1
|
Wystalska K, Kowalczyk M, Kamizela T, Worwąg M, Zabochnicka M. Properties and Possibilities of Using Biochar Composites Made on the Basis of Biomass and Waste Residues Ferryferrohydrosol Sorbent. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2646. [PMID: 38893909 PMCID: PMC11173671 DOI: 10.3390/ma17112646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Biochar enriched with metals has an increased potential for sorption of organic and inorganic pollutants. The aim of the research was to identify the possibility of using biochar composites produced on the basis of waste plant biomass and waste FFH (ferryferrohydrosol) containing iron atoms, after CO2 capture. The composites were produced in a one-stage or two-stage pyrolysis process. Their selected properties were determined as follows: pH, ash content, C, H, N, O, specific surface area, microstructure and the presence of surface functional groups. The produced biochar and composites had different properties resulting from the production method and the additive used. The results of experiments on the removal of methylene blue (MB) from solutions allowed us to rank the adsorbents used according to the maximum dye removal value achieved as follows: BC1 (94.99%), B (84.61%), BC2 (84.09%), BC3 (83.23%) and BC4 (83.23%). In terms of maximum amoxicillin removal efficiency, the ranking is as follows: BC1 (55.49%), BC3 (23.51%), BC2 (18.13%), B (13.50%) and BC4 (5.98%). The maximum efficiency of diclofenac removal was demonstrated by adsorbents BC1 (98.71), BC3 (87.08%), BC4 (74.20%), B (36.70%) and BC2 (30.40%). The most effective removal of metals Zn, Pb and Cd from the solution was demonstrated by BC1 and BC3 composites. The final concentration of the tested metals after sorption using these composites was less than 1% of the initial concentration. The highest increase in biomass on prepared substrates was recorded for the BC5 composite. It was higher by 90% and 54% (for doses of 30 g and 15 g, respectively) in relation to the biomass growth in the soil without additives. The BC1 composite can be used in pollutant sorption processes. However, BC5 has great potential as a soil additive in crop yield and plant growth.
Collapse
Affiliation(s)
- Katarzyna Wystalska
- Faculty of Infrastructure and Environment, Czestochowa University of Technology, Brzeźnicka 60A, 42-200 Częstochowa, Poland; (M.K.); (T.K.); (M.W.); (M.Z.)
| | | | | | | | | |
Collapse
|
2
|
Sarvi M, Kainulainen A, Malk V, Kaseva J, Rasa K. Industrial pilot scale slow pyrolysis reduces the content of organic contaminants in sewage sludge. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:95-104. [PMID: 37651946 DOI: 10.1016/j.wasman.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/06/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Pyrolysis has been gaining global interest as a viable option for reducing organic contaminant levels in waste materials such as sewage sludge (SS) for their subsequent use as a soil amendment. However, publicly available knowledge on the capacity of pyrolysis to reduce the levels in SSs is mostly based on laboratory or bench scale studies. The aim of this study was to examine the effects of industrial pilot scale slow pyrolysis at two temperatures and retention times (450 °C, 1 h and 500 °C, 1.5 h) on a wide range of organic and inorganic contaminants in SSs. Pyrolysis at 500 °C decreased the concentrations of the detected per- and polyfluoroalkyl substances (PFASs, by 30-93 %), brominated diphenyl ethers (BDEs; by 97-98 %) and most endocrine disrupting compounds (EDCs, by 82-96 %) more efficiently than pyrolysis at 450 °C. Estrone and pharmaceuticals, with the exception of paracetamol, were removed to below quantification limits. Non-volatile inorganic contaminants concentrated to the chars (22-46 % increase). These results confirm that slow pyrolysis has the capacity to significantly reduce organic contaminant levels in SSs at an industrial scale, while content of inorganic contaminants depends mainly on the feedstock properties. Pyrolysis temperature of over 500 °C is advised to secure efficient removal of organic contaminants. However, it is anticipated that reactor design with good heat transfer and volatile removal could further improve the removal of organic contaminants from SSs. The results are especially valuable for sludge management operators planning to procure a pyrolysis plant.
