1
|
Liang M, Chen J, Dong Y, Guo G, Wu X, Zan F. Feasibility assessment and underlying mechanisms of metabisulfite pretreatment for enhanced volatile fatty acids production from anaerobic sludge fermentation. WATER RESEARCH 2024; 265:122286. [PMID: 39190952 DOI: 10.1016/j.watres.2024.122286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Employing chemical pretreatment for waste activated sludge (WAS) fermentation is crucial to achieving sustainable sludge management. This study investigated the feasibility of metabisulfite (MS) pretreatment for enhancing volatile fatty acids (VFAs) production from WAS. The results show that after 24-h MS pretreatment, the content of soluble organic matter and loosely bound extracellular polymeric substances (LB-EPS), especially proteins, increased significantly. During the fermentation, MS pretreatment under alkaline conditions was more efficient, with VFA peaking on the fifth day, showing a 140 % increase compared to the alkaline control group. Correlation analysis suggests that the dosage of MS, rather than pH, is closely related to the levels of soluble protein, polysaccharides, LB-EPS, and subsequential VFAs production, while alkaline conditions facilitate the dissolution of total organic carbon. Furthermore, sulfite radicals (SO3•-) are attributed to cell inactivation and lysis, while alkaline conditions initially reduce the size of the flocs, further promoting MS for attacking flocs, thereby improving the performance of fermentation. The study also found that MS pretreatment reduced microbial community diversity, enriched hydrolytic and fermentation bacteria (Actinobacteriota and Firmicutes), and suppressed methanogens (Methanobacteriaceae and Methanosaetaceae), making it a safe, viable, and cost-effective chemical agent for sustainable sludge management.
Collapse
Affiliation(s)
- Muxiang Liang
- School of Environmental Science and Engineering, Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jing Chen
- School of Environmental Science and Engineering, Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yongrui Dong
- School of Environmental Science and Engineering, Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Gang Guo
- School of Environmental Science and Engineering, Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
2
|
Jung JS, Wong JWC, Soundharrajan I, Lee KW, Park HS, Kim D, Choi KC, Chang SW, Balasubramani R. Changes in microbial dynamics and fermentation characteristics of alfalfa silage: A potent approach to mitigate greenhouse gas emission through high-quality forage silage. CHEMOSPHERE 2024:142920. [PMID: 39053774 DOI: 10.1016/j.chemosphere.2024.142920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/19/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Feeding ruminants with high-quality forage can enhance digestibility and reduce methane production. Development of high-quality silage from leguminous plants with lactic acid bacteria can improve digestibility and it mitigate the greenhouse gas emissions. In this study, we developed a high-quality alfalfa silage with improved fermentation index and microbial dynamics using Levilactobacillus brevis-KCC-44 at low or high moisture (LM/HM) conditions and preserved it for 75 or 150 days. Alfalfa fermentation with L. brevis enhances acidification and fermentation characteristics primarily due to the dominance of lactic acid bacteria (LAB) L. brevis (>95%) compared to alfalfa fermented with epiphytic LAB. The inoculant L. brevis improved the anaerobic fermentation indexes resulting in a higher level of lactic acid in both high (10.0 ± 0.12 & 8.90 ± 0.31%DM) and low moisture (0.55 ± 0.08 & 0.39 ±0.0 %DM) in 75 and 150 days respectively, compared to control silage. In addition, the marginal amount of acetic acid (range from 0.23 ± 0.07 to 2.04 ± 0.27 %DM) and a reduced level of butyric acid (range between 0.03 ± 0.0 to 0.13± 02 %DM) was noted in silage treated with LAB than the control. The LAB count and abundance of Levilactobacillus were higher in alfalfa silage fermented with L. brevis. Microbial richness and diversity were reduced in alfalfa silage treated with L. brevis which prompted lactic acid production at a higher level even for a prolonged period of time. Therefore, this L. brevis is an effective inoculant for producing high-quality alfalfa silage since it improves fermentation indexes and provides reproducible ensiling properties.
Collapse
Affiliation(s)
- Jeong Sung Jung
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea
| | - Jonathan W C Wong
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China; Department of Biology, Institute of Bioresource and Agriculture and Sino-Forest Applied Research Centre for Pearl River Delta Environment, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Ilavenil Soundharrajan
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea
| | - Ki-Won Lee
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea
| | - Hyung Soo Park
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea
| | - Dahye Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Wanju 55365, Korea
| | - Ki Choon Choi
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea.
