1
|
Wang D, Liang Y, Zeng Y, Liu C, Zhan C, Chen P, Song S, Jia F. Highly selective recovery of gold and silver from E-waste via stepwise electrodeposition directly from the pregnant leaching solution enabled by the MoS 2 cathode. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133430. [PMID: 38183940 DOI: 10.1016/j.jhazmat.2024.133430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
The recycling of electronic waste, i.e., waste Printed Circuit Boards (WPCBs), provides substantial environmental and economic advantages. In fact, the concentration of valuable precious and base metals in WPCBs is even higher compared to those found in mined ores. Nevertheless, it is still challenging to selectively extract precious metals with low concentrations from the pregnant leaching solution, due to the co-deposition of base metals, like Cu, which have higher concentrations. In this research, stepwise recovery of precious metals and copper directly from WPCBs thiosulfate leaching solution was facilitated by the Ti cathode coated with MoS2 (MoS2/Ti). The in-situ enrichment of Au(S2O3)23- and Ag(S2O3)23- at the surface of MoS2 enables the high efficiency and selectivity of electrodeposition, which has been confirmed through COMSOL Multiphysics simulations and visualization. As a result, the first-step electrodeposition at 0.6 V recovered 92.44 % Au and 98.18 % Ag without any co-deposition of Cu. Subsequently, the second-step recovery employed a constant current of 0.03 A, achieving 100 % recovery of copper within 12 h. Furthermore, this study optimized the reduction potential, NH3·H2O concentration, and S2O32- concentration for the stepwise electrodeposition process. These findings provide valuable insights for establishing a closed loop circular economy in the electronics industry.
Collapse
Affiliation(s)
- Deshou Wang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan University of Technology, Wuhan 430073, Hubei, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei Province 430070, China
| | - Yumeng Liang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan University of Technology, Wuhan 430073, Hubei, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei Province 430070, China
| | - Yong Zeng
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan University of Technology, Wuhan 430073, Hubei, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei Province 430070, China
| | - Chang Liu
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan University of Technology, Wuhan 430073, Hubei, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei Province 430070, China
| | - Chun Zhan
- Department of Energy Storage Science and Engineering, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Peng Chen
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan University of Technology, Wuhan 430073, Hubei, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei Province 430070, China.
| | - Shaoxian Song
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan University of Technology, Wuhan 430073, Hubei, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei Province 430070, China
| | - Feifei Jia
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan University of Technology, Wuhan 430073, Hubei, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei Province 430070, China.
| |
Collapse
|
2
|
Li XG, Gao Q, Jiang SQ, Nie CC, Zhu XN, Jiao TT. Review on the gentle hydrometallurgical treatment of WPCBs: Sustainable and selective gradient process for multiple valuable metals recovery. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119288. [PMID: 37864943 DOI: 10.1016/j.jenvman.2023.119288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
The metal resource crisis and the inherent need for a low-carbon circular economy have driven the rapid development of e-waste recycling technology. High-value waste printed circuit boards (WPCBs) are an essential component of e-waste. However, WPCBs are considered hazardous to the ecosystem due to the presence of heavy metals and brominated organic polymers. Therefore, achieving the recycling of metals in WPCBs is not only a strategic requirement for building a green ecological civilization but also an essential guarantee for achieving a safe supply of mineral resources. This review systematically analyzes the hydrometallurgical technology of metals in WPCBs in recent years. Firstly, the different unit operations of pretreatment in the hydrometallurgical process, which contain disassembly, crushing, and pre-enrichment, were analyzed. Secondly, environmentally friendly hydrometallurgical leaching systems and high-value product regeneration technologies used in recent years to recover metals from WPCBs were evaluated. The leaching techniques, including cyanidation, halide, thiourea, and thiosulfate for precious metals, and inorganic acid, organic acid, and other leaching methods for base metals such as copper and nickel in WPCBs, were outlined, and the leaching performance and greenness of each leaching system were summarized and analyzed. Eventually, based on the advantages of each leaching system and the differences in chemical properties of metals in WPCBs, an integrated and multi-gradient green process for the recovery of WPCBs was proposed, which provides a sustainable pathway for the recovery of metals in WPCBs. This paper provides a reference for realizing the gradient hydrometallurgical recovery of metals from WPCBs to promote the recycling metal resources.