Collapse
Affiliation(s)
- Minna Sarvi
- Natural Resources Institute Finland (Luke), Tietotie 4, FI-31600 Jokioinen, Finland.
| | - Aino Kainulainen
- Helsinki Region Environmental Services Authority HSY, Ilmalantori 1, FI-00240, Helsinki, Finland
| | - Vuokko Malk
- South-Eastern Finland University of Applied Sciences (Xamk), Patteristonkatu 2, FI-50100 Mikkeli, Finland
| | - Janne Kaseva
- Natural Resources Institute Finland (Luke), Tietotie 4, FI-31600 Jokioinen, Finland
| | - Kimmo Rasa
- Natural Resources Institute Finland (Luke), Tietotie 4, FI-31600 Jokioinen, Finland
| |
Collapse
|
3
|
Srivastava RK, Shetti NP, Reddy KR, Nadagouda MN, Badawi M, Bonilla-Petriciolet A, Aminabhavi TM. Valorization of biowastes for clean energy production, environmental depollution and soil fertility. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117410. [PMID: 36731419 DOI: 10.1016/j.jenvman.2023.117410] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The mother earth is a source of natural resources that, in conjunction with anthropogenic activities, generates a wide spectrum of different biowastes. These biomaterials can be used as low-cost raw feedstock to produce bioenergy, value-added products, and other commodities. However, the improper management and disposal of these biowastes can generate relevant environmental impacts. Consequently, it is imperative to explore alternative technologies for the valorization and exploitation of these wastes to obtain benefits for the society. This review covers different aspects related to valorization of biowastes and their applications in water pollution, soil fertility and green energy generation. The classification and characteristics of different biowastes (biosolids, animal wastes and effluents, plant biomass, wood and green wastes) including their main generation sources are discussed. Different technologies (e.g., pyrolysis, hydrothermal carbonization, anaerobic digestion, gasification, biodrying) for the transformation and valorization of these residues are also analyzed. The application of biowastes in soil fertility, environmental pollution and energy production are described and illustrative examples are provided. Finally, the challenges related to implement low-cost and sustainable biowaste management strategies are highlighted. It was concluded that reliable simulation studies are required to optimize all the logistic stages of management chain of these residues considering the constraints generated from the economic, environmental and social aspects of the biowaste generation sources and their locations. The recollection and sorting of biowastes are key parameters to minimize the costs associated to their management and valorization. Also, the concepts of Industry 4.0 can contribute to achieve a successful commercial production of the value-added products obtained from the biowaste valorization. Overall, this review provides a general outlook of biowaste management and its valorization in the current context of circular economy.
Collapse
Affiliation(s)
- Rajesh K Srivastava
- Department of Biotechnology, GIT, Gandhi Institute of Technology and Management (GITAM) (Deemed to Be University), Rushikonda, Visakhapatnam, 530045, Andhra Pradesh, India
| | - Nagaraj P Shetti
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580 031, Karnataka, India; University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, 140413, Panjab, India
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, 45324, USA
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques, UMR 7019 - CNRS, Université de Lorraine, Nancy, France
| | - Adrián Bonilla-Petriciolet
- Chemical Engineering Department, Instituto Tecnológico de Aguascalientes, 20256, Aguascalientes, Mexico.
| | - Tejraj M Aminabhavi
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580 031, Karnataka, India.
| |
Collapse
|
4
|
Madadian E, Simakov DSA. Thermal degradation of emerging contaminants in municipal biosolids: The case of pharmaceuticals and personal care products. CHEMOSPHERE 2022; 303:135008. [PMID: 35643167 DOI: 10.1016/j.chemosphere.2022.135008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/01/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The presence of emerging contaminants in water and wastewater resources is of ongoing concern for public health and safety. Pharmaceutical compounds are designed to be biologically active and therefore may have effects on nontarget organisms in terrestrial and aquatic environments, even at trace concentrations. The presence of pharmaceutical and personal care products (PPCPs) in wastewater treatment plants is reported in various countries worldwide, mostly in the levels of nanograms to micrograms per litre. The present study investigates the thermal degradation of municipal sewage sludge containing PPCPs at various heating rates. The examined characteristics of the samples include thermal decomposition behavior, volatile release characteristics, and pyrolytic product composition. Thermal characterization of the PPCPs was conducted using differential scanning calorimetry. The gaseous products and typical functional groups of the released volatiles detected by Fourier-transform infrared spectroscopy mainly contained CO2, CO, small-chain hydrocarbons, and oxygen- and nitrogen-containing functional groups together with other species. In addition, the potential of bioenergy production was investigated as a spin-off opportunity during thermal degradation of biosolids. Study results showed that PPCP concentrations can be lowered significantly by thermal treatment of municipal biosolids. Antifungal/antibacterial agents together with opioids, in particular triclosan and tramadol, showed less resistance to thermal degradation while antibiotics could be more recalcitrant to heat treatment. The thermodynamic results provide an important reference for future reactor design and the thermochemical treatment of biosolids as well as their conversion to value-added products.