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Ravindran Balasubramani
- Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea.
| |
Collapse
|
3
|
Soundharrajan I, Jung JS, Muthusamy K, Lee BH, Park HS, Sivanesan R, Choi KC. Effects of Different Lactic Acid Bacteria in Single or Mixed Form on the Fermentative Parameters and Nutrient Contents of Early Heading Triticale Silage for Livestock. Foods 2023; 12:4296. [PMID: 38231774 DOI: 10.3390/foods12234296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Lactic acid bacteria (LAB) are excellent anaerobic fermenters that produce highly valuable grass-based animal feed containing essential nutrients. In the present study, an ensiling process was used to improve anaerobic fermentation in triticale silage under different moisture conditions with LAB. The triticale was treated with either a single bacterium or combined LAB and then vacuum-sealed. After 180 and 360 days of storage, the silage's fermentation characteristics, microbial changes and nutrient contents were analyzed. The pH of the silage was significantly lower than the control silage. There was a significant difference in the pH values between the silages treated with single or mixed LAB. The LAB treatment led to a substantial increase in lactic acid (LA), a decrease in butyric acid (BA), and marginal levels of acetic acid (AA). The LA content after the mixed LAB treatment was significantly higher than that after the single culture LAB treatment. After single or combined inoculant treatments, the LAB population in the silage increased, while the yeast and mold levels decreased. These findings suggest that the addition of LAB to silage during ensiling could enhance the nutritional quality and reduce unwanted microbial growth. The mixed LAB treatments produced silage with a significantly higher nutritional value than the single LAB treatments.
Collapse
Affiliation(s)
- Ilavenil Soundharrajan
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea
| | - Jeong Sung Jung
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea
| | - Karnan Muthusamy
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea
| | - Bae Hun Lee
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea
| | - Hyung Soo Park
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea
| | - Ravikumar Sivanesan
- Department of Zoology, Rajah Serfoji Government College (Autonomous), Thanjavur 613-005, India
| | - Ki Choon Choi
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea
| |
Collapse
|
4
|
Wu R, Chen M, Qin Y, Liu S, Li X. Combined hydrothermal and biological treatments for valorization of fruit and vegetable waste into liquid organic fertilizer. ENVIRONMENTAL RESEARCH 2023; 221:115262. [PMID: 36639011 DOI: 10.1016/j.envres.2023.115262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
This study investigated the effects of hydrothermal treatment, biological treatment and their combination on nutrients recovery from fruit and vegetable waste (FVW) and evaluated the feasibility of fruit and vegetable waste juice (FVWJ) from the combined treatment as liquid organic fertilizer. In this study, following conditions were determined suitable for FVW treatment: the temperature of 165 °C and retention time of 45 min for hydrothermal treatment, 20 h for biological treatment, and Weissella, as the dominant microbial genus present in FVW, was suggested as inoculum for biological treatment. In the combined treatment, based on the above conditions of hydrothermal and biological treatments, the yield of FVWJ was 93.03 g out of 100 g FVW, and concentrations of organic matter (1.45%, w/w), primary nutrients (0.51%, w/w), and toxic components in the FVWJ complied with the requirements for use concentration in both Chinese and European standards for liquid organic fertilizer. The economic analysis showed the net saving of 13.60 USD per ton FVW, indicating that it is an economical approach to valorize fruit and vegetable waste into liquid organic fertilizer through the combined treatment.
Collapse
Affiliation(s)
- Renming Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Mingsheng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Yifeng Qin
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Shuchang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Xudong Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
5
|
Yin H, Zhao M, Pan G, Zhang H, Yang R, Sun J, Yu Z, Bai C, Xue Y. Effects of Bacillus subtilis or Lentilactobacillus buchneri on aerobic stability, and the microbial community in aerobic exposure of whole plant corn silage. Front Microbiol 2023; 14:1177031. [PMID: 37138619 PMCID: PMC10149863 DOI: 10.3389/fmicb.2023.1177031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
This study aimed to evaluate the effects of Bacillus subtilis or Lentilactobacillus buchneri on the fermentation quality, aerobic stability, and bacterial and fungal communities of whole plant corn silage during aerobic exposure. Whole plant corn was harvested at the wax maturity stage, which chopped to a length of approximately 1 cm, and treated with the following: distilled sterile water control, 2.0 × 105 CFU/g of Lentilactobacillus buchneri (LB) or 2.0 × 105 CFU/g of Bacillus subtilis (BS) for 42 days silage. Then, the samples were exposed to air (23-28°C) after opening and sampled at 0, 18 and 60 h, to investigate fermentation quality, bacterial and fungal communities, and aerobic stability. Inoculation with LB or BS increased the pH value, acetic acid, and ammonia nitrogen content of silage (P < 0.05), but it was still far below the threshold of inferior silage, the yield of ethanol was reduced (P < 0.05), and satisfactory fermentation quality was achieved. With the extension of the aerobic exposure time, inoculation with LB or BS prolonged the aerobic stabilization time of silage, attenuated the trend of pH increase during aerobic exposure, and increased the residues of lactic acid and acetic acid. The bacterial and fungal alpha diversity indices gradually declined, and the relative abundance of Basidiomycota and Kazachstania gradually increased. The relative abundance of Weissella and unclassified_f_Enterobacteria was higher and the relative abundance of Kazachstania was lower after inoculation with BS compared to the CK group. According to the correlation analysis, Bacillus and Kazachstania are bacteria and fungi that are more closely related to aerobic spoilage and inoculation with LB or BS could inhibit spoilage. The FUNGuild predictive analysis indicated that the higher relative abundance of fungal parasite-undefined saprotroph in the LB or BS groups at AS2, may account for its good aerobic stability. In conclusion, silage inoculated with LB or BS had better fermentation quality and improved aerobic stability by effectively inhibiting the microorganisms that induce aerobic spoilage.