Collapse
Affiliation(s)
- Xi-Guang Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Qiang Gao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Si-Qi Jiang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Chun-Chen Nie
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Xiang-Nan Zhu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| | - Tian-Tian Jiao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| |
Collapse
|
3
|
Cenci MP, Eidelwein EM, Veit HM. Composition and recycling of smartphones: A mini-review on gaps and opportunities. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:1512-1528. [PMID: 37052313 DOI: 10.1177/0734242x231164324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
After more than a decade since smartphones became consolidated in the market, many recycling solutions have been proposed to deal with them. To continue developing useful solutions and enable adjustment of routes, this mini-review aims to analyse the current research scenario, presenting relevant gaps, trends and opportunities. From a structured searching and screening procedure, a vast source of data was arranged and is available to extract useful information (43 studies on composition and 93 studies on recycling). The study provides discussions about the history of smartphone development, constituent materials and recycling methods for different components, comparisons between feature phones and smartphones and others. Among some conclusions, the authors highlight the lack of studies on pre-extractive methods, green chemistry, recovery of critical and precious metals, determination of priority materials for recovery and solutions for entire devices. In the end, a list containing six research gaps for composition studies and seven research gaps for recycling studies is provided and may be seen as opportunities for future research.
Collapse
Affiliation(s)
- Marcelo Pilotto Cenci
- LACOR, Department of Materials Engineering, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Estela Moschetta Eidelwein
- LACOR, Department of Materials Engineering, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Hugo Marcelo Veit
- LACOR, Department of Materials Engineering, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
4
|
Lin P, Ali ZA, Werner J. Investigation of the Bimodal Leaching Response of RAM Chip Gold Fingers in Ammonia Thiosulfate Solution. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4940. [PMID: 37512216 PMCID: PMC10381887 DOI: 10.3390/ma16144940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
Oxidative thiosulfate leaching using Cu(II)-NH3 has been explored for both mining and recycling applications as a promising method for Au extraction. This study seeks to understand the dissolution behavior of Au from waste RAM chips using a Cu(II)-NH3-S2O3 solution. In the course of this work, bimodal leaching and Au loss were observed in a manner that we have not identified in the literature. Identification of the existence of a specific Au-Ni-Cu lamellar structure in the gold fingers from RAM chips by scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-EDS) revealed the possibility of interference between Au recovery and the existence of Cu and Ni. During leaching, the co-extraction of Ni was found to predict a negative impact on the Au recovery, as a result of chemical interactions from the Au-Ni-Cu interlayer. Decopperization as a pretreatment was found necessary to remove the pre-existing Cu and promote Au leaching. As part of the study parameters, such as Cu(II) concentration, aeration rates, thiosulfate and ammonia concentrations, particle sizes, and temperatures, were investigated. A satisfactory Au recovery of 98% was achieved using 50 mM Cu(II), 120 mL/min aeration rate, 0.5 M (NH3)2S2O3, and 0.75 M NH4OH (i.e., AT/AH ratio of 0.67) for 4 h residence time at room temperature (25 °C). However, there were several high recoveries prior to Au loss from the lixiviant. It was revealed that the main cause of lower Au recovery was due to a precipitation or cementation reaction that included a sulfur species formation. Because of the bimodal leaching, a composite response comprised of the time to Au loss and maximum recovery was developed, termed leaching proclivity, to facilitate statistical analysis. Furthermore, this study explores the interactions between Au-Ni-Cu and provides suggestions for improving Au thiosulfate leaching under the interference of co-existing metals from waste PCB materials.