Collapse
Affiliation(s)
- Edris Madadian
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - David S A Simakov
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
5
|
Zhang Y, Ji H, Xi H, Zhu Y. Co-remediation of PTEs contaminated soil in mining area by heat modified sawdust and herb. CHEMOSPHERE 2021; 281:130908. [PMID: 34034084 DOI: 10.1016/j.chemosphere.2021.130908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Exploring efficient remediation technologies to remediate potentially toxic element (PTE) in soil around the mining area has become a trendy research topic. This study conducted material composed of sawdust ash (SA) and sawdust biochar (SB) with mass ratio of SA:SB = 1:2 in combination with Medicago sativa L. and Festuca arundinacea to remediate soil contaminated by zinc (Zn), cadmium (Cd), and arsenic (As) in a mining area. The result showed that the removal rates of Zn, Cd, and As were the highest under the treatment of Festuca arundinacea combined with 5% material with values of 22.15%, 22.05%, and 12.47%, respectively. Festuca arundinacea had the most potent ability to absorb and tolerate composite PTEs, and the co-remediation process could remarkably improve soil enzyme environment and microbial community diversity. The distribution of PTEs in plant subcellular showed that the accumulation of Zn, Cd, and As in the cell wall of Festuca arundinacea root was significantly increased by adding 2% materials. The concentrations of Zn, Cd, and As in the cell wall were 4486.25, 33.59, and 124.15 mg/kg, respectively. The combination of 2% material and Festuca arundinacea could effectively remove PTEs in soil and enhance the detoxification ability of the plant, thus effectively improving the soil environment and remediating PTEs pollution. This study provided insights into the remediation of PTE-contaminated soil in mining area by combining materials and plants.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Hongbing Ji
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollution, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Hailing Xi
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Yongbing Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
6
|
Wystalska K, Kwarciak-Kozłowska A. The Effect of Biodegradable Waste Pyrolysis Temperatures on Selected Biochar Properties. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1644. [PMID: 33801643 PMCID: PMC8037663 DOI: 10.3390/ma14071644] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023]
Abstract
Biochars produced during biodegradable waste pyrolysis are products with a wide range of environmental applications. The effect of impact biochars depends on their properties which determine the course of specific processes. The main aim of the study was to investigate the effect of pyrolysis temperature on selected properties of biochar produced from various plant wastes (beech wood chips, walnut shells, wheat-rye straw), the valorization of which is of key importance for the implementation of the circular economy. Biochars were produced at temperatures of: 400 °C, 500 °C, 600 °C and 700 °C in a nitrogen atmosphere. An increase in the pyrolysis temperature caused a drop in the biochar production yield. As the temperature increased, higher carbon content and lower hydrogen content could be seen in the products obtained. An increase in the pH and total organic carbon (TOC) values also found. The influence of temperature on ash content, observed in the case of BWS (biochar from walnut shell) and BWRS (biochar from wheat and rye straw), did not occur in the case of BWC (biochar from beech wood chips). Another parameter that demonstrated a growing tendency with increasing temperature was the BET specific surface area (except for biochars from wheat and rye straw). An increase in pyrolysis temperature caused a decrease in the diversity and density of the surface functional groups of biochars. The influence of the type of precursor used in the production of biochar on the presence of surface functional groups was demonstrated. The presence of intense stretching vibrations of C-O bonds, having a potential impact on the sorption capacity of biochars, was determined in the FTIR spectra of BWC600 and BWC700 biochars, this feature, combined with the large BET surface area, may affect the sorption potential of these biochars. The presence of this type of high-intensity vibrations was also observed in the spectra of biochar BWRS600 and BWRS700. This can compensate for the low BET surface value and play an important role when using these biochars in sorption processes for organic and inorganic compounds.
Collapse
Affiliation(s)
- Katarzyna Wystalska
- Faculty of Infrastructure and Environment, Czestochowa University of Technology, 42-200 Czestochowa, Poland;
| | | |
Collapse
|
7
|
Dróżdż D, Wystalska K, Malińska K, Grosser A, Grobelak A, Kacprzak M. Management of poultry manure in Poland - Current state and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 264:110327. [PMID: 32217329 DOI: 10.1016/j.jenvman.2020.110327] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/13/2020] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
This review aimed to analyse the current state of management practices for poultry manure in Poland and present future perspectives in terms of technologies allowing closing the loops for circular economy, and thus recovery of nutrients and energy. The scope of the review focused primarily on: (1) the analysis of poultry production and generation of poultry manure with special references to quantities, properties (e.g. fertilizing properties), seasonality, etc.; (2) the overview of current practices and methods for managing poultry manure including advantages and limitations; (3) the analysis of potential and realistic threats and risk related to managing poultry manure, and also (4) the analysis of promising technologies for converting poultry manure into added value products and energy. The review addressed the following technologies: composting of poultry manure to obtain fertilizers and soil improvers, anaerobic digestion of poultry manure for energy recovery, and also pyrolysis of poultry manure into different types of biochar that can be applied in agriculture, horticulture and industry. Poultry manure is rich in macro- and micronutrients but also can contain various contaminants such as antibiotics or pesticides, and thus posing a realistic threat to soil and living organisms when applied to soil directly or after biological treatment. The main challenge in poultry manure processing is to assure sufficient closing of carbon, nitrogen and phosphorous loops and safe application to soil.