Collapse
Affiliation(s)
- Hang Yin
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Meirong Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Gang Pan
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Hongyu Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Rui Yang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Juanjuan Sun
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Zhu Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Chunsheng Bai
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Chunsheng Bai,
| | - Yanlin Xue
- Inner Mongolia Engineering Research Center of Development and Utilization of Microbial Resources in Silage, Inner Mongolia Academy of Agricultural and Animal Husbandry Science, Hohhot, China
- Inner Mongolia Key Laboratory of Microbial Ecology of Silage, Inner Mongolia Academy of Agricultural and Animal Husbandry Science, Hohhot, China
- Yanlin Xue,
| |
Collapse
|
6
|
Fermentation Characteristics, Microbial Compositions, and Predicted Functional Profiles of Forage Oat Ensiled with Lactiplantibacillus plantarum or Lentilactobacillus buchneri. FERMENTATION 2022. [DOI: 10.3390/fermentation8120707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This study aimed to investigate the effects of lactic acid bacteria (LAB) inoculants on the fermentation quality, microbial compositions, and predicted functional profiles of forage oat. The forage oat was inoculated with distilled water, Lentilactobacillus buchneri (LB), and Lactiplantibacillus plantarum (LP) as the control (CON), LB and LP treatments, respectively, and the addition of Lentilactobacillus buchneri (LB) or Lactiplantibacillus plantarum (LP) resulted in 1 × 106 colony-forming units/g of fresh weight. After 30 days of fermentation, the lowest pH (4.23) and the lowest content of ammoniacal nitrogen (NH3-N) in dry matter (DM, 4.39%) were observed in the LP treatment. Interestingly, there was a significant (p < 0.05) difference in lactic acid (LA) concentration among the three treatments. The LP treatment had the highest lactate concentration (7.49% DM). At the same time, a markedly (p < 0.05) elevated acetic acid (AA) concentration (2.48% DM) was detected in the LB treatment. The Shannon and Chao1 indexes of bacterial and fungal communities in all the silage samples decreased compared to those in the fresh materials (FM). Proteobacteria was the dominant phylum in the FM group and shifted from Proteobacteria to Firmicutes after ensiling. Lactobacillus (64.87%) and Weissella (18.93%) were the predominant genera in the CON, whereas Lactobacillus dominated the fermentation process in the LB (94.65%) and LP (99.60%) treatments. For the fungal community structure, the major genus was Apiotrichum (21.65% and 60.66%) in the FM and CON groups after 30 days of fermentation. Apiotrichum was the most predominant in the LB and LP treatments, accounting for 52.54% and 34.47%, respectively. The genera Lactococcus, Pediococcus, and Weissella were negatively associated with the LA content. The genus Ustilago and Bulleromyces were positively associated with the LA content. These results suggest that the addition of LAB regulated the microbial community in oat silage, which influenced the ensiling products, and LP was more beneficial for decreasing the pH and NH3-N and increasing the LA concentration than LB in forage oat silage.
Collapse
|
7
|
Zheng Y, Li M, Xu J, Sun H, Cheng Q, Xie Y, Wang C, Chen C, Li P. Effects of different cutting methods and additives on the fermentation quality and microbial community of Saccharum arundinaceum silage. Front Microbiol 2022; 13:999881. [PMID: 36212833 PMCID: PMC9539546 DOI: 10.3389/fmicb.2022.999881] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
To develop a new high-yielding and polysaccharide-containing forage resource for livestock, the effects of different cutting methods and additives on Saccharum arundinaceum silage were evaluated. The wilted S. arundinaceum were chopped and knead-wired. The silages from each cutting method were treated with Lactobacillus plantarum (LP), cellulase (CE) and the combination of LP and CE (LP + CE) for 3, 7, 15, 30, and 60 days. Compared with the CK treatment, CE treatment exhibited better effects in the degradation of neutral detergent fiber (NDF), LP exhibited a better performance in preserving the content of dry matter (DM), and adding LP + CE significantly enhanced (P < 0.05) the contents of lactic acid (LA), crude protein (CP) and DM and significantly reduced (P < 0.05) the pH and NDF content during ensiling. In addition, both additives exerted a remarkable effect on the silage bacterial community (P < 0.05), with a dramatic increase in the Lactobacillus abundance and a decrease in the abundance of Enterobacter. Lactic acid bacteria (LAB) became the most dominant bacteria that affected the fermentation quality of LP and LP + CE silages. Meanwhile, chopped silages showed better fermentation quality and nutrient preservation and a higher abundance of LAB. Our research indicated that the chopped S. arundinaceum ensiling with LP + CE could exert a positive effect on LA fermentation and preservation of nutrient substances by shifting the bacterial community. In conclusion, S. arundinaceum can serve as a new silage resource for feed utilization by the ensiling method of LP + CE-chopped.