Collapse
Affiliation(s)
- Peijia Lin
- Department of Mining Engineering, University of Kentucky, 310 Columbia Ave, Lexington, KY 40506, USA
| | - Zulqarnain Ahmad Ali
- Department of Mining Engineering, University of Kentucky, 310 Columbia Ave, Lexington, KY 40506, USA
| | - Joshua Werner
- Department of Mining Engineering, University of Kentucky, 310 Columbia Ave, Lexington, KY 40506, USA
| |
Collapse
|
5
|
Pourhossein F, Mousavi SM. Improvement of gold bioleaching extraction from waste telecommunication printed circuit boards using biogenic thiosulfate by Acidithiobacillus thiooxidans. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131073. [PMID: 36867908 DOI: 10.1016/j.jhazmat.2023.131073] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/01/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Cyanide usage in gold processing techniques has become increasingly challenging due to its toxicity and environmental impact. It is possible to develop environmentally friendly technology using thiosulfate because of its nontoxic characteristics. Thiosulfate production requires high temperatures, resulting in high greenhouse gas emissions and energy consumption. The biogenesized thiosulfate is an unstable intermediate product of Acidithiobacillus thiooxidans sulfur oxidation pathway to sulfate. A novel eco-friendly method was presented in this study to treat spent printed circuit boards (STPCBs) using biogenesized thiosulfate (Bio-Thio) obtained from Acidithiobacillus thiooxidans cultured medium. To obtain a preferable concentration of thiosulfate among other metabolites by limiting thiosulfate oxidation, optimal concentrations of inhibitor (NaN3: 3.25 mg/L) and pH adjustments (pH= 6-7) were found to be effective. Selection of the optimal conditions has led to the highest bio-production of thiosulfate (500 mg/L). The impact of STPCBs content, ammonia, ethylenediaminetetraacetic acid (EDTA), and leaching time on Cu bio-dissolution and gold bio-extraction were investigated using enriched-thiosulfate spent medium. The suitable conditions were a pulp density of 5 g/L, an ammonia concentration of 1 M, and a leaching time of 36 h, which led to the highest selective extraction of gold (65 ± 0.78%).
Collapse
Affiliation(s)
- Fatemeh Pourhossein
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran; Modares Environmental Research Institute, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Yin X, Liu R, Cheng M, Sun Q, Yang Y. Efficient leaching and recovery of metallic gold and copper from integrated circuits with the novel bromotrihalide ionic liquids based on the redox mechanism. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
7
|
Phengsaart T, Srichonphaisan P, Kertbundit C, Soonthornwiphat N, Sinthugoot S, Phumkokrux N, Juntarasakul O, Maneeintr K, Numprasanthai A, Park I, Tabelin CB, Hiroyoshi N, Ito M. Conventional and recent advances in gravity separation technologies for coal cleaning: A systematic and critical review. Heliyon 2023; 9:e13083. [PMID: 36793968 PMCID: PMC9922934 DOI: 10.1016/j.heliyon.2023.e13083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
"Affordable and clean energy" is enshrined in the UN Sustainable Development Goals (SDGs; #7) because of its importance in supporting the sustainable development of society. As an energy source, coal is widely used because it is abundant and its utilization for electricity and heat generation do not require complex infrastructures and technologies, which makes it ideal for the energy needs of low-income and developing countries. Coal is also essential in steel making (as coke) and cement production and will continue to be on high demand for the foreseeable future. However, coal is naturally found with impurities or gangue minerals like pyrite and quartz that could create by-products (e.g., ash) and various pollutants (e.g., CO2, NOX, SOX). To reduce the environmental impacts of coal during combustion, coal cleaning-a kind of pre-combustion clean coal technology-is essential. Gravity separation, a technique that separates particles based on their differences in density, is widely used in coal cleaning due to the simplicity of its operation, low cost, and high efficiency. In this paper, recent studies (from 2011 to 2020) related to gravity separation for coal cleaning were systematically reviewed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A total of 1864 articles were screened after removing duplicates, and after a thorough evaluation 189 articles were reviewed and summarized. Among of conventional separation techniques, dense medium separator (DMS), particularly dense medium cyclone (DMC), is the most popular technologies studied, which could be attributed to the growing challenges of cleaning/processing fine coal-bearing materials. In recent years, most of works focused on the development of dry-type gravity technologies for coal cleaning. Finally, gravity separation challenges and future applications to address problems in environmental pollution and mitigation, waste recycling and reprocessing, circular economy, and mineral processing are discussed.