Collapse
Affiliation(s)
- Danuta Dróżdż
- Department of Environmental Engineering, Częstochowa University of Technology, Poland.
| | - Katarzyna Wystalska
- Department of Environmental Engineering, Częstochowa University of Technology, Poland.
| | - Krystyna Malińska
- Department of Environmental Engineering, Częstochowa University of Technology, Poland.
| | - Anna Grosser
- Department of Environmental Engineering, Częstochowa University of Technology, Poland.
| | - Anna Grobelak
- Department of Environmental Engineering, Częstochowa University of Technology, Poland.
| | - Małgorzata Kacprzak
- Department of Environmental Engineering, Częstochowa University of Technology, Poland.
| |
Collapse
|
8
|
Zhang Y, Wang X, Ji H. Co-remediation of Pb Contaminated Soils by Heat Modified Sawdust and Festuca arundinacea. Sci Rep 2020; 10:4663. [PMID: 32170200 PMCID: PMC7069995 DOI: 10.1038/s41598-020-61668-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/28/2020] [Indexed: 12/18/2022] Open
Abstract
This research aimed to explore the potential and mechanism of heat modified sawdust combined with Festuca arundinacea for the remediation of Pb-contaminated soil. We determined Pb concentration and biochemical indices in plants and soils, analyzed microbial communities in soil, and studied Pb distribution in subcellular and tissues. Under co-remediation of 5% material addition and Festuca arundinacea, the concentration of Pb in soil decreased. Pb toxicity of Festuca arundinacea was alleviated by 2% material addition through the promotion of plant growth and reduction of oxidative stress. In addition, soil enzyme activities and microbial community in contaminated soil were promoted by the application of co-remediation. Festuca arundinacea cell wall accumulated a large amount of Pb, and the addition of material promoted the accumulation of Pb in Festuca arundinacea root. The concentration of Pb in the shoot of the plant treated with 2% material was higher than that of the plant treated with 5% material, and the damage of Festuca arundinacea leaves was lower under 2% treatment. The combination of heat modified sawdust and Festuca arundinacea promoted the adsorption of Pb by plants, and protected the growth of plants.
Collapse
Affiliation(s)
- Yan Zhang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollution, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xuemei Wang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollution, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongbing Ji
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollution, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China. .,Beijing Municipal Key Laboratory of Resource Environment and GIS, College of Resource Environment and Tourism, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
9
|
Zhang Y, Ji H. Physiological responses and accumulation characteristics of turfgrasses exposed to potentially toxic elements. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 246:796-807. [PMID: 31228693 DOI: 10.1016/j.jenvman.2019.06.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/12/2019] [Accepted: 06/09/2019] [Indexed: 06/09/2023]
Abstract
The tolerance and enrichment of potentially toxic elements (PTEs) in plants are the most important basis of phytoremediation technology for mining area soils. The aim of this research was to study PTEs tolerance, translocation and accumulation differences in three turfgrass species and the biochemical changes of plants and soils. Three turfgrass species were cultured on soils contaminated by single and compound PTEs. Pb, Zn, Cd and As concentrations and biochemical indicators in plant (root and shoot) and soil were determined. Moreover, the microbial communities in rhizosphere soil were analyzed. The studied plants showed strong tolerance and high enrichment ability to Pb, Zn, Cd and As in soil under different PTE concentration gradient stress. Festuca arundinacea had the strongest tolerance to PTEs, whereas Medicago sativa L. had the best tolerance to PTEs. Among all the measured growth or biochemical indicators, the relative growth rate and enzymatic activity of Orychophragmus violaceus were most sensitive to stress. The bioconcentration and translocation factors of Medicago sativa L. for Cd were 1.60 and 1.17, respectively, indicating that it was the most suitable plant for extracting Cd. Compared with other plants, Festuca arundinacea had the most significant effect on soil environment improvement, increasing the soil enzyme activities and microbial community after phytoremediation. This study indicates that Medicago sativa L. can be a potential phytoextraction plant to remove Cd, whereas Festuca arundinacea is more suitable as a cover plant to prevent the dispersion of contaminants in polluted soil.
Collapse
Affiliation(s)
- Yan Zhang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollution, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongbing Ji
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollution, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Municipal Key Laboratory of Resource Environment and GIS, College of Resource Environment and Tourism, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|