Collapse
Affiliation(s)
- Yulong Zheng
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Mengxin Li
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Jinyi Xu
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Hong Sun
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Qiming Cheng
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Yixiao Xie
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Chunmei Wang
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Chao Chen
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Ping Li
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
- *Correspondence: Ping Li,
| |
Collapse
|
8
|
Lin S, Huang H, Zheng J, Lin H, Wang Y, Xu P. Microbial enrichment evaluation during the fermentation of ensiling pruned branches from tea plants. Int J Food Microbiol 2022; 374:109742. [DOI: 10.1016/j.ijfoodmicro.2022.109742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/05/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022]
|
9
|
Effects of Lactobacillus plantarum on Fermentation Quality and Anti-Nutritional Factors of Paper Mulberry Silage. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8040144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There are few studies on the application of lactic acid bacteria in the reduction of anti-nutrient factors in paper mulberry silage. This study aimed to investigate the effects of different lactic acid bacteria on the fermentation quality and the amount of anti-nutritional factors in paper mulberry silage. Two strains of Lactobacillus plantarum (GX, isolated from paper mulberry silage; GZ, provided by Sichuan Gaofuji Biotechnology Co. Ltd.) were added as silage additives. On days 7, 15, 30 and 60 of the ensiling process, the fermentation quality, and the amount of anti-nutritional factors were measured. Compared with the control group, inoculation with Lactobacillus plantarum could rapidly reduce pH values, leading to lower NH3-N/TN. Besides, it also significantly increased the lactic acid content (p < 0.05). The two strains of L. plantarum significantly reduced the content of hydrolysed tannin, condensed tannin, total tannin, oxalic acid, phytic acid and saponin (p < 0.05). Overall, this study found that the addition of lactic acid bacteria could significantly improve the fermentation quality of paper mulberry and reduce the amount of anti-nutrient factors (p < 0.05).
Collapse
|
10
|
Wang Y, Pan S, Yin J, Feng H, Wang M, Chen T. Resource potential and global warming potential of fruit and vegetable waste in China based on different treatment strategies. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 140:225-232. [PMID: 34838375 DOI: 10.1016/j.wasman.2021.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Fruit and vegetable waste (FVW) contains rich resources that can be recovered by methods such as incineration, anaerobic digestion to generate heat energy, biogas, and preservation by ensiling. However, a horizontal comparison of the resource potential and environmental impact of different recycling methods employed for FVW has not been conducted. This study quantifies and computes the recycling potential and global warming potential (GWP) of anaerobic digestion, ensiling, and incineration of the FVW generated during primary production in China. First, a gray model was employed to estimate the FVW output in 2030, based on the FVW produced between 2002 and 2017. Next, the resource potential and GWP of anaerobic digestion, incineration, and ensiling were evaluated. Finally, an optimization method was utilized to analyze possible strategies of FVW recycling in 2030. Results indicate that FVW output in China is expected to increase to 170 Mt by 2030, highlighting the need for efficient treatment options. Further, the resource potential and GWP of different waste treatment strategies were notably different. The recycling potential of ensiling was the highest at 1950 MJ/t; while the GWP of anaerobic digestion was the lowest at -31 kg CO2eq. An optimization analysis suggested that the optimal target of 100% would be attained if all FVW is ensiled in 2030. The study provides a basis for informed technical decision-making related to FVW recycling options in the future.
Collapse
Affiliation(s)
- Yifan Wang
- School of Environment Science &Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, HangZhou 310012, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, China
| | - Shuping Pan
- Zhejiang Ecological Environment Monitoring Center, Hangzhou 310012, China
| | - Jun Yin
- School of Environment Science &Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, HangZhou 310012, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huajun Feng
- School of Environment Science &Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, HangZhou 310012, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, China
| | - Meizheng Wang
- School of Environment Science &Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, HangZhou 310012, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, China
| | - Ting Chen
- School of Environment Science &Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, HangZhou 310012, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
11
|
Jung JS, Ravindran B, Soundharrajan I, Awasthi MK, Choi KC. Improved performance and microbial community dynamics in anaerobic fermentation of triticale silages at different stages. BIORESOURCE TECHNOLOGY 2022; 345:126485. [PMID: 34871725 DOI: 10.1016/j.biortech.2021.126485] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Production of high-quality grass-based silages by microbial-mediated anaerobic fermentation is an effective strategy in livestock farms. In the present study, an ensiling process was used to preserve and enhance fermentative metabolites in triticale silages with novel inoculants of Lactobacillus rhamanosus -52 and, Lactobacillus rhamanosus-54. Triticale silages treated with LAB predominantly had lower pH values than control silages due to rapid changes of microbial counts. LAB addition improved anaerobic fermentation profiles showing higher lactic acid, but lower acetic acid and butyric acid concentrations. A background microbial dynamic study indicated that the addition of L. rhamanosus-52 and L. rhamanosus-54 improved silage fermentation, enriched Lactobacillus spp., and decreased microbial richness with diversity, leading to increased efficiency of lactic acid fermentation. In conclusion, LAB treatment can increase silage quality by enhancing the dominance of desirable Lactobacillus while inhibiting the growth of undesirable microbes.