Collapse
Affiliation(s)
- Theerayut Phengsaart
- Department of Mining and Petroleum Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand,Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan,Corresponding author. Department of Mining and Petroleum Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Palot Srichonphaisan
- Department of Mining and Petroleum Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chinawich Kertbundit
- Department of Mining and Petroleum Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Natatsawas Soonthornwiphat
- Department of Mining and Petroleum Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somthida Sinthugoot
- Department of Groundwater Resources, Ministry of Natural Resources and Environment, Bangkok 10900, Thailand
| | - Nutthakarn Phumkokrux
- Department of Geography, Faculty of Education, Ramkhamhaeng University, Bangkok 10240, Thailand,Department of Earth Sciences, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Onchanok Juntarasakul
- Department of Mining and Petroleum Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kreangkrai Maneeintr
- Department of Mining and Petroleum Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Apisit Numprasanthai
- Department of Mining and Petroleum Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ilhwan Park
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Carlito Baltazar Tabelin
- Department of Materials and Resources Engineering Technology, College of Engineering and Technology, Mindanao State University-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Naoki Hiroyoshi
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Mayumi Ito
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
8
|
Zhang X, Li H, Ye M, Zhang H, Wang G, Zhang Y. Bacterial cellulose hybrid membrane grafted with high ratio of adipic dihydrazide for highly efficient and selective recovery of gold from e-waste. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Alkaline Leaching and Concurrent Cementation of Dissolved Pb and Zn from Zinc Plant Leach Residues. MINERALS 2022. [DOI: 10.3390/min12040393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Zinc plant leach residues (ZPLRs), particularly those produced using old technologies, have both economic importance as secondary raw materials and have environmental impacts because they contain hazardous heavy metals that pose risks to human health and the environment. Therefore, the extraction and recovery of these metals from ZPLRs has both economic and environmental benefits. In this study, we investigated the removal of lead (Pb) and zinc (Zn) from ZPLRs by alkaline (NaOH) leaching and the concurrent cementation of dissolved Pb and Zn using aluminum (Al) metal powder. The effects of the leaching time, NaOH concentration, solid-to-liquid ratio (S/L), and dosage of Al metal powder on the extraction of Pb and Zn were investigated. Pb and Zn removal efficiencies increased with increasing NaOH concentrations and decreasing S/Ls. The Pb and Zn removal efficiencies were 62.2% and 27.1%, respectively, when 2.5 g/50 mL (S/L) of ZPLRs were leached in a 3 M NaOH solution for 30 min. The extraction of Pb and Zn could be attributed to the partitioning of these metals in relatively more mobile phases—water-soluble, exchangeable, and carbonate phases—in ZPLRs. Around 100% of dissolved Pb and less than 2% of dissolved Zn were cemented in leaching pulp when Al metal powder was added. Minerals in the solid residues, particularly iron oxides minerals, were found to suppress the cementation of extracted Zn in leaching pulp, and when they were removed by filtration, Zn was recovered by Al metal powder via cementation.
Collapse
|
10
|
The Effects of Coexisting Copper, Iron, Cobalt, Nickel, and Zinc Ions on Gold Recovery by Enhanced Cementation via Galvanic Interactions between Zero-Valent Aluminum and Activated Carbon in Ammonium Thiosulfate Systems. METALS 2021. [DOI: 10.3390/met11091352] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of galvanic interactions between zero-valent aluminum (ZVAl) and activated carbon (AC) to recover gold (Au) ions is a promising technique to overcome the challenges due to the poor recovery in ammonium thiosulfate systems, but the applicability to practical Au ore processing remains elusive so far. The present study describes (1) the recovery of Au ions from low Au concentrations, which are typical concentrations used in Au ore processing; and (2) an investigation into the effects of various coexisting base metal ions that can be present in pregnant ore-leached solutions. The results showed that high Au recovery (i.e., over 85%) was obtained even at low Au concentrations under the following conditions: 1:1 of 0.15 g of ZVAl and AC with 10 mL of ammonium thiosulfate solution containing 5 mg/L of Au ions at 25 °C for 1 h in an anoxic atmosphere. Selected coexisting metal ions (i.e., copper, iron, cobalt, nickel, and zinc) were studied to establish their effects on Au recovery, and the results showed that the Au recovery was enhanced (about 90%) when copper ions coexist in the solution with minimal effects from other competing base metal ions.
