1
|
Geier J, Bredács M, Witschnigg A, Vollprecht D, Oreski G. Analysis of different polypropylene waste bales: Evaluation of the source material for PP recycling. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2024; 42:767-775. [PMID: 38318839 PMCID: PMC11373154 DOI: 10.1177/0734242x241227369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The use of the polypropylene (PP) recyclates in certain processing methods and applications is still limited by their quality. The high melt flow rate (MFR) and the inconsistent properties of recyclates are common obstacles to their use. Therefore, this work aims to identify possible reasons for the low and inconsistent quality of PP recyclates depending on the source material in PP waste bales. The levels of polymeric and non-polymeric contaminants were assessed. As mixing of different PP grades is an issue for the MFR, the proportions of the different processing grades were also investigated and the potential of sorting by processing method to produce lower MFR recyclates was assessed. The analysis showed that the waste bales, although pre-sorted, still contained high amounts of contaminants. Injection moulding was found to be the predominant processing method in the bales, explaining the high MFR of PP recyclates. However, a sufficiently high amount of low MFR products was found in the bales, which seems promising for the production of low MFR recyclates. Seasonal variations in the composition of the waste bales were identified as one of the reasons for the inconsistent qualities of recyclates. These results highlight the importance of proper sorting and treatment of PP waste bales prior to reprocessing in order to obtain high-quality recycled products.
Collapse
Affiliation(s)
- Jutta Geier
- Polymer Competence Center Leoben GmbH, Leoben, Austria
- Chair of Materials Science and Testing of Polymers, University of Leoben, Leoben, Austria
| | | | | | - Daniel Vollprecht
- Chair of Resource and Chemical Engineering, University of Augsburg, Augsburg, Germany
| | - Gernot Oreski
- Polymer Competence Center Leoben GmbH, Leoben, Austria
- Chair of Materials Science and Testing of Polymers, University of Leoben, Leoben, Austria
| |
Collapse
|
2
|
Guo J, Luo C, Wittkowski C, Fehr I, Chong Z, Kitzberger M, Alassali A, Zhao X, Leineweber R, Feng Y, Kuchta K. Screening the Impact of Surfactants and Reaction Conditions on the De-Inkability of Different Printing Ink Systems for Plastic Packaging. Polymers (Basel) 2023; 15:2220. [PMID: 37177366 PMCID: PMC10180929 DOI: 10.3390/polym15092220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
One of the major applications (40% in Europe) of plastic is packaging, which is often printed to display required information and to deliver an attractive aesthetic for marketing purposes. However, printing ink can cause contamination in the mechanical recycling process. To mitigate this issue, the use of surfactants in an alkaline washing process, known as de-inking, has been employed to remove printing ink and improve the quality of recyclates. Despite the existence of this technology, there are currently no data linking the de-inking efficiency with typical printing ink compositions. Additionally, it is necessary to investigate the de-inking process under the process parameters of existing recycling plants, including temperature, NaOH concentration, and retention time. This study aims to evaluate the performance of commonly used printing inks with different compositions under various washing scenarios for plastic recycling in conjunction with different de-inking detergents containing surfactants or mixtures of surfactants. The results indicate that the pigments applied to the ink have no significant effect on the de-inking process, except for carbon black (PBk 7). Nitrocellulose (NC) binder systems exhibit high de-inkability (over 95%) under the condition of 55 °C and 1 wt.% NaOH. However, crosslinked binder systems can impede the de-inking effect, whether used as a binder system or as an overprint varnish (OPV). The de-inking process requires heating to 55 °C with 1 wt.% NaOH to achieve a substantial effect. Based on the findings in this work, breaking the Van der Waals forces, hydrogen bonds, and covalent bonds between the printing ink and plastic film is an essential step to achieve the de-inking effect. Further research is needed to understand the interaction between surfactants and printing inks, enabling the development of de-inkable printing inks and high-performance surfactants that allow for de-inking with less energy consumption. The surfactant and NaOH have a synergistic effect in cleaning the printing ink. NaOH provides a negative surface charge for the adsorption of the cationic head of the surfactant and can hydrolyze the covalent bonds at higher concentrations (>2 wt.%).