Collapse
Affiliation(s)
- Jeong Sung Jung
- Grassland and Forage Division, National Institute of Animal Science, RDA, 31000, Republic of Korea
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Ilavenil Soundharrajan
- Grassland and Forage Division, National Institute of Animal Science, RDA, 31000, Republic of Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi 712100, PR China
| | - Ki Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, RDA, 31000, Republic of Korea.
| |
Collapse
|
12
|
Wei SN, Jeong EC, Li YF, Kim HJ, Ahmadi F, Kim JG. Evaluation of forage quality, feed value, and ensilability of Proso
millet (Panicum miliaceum L.) in Korea. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 64:38-51. [PMID: 35174341 PMCID: PMC8819318 DOI: 10.5187/jast.2021.e131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/19/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022]
Abstract
Whole-plant corn (Zea may L.) and sorghum-sudangrass hybrid
[Sorghum bicolor (L.) Moench] are major summer crops that
can be fed as direct-cut or silage. Proso millet is a short-season growing crop
with distinct agronomic characteristics that can be productive in marginal
lands. However, information is limited about the potential production, feed
value, and ensilability of proso millet forage. We evaluated proso millet as a
silage crop in comparison with conventional silage crops. Proso millet was sown
on June 8 and harvested on September 5 at soft-dough stage. Corn and
sorghum-sudangrass hybrid were planted on May 10 and harvested on September 10
at the half milk-line and soft-dough stages, respectively. The fermentation was
evaluated at 1, 2, 3, 5, 10, 15, 20, 30, and 45 days after ensiling. Although
forage yield of proso millet was lower than corn and sorghum-sudangrass hybrid,
its relative feed value was greater than sorghum-sudangrass hybrid.
Concentrations of dry matter (DM), crude protein, and water-soluble carbohydrate
decreased commonly in the ensiling forage crops. The DM loss was greater in
proso millet than those in corn and sorghum-sudangrass hybrid. The in
vitro dry matter digestibility declined in the forage crops as
fermentation progressed. In the early stages of fermentation, pH dropped
rapidly, which was stabilized in the later stages. Compared to corn and
sorghum-sudangrass hybrid, the concentration of ammonia-nitrogen was greater in
proso millet. The count of lactic acid bacteria reached the maximum level on day
10, with the values of 6.96, 7.77, and 6.95 Log10 CFU/g fresh weight
for proso millet, corn, and sorghum-sudangrass hybrid, respectively. As ensiling
progressed, the concentrations of lactic acid and acetic acid of the three crops
increased and lactic acid proportion became higher in the order of
sorghum-sudangrass hybrid, corn, and proso millet. Overall, the shorter,
fast-growing proso millet comparing with corn and sorghum-sudangrass hybrid
makes this forage crop an alternative option, particularly in areas where
agricultural inputs are limited. However, additional research is needed to
evaluate the efficacy of viable strategies such as chemical additives or
microbial inoculants to minimize ammonia-nitrogen formation and DM loss during
ensiling.
Collapse
Affiliation(s)
- Sheng Nan Wei
- Graduate School of International
Agricultural Technology, Seoul National University,
Pyeongchang 25354, Korea
| | - Eun Chan Jeong
- Graduate School of International
Agricultural Technology, Seoul National University,
Pyeongchang 25354, Korea
| | - Yan Fen Li
- Graduate School of International
Agricultural Technology, Seoul National University,
Pyeongchang 25354, Korea
| | - Hak Jin Kim
- Research Institute of Eco-friendly
Livestock Science, Institute of GreenBio Science Technology, Seoul National
University, Pyeongchang 25354, Korea
| | - Farhad Ahmadi
- Research Institute of Eco-friendly
Livestock Science, Institute of GreenBio Science Technology, Seoul National
University, Pyeongchang 25354, Korea
| | - Jong Geun Kim
- Graduate School of International
Agricultural Technology, Seoul National University,
Pyeongchang 25354, Korea
- Research Institute of Eco-friendly
Livestock Science, Institute of GreenBio Science Technology, Seoul National
University, Pyeongchang 25354, Korea
- Corresponding author: Jong Geun Kim, Graduate
School of International Agricultural Technology, Seoul National University,
Pyeongchang 25354, Korea. Tel: +82-33-339-5728, E-mail:
| |
Collapse
|
13
|
Fruit and Vegetable Wholesale Market Waste: Safety and Nutritional Characterisation for Their Potential Re-Use in Livestock Nutrition. SUSTAINABILITY 2021. [DOI: 10.3390/su13169478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Compared to other food categories, fruits and vegetables are the most wasted. This leads to the squandering of economic, social, and environmental resources. The reallocation of fruit and vegetable waste (FVW) into animal feed contributes to the sustainability of livestock production, reducing the impact of feed production for land use. In this study, the fruit and vegetable waste from the General Wholesale Market of Milan was considered. FVW samples were collected for one year and were analysed for safety parameters and nutritional, vitamin, and mineral composition. Data showed that dry matter (DM) was on average 10.82 ± 1.21% and neutral detergent fibre (NDF) was on average 22.43 ± 4.52% DM. The presence of soluble sugars (30.51 ± 7.61% DM, on average) was also detected. However, the high moisture content of this waste makes it easily perishable, with detrimental effects on quality, storage, and transportation. A strategy was therefore proposed to reduce the water content of FVW by pressing. Overall, the results highlighted the significant nutritional value of FVW from the wholesale market and the need to develop appropriate technologies to maintain the food chain line safe.
