmosis concentrate recirculation on the mineral and organic compounds in a landfill leachate was investigated. Investigated was the quality of a leachate from two landfills operated for different periods (a 20-year-old Cell A and a 1-year-old Cell B), where the concentrate was recirculated. Examined were general parameters (conductivity, pH), organic compounds (biochemical oxygen demand (BOD), chemical oxygen demand (COD), total organic nitrogen, BOD/COD), and inorganic compounds (nitrogen ammonia, sulfite, sulfate, cyanide, boron, chloride, ferrous, zinc, chrome, copper). The findings from the first year of investigation showed that over the initial period of recirculation, the concentration of organic compounds (BOD, COD) increased, but after 6 months their values stabilized. It indicates that the concentrate recirculation accelerated organic decomposition, especially in the new landfill Cell. The analysis of inorganic parameters showed that recirculation landfills produce a leachate with a higher concentration of N-NH4, and Cl(-). In case of the old landfill Cell, an increase in B and Fe was also noticeable. These compounds are cyclically washed out from a waste dump and require an additional pretreatment in order to exclude them from recirculation cycle. The increased concentration of Cu, Zn, and Fe was noticed during the initial months of recirculation and in the season of intense atmospheric precipitation in the leachate from both Cells. Higher values of electro conductivity, Cl(-), N-NH4 (+), B, and Fe in the leachate from the old field indicate that the attenuation capacity of this landfill is close to exhaustion.
Collapse
Affiliation(s)
- Izabela Anna Talalaj
- Department of Environmental Engineering Systems, Bialystok University of Technology, 45A Wiejska Street, 15-351, Bialystok, Poland,
| |
Collapse
|
15
|
Hunce SY, Akgul D, Demir G, Mertoglu B. Solidification/stabilization of landfill leachate concentrate using different aggregate materials. WASTE MANAGEMENT (NEW YORK, N.Y.) 2012; 32:1394-1400. [PMID: 22498574 DOI: 10.1016/j.wasman.2012.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 03/03/2012] [Accepted: 03/10/2012] [Indexed: 05/31/2023]
Abstract
The application of reverse osmosis for the treatment of landfill leachate is becoming widespread in Turkey as well as in Europe. A major drawback of this process is the production of concentrate, which could be as much as 30% of the feed stream, and high concentrations of salts and contaminants. The reverse osmosis concentrate is disposed of by using several methods including re-infiltration, drying, incineration and solidification/stabilization. In this study, solidification/stabilization (S/S) technology was studied for the treatment of reverse osmosis concentrate produced from landfill leachate. In order to benefit from its capability to absorb heavy metals, ammonia and some other pollutants, zeolite and different aggregate materials were used in solidification experiments. Main pollutants in the leachate concentrate, TOC, DOC, TDS and ammonia were successfully solidified and approximately 1% of TOC, DOC, TDS and ammonia remained in the eluate water. The results indicated that the landfill disposal limits could be attained by solidification/stabilization process.
Collapse
Affiliation(s)
- Selda Yigit Hunce
- Department of Environmental Engineering, Marmara University, 34722 Goztepe, Istanbul, Turkey
| | | | | | | |
Collapse
|
16
|
Cossu R, Lai T, Pivnenko K. Waste washing pre-treatment of municipal and special waste. JOURNAL OF HAZARDOUS MATERIALS 2012; 207-208:65-72. [PMID: 21968117 DOI: 10.1016/j.jhazmat.2011.07.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 07/11/2011] [Accepted: 07/27/2011] [Indexed: 05/31/2023]
Abstract
Long-term pollution potential in landfills is mainly related to the quality of leachate. Waste can be conveniently treated prior to landfilling with an aim to minimizing future emissions. Washing of waste represents a feasible pre-treatment method focused on controlling the leachable fraction of residues and relevant impact. In this study, non-recyclable plastics originating from source segregation, mechanical-biological treated municipal solid waste (MSW), bottom ash from MSW incineration and automotive shredder residues (ASR) were treated and the removal efficiency of washing pre-treatment prior to landfilling was evaluated. Column tests were performed to simulate the behaviour of waste in landfill under aerobic and anaerobic conditions. The findings obtained revealed how waste washing treatment (WWT) allowed the leachability of contaminants from waste to be reduced. Removal rates exceeding 65% were obtained for dissolved organic carbon (DOC), chemical oxygen demand (COD) and Total Kjeldahl Nitrogen (TKN). A percentage decrease of approximately 60% was reached for the leachable fraction of chlorides, sulphates, fluoride and metals, as proved by a reduction in electric conductivity values (70%).