Collapse
Affiliation(s)
- Jinyang Guo
- Circular Resource Engineering and Management (CREM), Hamburg University of Technology (TUHH), Blohm Str. 15, 21079 Hamburg, Germany
| | - Cong Luo
- Circular Resource Engineering and Management (CREM), Hamburg University of Technology (TUHH), Blohm Str. 15, 21079 Hamburg, Germany
| | | | - Ingo Fehr
- Siegwerk Druckfarben AG_Co.KGaA, Alfred-Keller-Str. 55, 53721 Siegburg, Germany
| | - Zhikai Chong
- Circular Resource Engineering and Management (CREM), Hamburg University of Technology (TUHH), Blohm Str. 15, 21079 Hamburg, Germany
| | - Magdalena Kitzberger
- Circular Resource Engineering and Management (CREM), Hamburg University of Technology (TUHH), Blohm Str. 15, 21079 Hamburg, Germany
| | - Ayah Alassali
- Circular Resource Engineering and Management (CREM), Hamburg University of Technology (TUHH), Blohm Str. 15, 21079 Hamburg, Germany
| | - Xuezhi Zhao
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Ralf Leineweber
- Siegwerk Druckfarben AG_Co.KGaA, Alfred-Keller-Str. 55, 53721 Siegburg, Germany
| | - Yujun Feng
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Kerstin Kuchta
- Circular Resource Engineering and Management (CREM), Hamburg University of Technology (TUHH), Blohm Str. 15, 21079 Hamburg, Germany
| |
Collapse
|
3
|
The Key to Solving Plastic Packaging Wastes: Design for Recycling and Recycling Technology. Polymers (Basel) 2023; 15:polym15061485. [PMID: 36987265 PMCID: PMC10053126 DOI: 10.3390/polym15061485] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Confronted with serious environmental problems caused by the growing mountains of plastic packaging waste, the prevention and control of plastic waste has become a major concern for most countries. In addition to the recycling of plastic wastes, design for recycling can effectively prevent plastic packaging from turning into solid waste at the source. The reasons are that the design for recycling can extend the life cycle of plastic packaging and increase the recycling values of plastic waste; moreover, recycling technologies are helpful for improving the properties of recycled plastics and expanding the application market for recycled materials. This review systematically discussed the present theory, practice, strategies, and methods of design for recycling plastic packaging and extracted valuable advanced design ideas and successful cases. Furthermore, the development status of automatic sorting methods, mechanical recycling of individual and mixed plastic waste, as well as chemical recycling of thermoplastic and thermosetting plastic waste, were comprehensively summarized. The combination of the front-end design for recycling and the back-end recycling technologies can accelerate the transformation of the plastic packaging industry from an unsustainable model to an economic cycle model and then achieve the unity of economic, ecological, and social benefits.
Collapse
|
4
|
Kol R, De Somer T, D'hooge DR, Knappich F, Ragaert K, Achilias DS, De Meester S. State-Of-The-Art Quantification of Polymer Solution Viscosity for Plastic Waste Recycling. CHEMSUSCHEM 2021; 14:4071-4102. [PMID: 34324273 PMCID: PMC8519067 DOI: 10.1002/cssc.202100876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/14/2021] [Indexed: 05/17/2023]
Abstract
Solvent-based recycling is a promising approach for closed-loop recovery of plastic-containing waste. It avoids the energy cost to depolymerize the plastic but still allows to clean the polymer of contaminants and additives. However, viscosity plays an important role in handling the polymer solutions at high concentrations and in the cleaning steps. This Review addresses the viscosity behavior of polymer solutions, available data, and (mostly algebraic) models developed. The non-Newtonian viscosity models, such as the Carreau and Yasuda-Cohen-Armstrong models, pragmatically describe the viscosity of polymer solutions at different concentrations and shear rate ranges. This Review also describes how viscosity influences filtration and centrifugation processes, which are crucial steps in the cleaning of the polymer and includes a polystyrene/styrene case study.