Collapse
|
14
|
Lee WH, Ahmadi F, Kim YI, Park JM, Kwak WS. Effects of feeding sodium metabisulfite-treated fruit and vegetable discards to Hanwoo heifers and cows. Anim Biosci 2021; 35:410-421. [PMID: 34445850 PMCID: PMC8902230 DOI: 10.5713/ab.21.0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/02/2021] [Indexed: 11/27/2022] Open
Abstract
Objective Two series of experiments were conducted to determine how the incremental levels of sodium metabisulfite (SMB)-treated fruit and vegetable discards (FVD) in diet of Hanwoo heifers and cows affect their performance and health. Methods In Exp. 1, 36 Hanwoo heifers were stratified by age (13.3±0.83 mo) and initial body weight (305±19.7 kg), and divided randomly to one of three diets containing 0%, 10%, or 20% SMB-treated FVD (as-fed basis). The experiment lasted 110 d, including 20 d of adaptation. In Exp. 2, 24 multiparous Hanwoo cows were divided into three groups based on age (48.2±2.81 mo) and initial body condition score (2.64±0.33). Cows in each block were assigned randomly to one of three diets containing 0%, 11%, or 22% SMB-treated FVD (as-fed basis). The experiment lasted 80 d, including a 20-d adaptation period. In both experiments, SMB-treated FVD was used as a replacement for wet brewers grain in total mixed ration (TMR). Results Growing heifers exhibited no differences in their daily feed intake (6.58±0.61 kg/d dry matter [DM]), average daily gain (0.60±0.07 kg/d), and body condition score when they consumed the incremental levels of SMB-treated FVD. Although most blood metabolites were unaffected by treatments, blood urea-N and β-hydroxybutyrate levels decreased linearly as the SMB-treated FVD level increased in TMR. Similar to Exp. 1, minor differences were found in daily feed intake (8.27±0.72 kg DM/d) and body condition score of Hanwoo cows. Most blood metabolites remained unaffected by treatments, but blood urea-N decreased as the SMB-treated FVD level in TMR increased. Conclusion Our findings suggest that SMB-treated FVD could be safely incorporated into the diet of Hanwoo heifers and cows, potentially improving N-use efficiency in the body while not impairing performance or health.
Collapse
Affiliation(s)
- Won Hee Lee
- Food Bio-science Major, College of Medical Life Sciences, Konkuk University, 268 Chungwon-daero, Chungju-si, Chung-Buk province 27478, Republic of Korea
| | - Farhad Ahmadi
- Food Bio-science Major, College of Medical Life Sciences, Konkuk University, 268 Chungwon-daero, Chungju-si, Chung-Buk province 27478, Republic of Korea
| | - Young Il Kim
- Daepoong Co. LTD, 188, Dongpyeon-ro, Dongan-gu, Anyang-si, Gyeonggi-do, Republic of Korea
| | - Jong Moon Park
- Daepoong Co. LTD, 188, Dongpyeon-ro, Dongan-gu, Anyang-si, Gyeonggi-do, Republic of Korea
| | - Wan Sup Kwak
- Food Bio-science Major, College of Medical Life Sciences, Konkuk University, 268 Chungwon-daero, Chungju-si, Chung-Buk province 27478, Republic of Korea
| |
Collapse
|
15
|
Du G, Zhang G, Shi J, Zhang J, Ma Z, Liu X, Yuan C, Li X, Zhang B. Keystone Taxa Lactiplantibacillus and Lacticaseibacillus Directly Improve the Ensiling Performance and Microflora Profile in Co-Ensiling Cabbage Byproduct and Rice Straw. Microorganisms 2021; 9:microorganisms9051099. [PMID: 34065243 PMCID: PMC8161039 DOI: 10.3390/microorganisms9051099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 02/02/2023] Open
Abstract
Ensiling has been widely applied to cope with agricultural solid waste to achieve organic waste valorization and relieve environmental pressure and feedstuff shortage. In this study, co-ensiling of cabbage leaf byproduct and rice straw was performed with inoculation of Lactiplantibacillusplantarum (LP) to investigate the effects of inoculation on ensiling performance and microflora profiles. Compared to the control, LP inoculation preserved more dry matter (DM) content (283.4 versus 270.9 g·kg-1 fresh matter (FM) on day 30), increased lactic acid (LA) content (52.1 versus 35.8 g·kg-1 dry matter on day 15), decreased pH (3.55 versus 3.79 on day 15), and caused accumulation of acetic acid (AA), butyric acid (BA), and ammonia. The investigation showed that LP inoculation modified microflora composition, especially resisting potential pathogens and enriching more lactic acid bacteria (LAB) (p < 0.05). Moreover, Lactiplantibacillus and Lacticaseibacillus were identified as the keystone taxa that influenced physicochemical properties and interactions in microflora. They were also the main functional species that directly restrained undesirable microorganisms (p < 0.05), rather than indirectly working via metabolite inhibition and substrate competition (p > 0.05). The results of this present study improve the understanding of the underlying effect of LP inoculation on improving silage quality and facilitate the bio-transformation of cabbage byproduct and rice straw as animal feed.