Collapse
|
11
|
Kim K, Candeago R, Rim G, Raymond D, Park AHA, Su X. Electrochemical approaches for selective recovery of critical elements in hydrometallurgical processes of complex feedstocks. iScience 2021; 24:102374. [PMID: 33997673 PMCID: PMC8091062 DOI: 10.1016/j.isci.2021.102374] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Critical minerals are essential for the ever-increasing urban and industrial activities in modern society. The shift to cost-efficient and ecofriendly urban mining can be an avenue to replace the traditional linear flow of virgin-mined materials. Electrochemical separation technologies provide a sustainable approach to metal recovery, through possible integration with renewable energy, the minimization of external chemical input, as well as reducing secondary pollution. In this review, recent advances in electrochemically mediated technologies for metal recovery are discussed, with a focus on rare earth elements and other key critical materials for the modern circular economy. Given the extreme heterogeneity of hydrometallurgically-derived media of complex feedstocks, we focus on the nature of molecular selectivity in various electrochemically assisted recovery techniques. Finally, we provide a perspective on the challenges and opportunities for process intensification in critical materials recycling, especially through combining electrochemical and hydrometallurgical separation steps.
Collapse
Affiliation(s)
- Kwiyong Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Riccardo Candeago
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Guanhe Rim
- Department of Earth and Environmental Engineering, Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.,Lenfest Center for Sustainable Energy, The Earth Institute, Columbia University, New York, NY 10027, USA
| | - Darien Raymond
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ah-Hyung Alissa Park
- Department of Earth and Environmental Engineering, Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.,Lenfest Center for Sustainable Energy, The Earth Institute, Columbia University, New York, NY 10027, USA
| | - Xiao Su
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
12
|
Opiso EM, Tabelin CB, Maestre CV, Aseniero JPJ, Park I, Villacorte-Tabelin M. Synthesis and characterization of coal fly ash and palm oil fuel ash modified artisanal and small-scale gold mine (ASGM) tailings based geopolymer using sugar mill lime sludge as Ca-based activator. Heliyon 2021; 7:e06654. [PMID: 33869866 PMCID: PMC8042442 DOI: 10.1016/j.heliyon.2021.e06654] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/29/2020] [Accepted: 03/29/2021] [Indexed: 11/30/2022] Open
Abstract
The continuous accumulation of artisanal and small-scale gold mining (ASGM) tailings in the Philippines without adequate storage and disposal facility could lead to human health and environmental disasters in the long run. In this study, ASGM tailings was simultaneously stabilized and repurposed as construction material via geopolymerization using coal fly ash, palm oil fuel ash and a powder-based alkali activator. Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) identified iron sulfides in the tailings containing arsenic (As), cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn), which could be released via weathering. The average unconfined compressive strengths (UCS) of tailings-based geopolymers at 14 days curing were 7.58 MPa and 7.7 MPa with fly ash and palm oil fuel ash, respectively. The tailings-based geopolymers with palm oil fuel ash had higher UCS most likely due to CASH reaction product formation that improved strength formation. The toxicity characteristic leaching procedure (TCLP) results showed very low leachabilities of As, Pb and Fe in the geopolymer materials suggesting ASGM tailings was effectively encapsulated within the geopolymer matrix. Overall, the geopolymerization of ASGM tailings is a viable and promising solution to simultaneously stabilize mining and industrial wastes and repurpose them into construction materials.
Collapse
Affiliation(s)
- Einstine M Opiso
- Geo-environmental Engineering Group, Civil Engineering Department, Central Mindanao University, Bukidnon, Philippines
| | - Carlito B Tabelin
- School of Minerals and Energy Resources Engineering, The University of New South Wales, Sydney, NSW, Australia
| | - Christian V Maestre
- Materials Science Research Group, Physics Department, Central Mindanao University, Bukidnon, Philippines
| | - John Paul J Aseniero
- Materials Science Research Group, Physics Department, Central Mindanao University, Bukidnon, Philippines
| | - Ilhwan Park
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Mylah Villacorte-Tabelin
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
| |
Collapse
|
13
|
Zhang L, Song Q, Xu X, Xu Z. Process simulation of Ohno continuous casting for single crystal copper prepared from scrap copper in waste printed circuit boards. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 124:94-101. [PMID: 33611158 DOI: 10.1016/j.wasman.2021.01.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/09/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
How to realize the high value-added utilization of scrap copper from e-waste is a meaningful topic. In the study, an Ohno Continuous Casting (OCC) process is an existing method you applied to purify the copper. Based onthe model of diffusion-controlled grain growth kinetics, the redistribution of impurity of tin in the scrap copper were studied under the different continuous casting speed and mold temperature. On the centerline, macrosegregation in the axial direction of the tin was more obvious with the decrease of continuous casting speed. The small continuous casting rate was beneficial to the segregation and enrichment of tin. The axial segregation gradually decreased with the increase of the mold temperature. The flattening of the liquid-solid interface resulted in a weakening of the solute enrichment at the root of the interface with the increase of temperature. Morphology, electron backscattered diffraction (EBSD) analysis showed the structure of single crystal copper. The range of resistance of single crystal copper was from 5 × 10-6 to 3 × 10-5 Ω m. Obviously, the resistance of the single crystal copper was significantly smaller than that of ordinary copper wire (9.0 × 10-3 Ω m). This study provided a key theoretical and practical basis for the high value-added reuse of copper in e-waste.