Collapse
Affiliation(s)
- Raffaello Cossu
- Department of Hydraulic, Maritime, Environmental and Geotechnical Engineering, University of Padua, Lungargine Rovetta, 8-35127, Padova, Italy.
| | | | | |
Collapse
|
17
|
Wu Y, Zhou S, Zheng K, Ye X, Qin F. Mathematical model analysis of Fenton oxidation of landfill leachate. WASTE MANAGEMENT (NEW YORK, N.Y.) 2011; 31:468-474. [PMID: 20943366 DOI: 10.1016/j.wasman.2010.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 09/02/2010] [Accepted: 09/14/2010] [Indexed: 05/30/2023]
Abstract
The treatment of concentrated landfill leachate rejected from reverse osmosis (RO) with Fenton process was studied, and the system model was developed through the examination of reaction kinetics. The leachate is typically non-biodegradable with low BOD(5)/COD ratio 0.01. The oxidation reactions of Fenton process was found to be a two-stage process, where a fast initial reaction (H(2)O(2)/Fe(2+)) was followed by a much slower one (H(2)O(2)/Fe(3+)). A simple and more accurate mathematics model based on COD and TOC removals has been derived successfully to describe the two-stage reaction kinetics. The two corresponding parameters involved in this model have been identified as the initial reaction rate and the maximum oxidation removal efficiency, respectively. It was found to be very useful for evaluating the performance of Fenton system and/or for process design using the two parameters under different experimental conditions.
Collapse
Affiliation(s)
- Yanyu Wu
- College of Environmental Science and Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | | | | | | | | |
Collapse
|
18
|
Umar M, Aziz HA, Yusoff MS. Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate. WASTE MANAGEMENT (NEW YORK, N.Y.) 2010; 30:2113-21. [PMID: 20675113 DOI: 10.1016/j.wasman.2010.07.003] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 06/29/2010] [Accepted: 07/06/2010] [Indexed: 05/12/2023]
Abstract
Advanced oxidation processes (AOPs) such as Fenton, electro-Fenton and photo-Fenton have been applied effectively to remove refractory organics from landfill leachate. The Fenton reaction is based on the addition of hydrogen peroxide to the wastewater or leachate in the presence of ferrous salt as a catalyst. The use of this technique has proved to be one of the best compromises for landfill leachate treatment because of its environmental and economical advantages. Fenton process has been used successfully to mineralize wide range of organic constituents present in landfill leachate particularly those recalcitrant to biological degradation. The present study reviews the use of Fenton and related processes in terms of their increased application to landfill leachate. The effects of various operating parameters and their optimum ranges for maximum COD and color removal are reviewed with the conclusion that the Fenton and related processes are effective and competitive with other technologies for degradation of both raw and pre-treated landfill leachate.
Collapse
Affiliation(s)
- Muhammad Umar
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| | | | | |
Collapse
|
19
|
Yu J, Zhou S, Wang W. Combined treatment of domestic wastewater with landfill leachate by using A2/O process. JOURNAL OF HAZARDOUS MATERIALS 2010; 178:81-88. [PMID: 20133053 DOI: 10.1016/j.jhazmat.2010.01.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 01/02/2010] [Accepted: 01/09/2010] [Indexed: 05/28/2023]
Abstract
A set of anaerobic-anoxic-aerobic (A(2)/O) bioreactor system was designed and used to treat domestic wastewater mixed with landfill leachate in Datansha Sewage Treatment Plant in Guangzhou, south China. The optimal mixing proportion of combined treatment of domestic wastewater with landfill leachate and the optimal operating conditions for the removal efficiencies of nitrogen by using Taguchi orthogonal array test was conducted to evaluate the influence of parameters. The results showed that: the optimal volume ratio of landfill leachate and domestic wastewater in the A(2)/O process was 1:500. The average removal efficiencies of NH(4)(+)-N, TN and COD was achieved to be 96.5%, 61.0% and 81.7%, respectively in the case of the hydraulic retention time (HRT) of 11h, dissolved oxygen (DO) of 3 mg L(-1), the mixed-liquid return ratio (r) of 200% and sludge return ratio (R) of 80% in the case of the confirmatory experiment. The pilot scale (3.8m(3)) investigation results were applied in the large-scale (220,000 m(3)/d) combined treatment of sewage wastewater with landfill leachate in Guangzhou Datansha Domestic Sewage Wastewater Treatment Plant. The removal efficiencies of COD, NH(4)(+)-N, T-N and T-P were 82.65%, 92.69%, 57.10% and 76.55%, respectively.
Collapse
Affiliation(s)
- Jianheng Yu
- College of Environmental Science and Engineering, South China University of Technology, Guangzhou 510006, PR China
| | | | | |
Collapse
|