Collapse
Affiliation(s)
- Guilin Du
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (G.D.); (J.S.); (J.Z.); (Z.M.); (X.L.); (C.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Guilong Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China;
| | - Jiping Shi
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (G.D.); (J.S.); (J.Z.); (Z.M.); (X.L.); (C.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Jingxian Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (G.D.); (J.S.); (J.Z.); (Z.M.); (X.L.); (C.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguo Ma
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (G.D.); (J.S.); (J.Z.); (Z.M.); (X.L.); (C.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangcen Liu
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (G.D.); (J.S.); (J.Z.); (Z.M.); (X.L.); (C.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyang Yuan
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (G.D.); (J.S.); (J.Z.); (Z.M.); (X.L.); (C.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Xiang Li
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (G.D.); (J.S.); (J.Z.); (Z.M.); (X.L.); (C.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (X.L.); (B.Z.); Tel.: +86-18202130394 (X.L.); +86-21-20325161 (B.Z.); Fax: +86-21-20325173 (X.L. & B.Z.)
| | - Baoguo Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (G.D.); (J.S.); (J.Z.); (Z.M.); (X.L.); (C.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (X.L.); (B.Z.); Tel.: +86-18202130394 (X.L.); +86-21-20325161 (B.Z.); Fax: +86-21-20325173 (X.L. & B.Z.)
| |
Collapse
|
16
|
Ahmadi F, Lee WH, Kwak WS. A novel combination of sodium metabisulfite and a chemical mixture based on sodium benzoate, potassium sorbate, and sodium nitrite for aerobic preservation of fruit and vegetable discards and lactic acid fermentation in a total mixed ration for ruminants. Anim Biosci 2021; 34:1479-1490. [PMID: 33677910 PMCID: PMC8495328 DOI: 10.5713/ab.20.0871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/21/2021] [Indexed: 11/27/2022] Open
Abstract
Objective Our recent findings confirmed the effectiveness of sodium metabisulfite (SMB) in controlling the growth of undesirable microorganisms in fruit and vegetable discards (FVD); however, lactic acid bacteria (LAB) are susceptible to its antibacterial effects. Two series of experiments were conducted to enable the survivability of LAB during silage fermentation of a total mixed ration (TMR) containing SMB-treated FVD. Methods In Exp. 1, the objective was to isolate a strain of LAB tolerable to the toxic effect of SMB. In Exp. 2, the SMB load was minimized through its partial replacement with a chemical mixture (CM) based on sodium benzoate (57%), potassium sorbate (29%), and sodium nitrite (14%). FVD was treated with SMB + CM (2 g each/kg biomass) and added to the TMR at varying levels (0%, 10%, or 20%), with or without KU18 inoculation. Results The KU18 was screened as a presumptive LAB strain showing superior tolerance to SMB in broth medium, and was identified at the molecular level using 16S rRNA gene sequence analysis as Lactobacillus plantarum. Inoculation of KU18 in TMR containing SMB was not successful for the LAB development, biomass acidification, and organoleptic properties of the resultant silage. In Exp. 2, based on the effectiveness and economic considerations, an equal proportion of SMB and CM (2 g each/kg FVD) was selected as the optimal loads for the subsequent silage fermentation experiment. Slight differences were determined in LAB development, biomass acidification, and sensorial characteristics among the experimental silages, suggesting the low toxicity of the preservatives on LAB growth. Conclusion Although KU18 strain was not able to efficiently develop in silage mass containing SMB-treated FVD, the partial substitution of SMB load with the CM effectively alleviated the toxic effect of SMB and allowed LAB development during the fermentation of SMB + CM-treated FVD in TMR.