Collapse
Affiliation(s)
- Rita Kol
- Laboratory for Circular Process Engineering (LCPE)Department of Green Chemistry and TechnologyGhent UniversityGraaf Karel De Goedelaan 58500KortrijkBelgium
- Laboratory of Polymer Chemistry and TechnologyDepartment of ChemistryAristotle University of Thessaloniki54124ThessalonikiGreece
| | - Tobias De Somer
- Laboratory for Circular Process Engineering (LCPE)Department of Green Chemistry and TechnologyGhent UniversityGraaf Karel De Goedelaan 58500KortrijkBelgium
| | - Dagmar R. D'hooge
- Laboratory for Chemical Technology (LCT) and Centre for Textiles Science and Engineering (CTSE)Department of MaterialsTextiles and Chemical EngineeringFaculty of Engineering and ArchitectureGhent UniversityTechnologiepark 125 and 70a9052ZwijnaardeBelgium
| | - Fabian Knappich
- Process Development for Polymer RecyclingFraunhofer Institute for Process Engineering and Packaging IVVGiggenhauser Straße 3585354FreisingGermany
- Technical University of MunichTUM School of Life Sciences WeihenstephanAlte Akademie 885354FreisingGermany
| | - Kim Ragaert
- Center for Polymer & Material Technologies (CPMT)Department of MaterialsTextiles and Chemical EngineeringFaculty of Engineering & ArchitectureGhent UniversityTechnologiepark 130B-9052ZwijnaardeBelgium
| | - Dimitris S. Achilias
- Laboratory of Polymer Chemistry and TechnologyDepartment of ChemistryAristotle University of Thessaloniki54124ThessalonikiGreece
| | - Steven De Meester
- Laboratory for Circular Process Engineering (LCPE)Department of Green Chemistry and TechnologyGhent UniversityGraaf Karel De Goedelaan 58500KortrijkBelgium
| |
Collapse
|
5
|
Gall M, Freudenthaler PJ, Fischer J, Lang RW. Characterization of Composition and Structure-Property Relationships of Commercial Post-Consumer Polyethylene and Polypropylene Recyclates. Polymers (Basel) 2021; 13:polym13101574. [PMID: 34068974 PMCID: PMC8156794 DOI: 10.3390/polym13101574] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
The current efforts in moving closer towards a circular plastics economy puts massive pressure on recycled plastics, especially recycled polyethylene (rPE) and recycled polypropylene (rPP) to enter new markets. Their market penetration remained low so far, despite PE and PP constituting the largest share of plastic wastes. However, with the current imperative of more circularity comes a new focus on performance of recyclates. Hence, a detailed understanding of composition and structure–property relationships of post-consumer recyclates has to be developed. Five recycling companies from the Austrian and German markets were asked to supply their purest high-quality rPE and rPP grades. These were characterized by differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA), and Fourier-transform infrared (FTIR) spectroscopy, and micro-imaging. Technological characterization included density measurements, determination of the melt flow rate (MFR), and Charpy impact testing. All recyclates contained diverse contaminants and inclusions ranging from legacy fillers like calcium carbonate to polymeric contaminants like polyamides or polyolefin cross-contamination. The overall amount, size, and distribution of contaminants varied significantly among suppliers. Furthermore, first structure–property relationships for polyolefin recyclates that link inorganic content and polymeric purity with density and impact performance could be derived.