Collapse
Affiliation(s)
- Lingen Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingming Song
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaowei Xu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhenming Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Institute of Pollution Control and Ecological Security, Shanghai 200240, China.
| |
Collapse
|
14
|
Choi JW, Bediako JK, Kang JH, Lim CR, Dangi YR, Kim HJ, Cho CW, Yun YS. In-situ microwave-assisted leaching and selective separation of Au(III) from waste printed circuit boards in biphasic aqua regia-ionic liquid systems. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Panda R, Dinkar OS, Kumari A, Gupta R, Jha MK, Pathak DD. Hydrometallurgical processing of waste integrated circuits (ICs) to recover Ag and generate mix concentrate of Au, Pd and Pt. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Tabelin CB, Silwamba M, Paglinawan FC, Mondejar AJS, Duc HG, Resabal VJ, Opiso EM, Igarashi T, Tomiyama S, Ito M, Hiroyoshi N, Villacorte-Tabelin M. Solid-phase partitioning and release-retention mechanisms of copper, lead, zinc and arsenic in soils impacted by artisanal and small-scale gold mining (ASGM) activities. CHEMOSPHERE 2020; 260:127574. [PMID: 32688316 PMCID: PMC7351430 DOI: 10.1016/j.chemosphere.2020.127574] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 05/28/2023]
Abstract
Artisanal and small-scale gold mining (ASGM) operations are major contributors to the Philippines' annual gold (Au) output (at least 60%). Unfortunately, these ASGM activities lacked adequate tailings management strategies, so contamination of the environment is prevalent. In this study, soil contamination with copper (Cu), lead (Pb), zinc (Zn) and arsenic (As) due to ASGM activities in Nabunturan, Davao de Oro, Philippines was investigated. The results showed that ASGM-impacted soils had Cu, Pb, Zn and As up to 3.6, 83, 73 and 68 times higher than background levels, respectively and were classified as 'extremely' polluted (CD = 30-228; PLI = 5.5-34.8). Minerals typically found in porphyry copper-gold ores like pyrite, chalcopyrite, malachite, galena, sphalerite and goethite were identified by XRD and SEM-EDS analyses. Furthermore, sequential extraction results indicate substantial Cu (up to 90%), Pb (up to 50%), Zn (up to 65%) and As (up to 48%) partitioned with strongly adsorbed, weak acid soluble, reducible and oxidisable fractions, which are considered as 'geochemically mobile' phases in the environment. Although very high Pb and Zn were found in ASGM-impacted soils, they were relatively immobile under oxidising conditions around pH 8.5 because of their retention via adsorption to hydrous ferric oxides (HFOs), montmorillonite and kaolinite. In contrast, Cu and As release from the historic ASGM site samples exceeded the environmental limits for Class A and Class C effluents, which could be attributed to the removal of calcite and dolomite by weathering. The enhanced desorption of As at around pH 8.5 also likely contributed to its release from these soils.
Collapse
Affiliation(s)
- Carlito Baltazar Tabelin
- School of Minerals and Energy Resources Engineering, The University of New South Wales, Sydney, NSW, Australia.
| | - Marthias Silwamba
- Division of Sustainable Resources Engineering, Graduate School of Engineering, Hokkaido University, Sapporo, Japan
| | - Florifern C Paglinawan
- Developmental Biology Laboratory, PRISM, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
| | - Alissa Jane S Mondejar
- Developmental Biology Laboratory, PRISM, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
| | - Ho Gia Duc
- Division of Sustainable Resources Engineering, Graduate School of Engineering, Hokkaido University, Sapporo, Japan
| | - Vannie Joy Resabal
- Department of Materials and Resources Engineering and Technology, College of Engineering and Technology, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
| | - Einstine M Opiso
- Geo-environmental Engineering Research Group, Civil Engineering Department, Central Mindanao University, Bukidnon, Philippines
| | - Toshifumi Igarashi
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Shingo Tomiyama
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Mayumi Ito
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Naoki Hiroyoshi
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Mylah Villacorte-Tabelin
- Developmental Biology Laboratory, PRISM, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines; Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines.