Collapse
|
6
|
de Kort GW, Bouvrie L, Rastogi S, Wilsens CHRM. Thermoplastic PLA-LCP Composites: A Route toward Sustainable, Reprocessable, and Recyclable Reinforced Materials. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2020; 8:624-631. [PMID: 32953282 PMCID: PMC7493304 DOI: 10.1021/acssuschemeng.9b06305] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/22/2019] [Indexed: 05/05/2023]
Abstract
Reprocessing of reinforced composites is generally accompanied by loss of value and performance, as normally the reinforcing phase is damaged, or the matrix is lost in the process. In the search for more sustainable recyclable composite materials, we identify blends based on poly(l-lactide) (PLA) and thermotropic liquid crystalline polymers (LCP) as highly promising self-reinforced thermoplastic composites that can be recycled several times without loss in mechanical properties. For example, irrespective of the thermal history of the blend, injection molded bars of PLA containing 30 wt % LCP exhibit a tensile modulus of 6.4 GPa and tensile strength around 110 MPa, as long as the PLA matrix has a molecular weight of 170 kg mol-1 or higher. However, after several mechanical reprocessing steps, with the gradual decrease in the molecular weight of the PLA matrix, deterioration of the mechanical performance is observed. The origin of this behavior is found in the increasing LCP to PLA viscosity ratio: at a viscosity ratio below unity, the dispersed LCP droplets are effectively deformed into the desired fibrillar morphology during injection molding. However, deformation of LCP droplets becomes increasingly challenging when the viscosity ratio exceeds unity (i.e., when the PLA matrix viscosity decreases during consecutive reprocessing), eventually resulting in a nodular morphology, a poor molecular orientation of the LCP phase, and deterioration of the mechanical performance. This molecular weight dependency effectively places a limit on the maximum number of mechanical reprocessing steps before chemical upgrading of the PLA phase is required. Therefore, a feasible route to maintain or enhance the mechanical properties of the blend, independent of the number of reprocessing cycles, is proposed.
Collapse
|
7
|
Alsewailem FD, Alrefaie JK. Effect of contaminants and processing regime on the mechanical properties and moldability of postconsumer polyethylene terephthalate bottles. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 81:88-93. [PMID: 30527047 DOI: 10.1016/j.wasman.2018.09.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 06/09/2023]
Abstract
In this research, post-consumer polyethylene terephthalate (PC-PET) bottles were processed and characterized. The aim was to investigate the influence of number and type of melt processing steps and the presence of contaminants on the mechanical properties and moldability of PC-PET. Results and observations of current research showed that direct processing of PC-PET by injection molding (i.e. skipping melt extrusion step) is preferable in order not to deteriorate mechanical properties especially the toughness of PC-PET. Contaminants found in PC-PET waste stream include labels and bottle cap rings made of polyethylene (PE) and paper labels. Unlike PE contaminants, paper contaminants can drastically reduce toughness of PC-PET and severely affect its moldability. Molded samples of PC-PET containing traces of papers appeared incoherent and fragmented pieces due to poor adhesion between PET and papers. The recommendation given by current research is to remove paper contaminants from PC-PET waste stream before melt processing and melt processing steps should be limited.
Collapse
Affiliation(s)
- Fares D Alsewailem
- National Center for Petrochemicals Technology, Materials Research Institute King Abdulaziz City for Science and Technology (Kacst), P.O.Box 6086, Riyadh 11442, Saudi Arabia.
| | - Jamal K Alrefaie
- National Center for Petrochemicals Technology, Materials Research Institute King Abdulaziz City for Science and Technology (Kacst), P.O.Box 6086, Riyadh 11442, Saudi Arabia
| |
Collapse
|
8
|
Brouwer MT, Thoden van Velzen EU, Augustinus A, Soethoudt H, De Meester S, Ragaert K. Predictive model for the Dutch post-consumer plastic packaging recycling system and implications for the circular economy. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 71:62-85. [PMID: 29107509 DOI: 10.1016/j.wasman.2017.10.034] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/12/2017] [Accepted: 10/22/2017] [Indexed: 05/28/2023]
Abstract
The Dutch post-consumer plastic packaging recycling network has been described in detail (both on the level of packaging types and of materials) from the household potential to the polymeric composition of the recycled milled goods. The compositional analyses of 173 different samples of post-consumer plastic packaging from different locations in the network were combined to indicatively describe the complete network with material flow analysis, data reconciliation techniques and process technological parameters. The derived potential of post-consumer plastic packages in the Netherlands in 2014 amounted to 341 Gg net (or 20.2 kg net.cap-1.a-1). The complete recycling network produced 75.2 Gg milled goods, 28.1 Gg side products and 16.7 Gg process waste. Hence the net recycling chain yield for post-consumer plastic packages equalled 30%. The end-of-life fates for 35 different plastic packaging types were resolved. Additionally, the polymeric compositions of the milled goods and the recovered masses were derived with this model. These compositions were compared with experimentally determined polymeric compositions of recycled milled goods, which confirmed that the model predicts these compositions reasonably well. Also the modelled recovered masses corresponded reasonably well with those measured experimentally. The model clarified the origin of polymeric contaminants in recycled plastics, either sorting faults or packaging components, which gives directions for future improvement measures.
Collapse
Affiliation(s)
- Marieke T Brouwer
- Wageningen Food & Biobased Research, Post-box 17, 6700 AA Wageningen, The Netherlands; Top Institute Food & Nutrition, Wageningen, The Netherlands; Wageningen Food & Biobased Research, Wageningen, The Netherlands.
| | - Eggo U Thoden van Velzen
- Top Institute Food & Nutrition, Wageningen, The Netherlands; Wageningen Food & Biobased Research, Wageningen, The Netherlands.
| | - Antje Augustinus
- Top Institute Food & Nutrition, Wageningen, The Netherlands; Wageningen Food & Biobased Research, Wageningen, The Netherlands
| | - Han Soethoudt
- Wageningen Food & Biobased Research, Wageningen, The Netherlands
| | - Steven De Meester
- Department of Industrial Biological Sciences, Ghent University, Belgium
| | - Kim Ragaert
- Centre for Polymer & Material Technologies, Faculty of Engineering & Architecture, Ghent University, Belgium
| |
Collapse
|
9
|
Ragaert K, Delva L, Van Geem K. Mechanical and chemical recycling of solid plastic waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 69:24-58. [PMID: 28823699 DOI: 10.1016/j.wasman.2017.07.044] [Citation(s) in RCA: 760] [Impact Index Per Article: 108.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/14/2017] [Accepted: 07/30/2017] [Indexed: 05/21/2023]
Abstract
This review presents a comprehensive description of the current pathways for recycling of polymers, via both mechanical and chemical recycling. The principles of these recycling pathways are framed against current-day industrial reality, by discussing predominant industrial technologies, design strategies and recycling examples of specific waste streams. Starting with an overview on types of solid plastic waste (SPW) and their origins, the manuscript continues with a discussion on the different valorisation options for SPW. The section on mechanical recycling contains an overview of current sorting technologies, specific challenges for mechanical recycling such as thermo-mechanical or lifetime degradation and the immiscibility of polymer blends. It also includes some industrial examples such as polyethylene terephthalate (PET) recycling, and SPW from post-consumer packaging, end-of-life vehicles or electr(on)ic devices. A separate section is dedicated to the relationship between design and recycling, emphasizing the role of concepts such as Design from Recycling. The section on chemical recycling collects a state-of-the-art on techniques such as chemolysis, pyrolysis, fluid catalytic cracking, hydrogen techniques and gasification. Additionally, this review discusses the main challenges (and some potential remedies) to these recycling strategies and ground them in the relevant polymer science, thus providing an academic angle as well as an applied one.
Collapse
Affiliation(s)
- Kim Ragaert
- Center for Polymer & Material Technologies, Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering & Architecture, Ghent University, Technologiepark 915, B-9052 Zwijnaarde, Belgium.
| | - Laurens Delva
- Center for Polymer & Material Technologies, Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering & Architecture, Ghent University, Technologiepark 915, B-9052 Zwijnaarde, Belgium.
| | - Kevin Van Geem
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering & Architecture, Ghent University, Technologiepark 914, B-9052 Zwijnaarde, Belgium.
| |
Collapse
|