| |
Collapse
|
17
|
Igarashi T, Herrera PS, Uchiyama H, Miyamae H, Iyatomi N, Hashimoto K, Tabelin CB. The two-step neutralization ferrite-formation process for sustainable acid mine drainage treatment: Removal of copper, zinc and arsenic, and the influence of coexisting ions on ferritization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136877. [PMID: 32018102 DOI: 10.1016/j.scitotenv.2020.136877] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Acid mine drainage (AMD) or acid rock drainage (ARD), the most notorious environmental problem in many mines and underground construction sites, is generally managed using lime neutralization. This approach is effective but unsustainable in the long term, so we introduced the two-step neutralization ferrite-formation process in our previous works as an alternative. However, several important issues related to this new approach-the partitioning of hazardous elements during treatment, stability of generated sludges, and influence of coexisting ions-remains unclear. In this study, real AMD containing zinc (Zn), copper (Cu) and arsenic (As) was treated using a laboratory-type continuous ferrite process flow setup. Partitioning of hazardous elements in the two sludges was elucidated by X-ray fluorescence spectroscopy (XRF) and X-ray absorption spectroscopy (XAS) while the stability of sludges was determined by standard leaching experiments. The bulk of Cu and As species (both As(III) and As(V) based on XANES spectra) were partitioned in the first sludge while ~64% of Zn was associated with the ferrite sludge. In terms of stability, both sludges were relatively inert and released only minute amounts of Zn, Cu and As, all of which were below the Japanese environmental standards. The roles played by two of the most ubiquitous coexisting ions in AMD on ferritization-dissolved silica (Si) and aluminum ion (Al3+)-were also elucidated using 10 synthetic AMDs. Between the two, dissolved Si exhibited stronger adverse effects on ferritization than Al3+. At dissolved Si above 4 mg/L, Si-O-Fe surface complex formation on amorphous Fe-precipitates or Fe-oxide precursor minerals became extensive, which protected these phases from the dissolution-transformation reactions required to form strongly magnetic magnesioferrite and magnetite. These results suggest that the flexibility and applicability of this new AMD treatment approach could be improved by controlling the dissolved Si concentration prior to the ferrite formation step.
Collapse
Affiliation(s)
- Toshifumi Igarashi
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | | | - Hiroyuki Uchiyama
- Nuclear and Industrial Safety Agency, Ministry of Economy, Trade and Industry, Tokyo, Japan
| | | | | | | | - Carlito Baltazar Tabelin
- School of Minerals and Energy Resources Engineering, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
18
|
Microwave-Leaching of Copper Smelting Dust for Cu and Zn Extraction. MATERIALS 2019; 12:ma12111822. [PMID: 31195613 PMCID: PMC6600977 DOI: 10.3390/ma12111822] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 11/20/2022]
Abstract
Industrial wastes may contain high concentrations of valuable metals. Extraction and recovery of these metals have several economic and environmental advantages. Various studies showed positive effects of microwaves as a pretreatment method before the leaching of minerals. However, there are empty rooms for exploring simultaneous microwave and leaching (microwave-leaching) of industrial waste material for the production of valuable metals. This investigation examined the microwave-leaching method to extract copper and zinc from a copper-smelter dust (CSD). The results of microwave-leaching mechanism were compared with conventional heating leaching based on kinetics modelling. The final Cu recovery in the conventional heating and microwave irradiation was 80.88% and 69.83%, respectively. Kinetic studies indicated that the leaching reactions follow diffusion across the product layer. Based on X-ray powder diffraction (XRD) analyses, during conventional experiments sulfate; components formed with high intensity as an ash layer which prevents reagent access to the solid surface and decreases the Cu dissolution. While the sulfate components did not detect in the microwave-leaching residuals which means that microwave irradiation helped to decrease the ash layer formation. Taking all mentioned results into consider it can be concluded that microwave-leaching can be considered as an efficient method for extraction of valuable metals from waste materials.
Collapse
|