Collapse
Affiliation(s)
- Farhad Ahmadi
- Food Bio-science Major, College of Medical Life Sciences, Konkuk University, Chungju 27478, Korea
| | - Won Hee Lee
- Food Bio-science Major, College of Medical Life Sciences, Konkuk University, Chungju 27478, Korea
| | - Wan Sup Kwak
- Food Bio-science Major, College of Medical Life Sciences, Konkuk University, Chungju 27478, Korea
| |
Collapse
|
17
|
Ren H, Feng Y, Pei J, Li J, Wang Z, Fu S, Zheng Y, Li Z, Peng Z. Effects of Lactobacillus plantarum additive and temperature on the ensiling quality and microbial community dynamics of cauliflower leaf silages. BIORESOURCE TECHNOLOGY 2020; 307:123238. [PMID: 32247271 DOI: 10.1016/j.biortech.2020.123238] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
In order to enable rapid disposal and proper preservation of discarded vegetable for waste valorization, ensiling was employed to preserve cauliflower leaves for 30 days at different temperatures (20 ~ 45 °C) with and without the addition of Lactobacillus plantarum L8. The L. plantarum inoculant reduced dry matter (DM) loss and enhanced the preservation of protein and soluble carbohydrate while decreasing pH and ammonia nitrogen content. The silages at 35 °C exhibited the best fermentation profile characterized by the highest lactic acid content (185 g·kg-1 DM) and the lowest pH (4.08) and ammonia nitrogen content (37.6 g·kg-1 total nitrogen) with L. plantarum inoculation. The presence of exogenous L. plantarum improved the silage fermentation, enriched Lactobacillus and Weissella, and reduced the microbial richness/diversity, resulting in efficient lactic acid fermentation, especially at 30 and 35 °C. Moreover, the microbial community dynamics was correlated with the chemical compositions and fermentation metabolites in silages.
Collapse
Affiliation(s)
- Haiwei Ren
- School of Life Science and Engineering, Lanzhou University of Technology, Gansu Province Key Laboratory of Complementary Energy System of Biomass and Solar Energy, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China
| | - Yinping Feng
- School of Life Science and Engineering, Lanzhou University of Technology, Gansu Province Key Laboratory of Complementary Energy System of Biomass and Solar Energy, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China
| | - Jiawen Pei
- School of Life Science and Engineering, Lanzhou University of Technology, Gansu Province Key Laboratory of Complementary Energy System of Biomass and Solar Energy, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China
| | - Jinping Li
- School of Life Science and Engineering, Lanzhou University of Technology, Gansu Province Key Laboratory of Complementary Energy System of Biomass and Solar Energy, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China
| | - Zhiye Wang
- Institute of Biology, Gansu Academy of Sciences, 229 South Dingxi Road, Lanzhou, Gansu Province 73000, PR China
| | - Shanfei Fu
- School of Environment and Civil Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, 101C BIVAP, 1980 Kimball Avenue, Manhattan, KS 66506, United States.
| | - Zhizhong Li
- School of Life Science and Engineering, Lanzhou University of Technology, Gansu Province Key Laboratory of Complementary Energy System of Biomass and Solar Energy, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China
| | - Zhangpu Peng
- Institute of Biology, Gansu Academy of Sciences, 229 South Dingxi Road, Lanzhou, Gansu Province 73000, PR China
| |
Collapse
|
18
|
Ren H, Feng Y, Liu T, Li J, Wang Z, Fu S, Zheng Y, Peng Z. Effects of different simulated seasonal temperatures on the fermentation characteristics and microbial community diversities of the maize straw and cabbage waste co-ensiling system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135113. [PMID: 31791754 DOI: 10.1016/j.scitotenv.2019.135113] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/14/2019] [Accepted: 10/20/2019] [Indexed: 05/14/2023]
Abstract
Ensiling is considered as a suitable method to preserve seasonal agricultural residues to enable long-term supply for wastes valorization. In this study, the effects of simulated seasonal temperatures (-3, 18 and 34 °C) on the organic compositions, ensiling fermentation characteristics, and microbial community evolution during 120 days co-ensiling of maize straw and cabbage wastes were investigated. Successful storage performance was obtained at all these three temperatures. Comparatively, silages at 18 and 34 °C showed lower ammonia nitrogen, lower pH and more intensive lactic acid bacteria fermentation than that at -3 °C. Both silages at -3 and18 °C were well-preserved for 120 days with higher biodegradation potential (BDP), accompanied by lower content of acid detergent lignin (ADL). However, the silages at 34 °C could only preserved for 90 days due to low carbohydrate, low BDP and higher ADL content than that at -3 or18 °C. The storage temperature is a critical parameter that significantly affected the silage quality by influencing the microbial community diversity in silages. Proteobacteria and Firmicutes were dominant bacteria at phylum level for all silages while the dominant lactic acid bacteria at genus level were Lactobacillus and Leuconostoc, which restrained the undesirable microbes such as Enterobacteriaceae, Pseudomonas, Flavobacterium, and Pantoea during co-ensiling. Co-ensiling of maize straw with vegetable wastes may provide a promising strategy for long-term preservation of air-dried crop straw while using vegetable wastes as regulatable supplement to achieve silages of desired quality. This study could provide valuable information for conservation and management of agricultural wastes.
Collapse
Affiliation(s)
- Haiwei Ren
- School of Life Science and Engineering/Western China Energy & Environment Research Center, Lanzhou University of Technology, Lanzhou, Gansu Province 730050, PR China
| | - Yinping Feng
- School of Life Science and Engineering/Western China Energy & Environment Research Center, Lanzhou University of Technology, Lanzhou, Gansu Province 730050, PR China
| | - Tong Liu
- School of Life Science and Engineering/Western China Energy & Environment Research Center, Lanzhou University of Technology, Lanzhou, Gansu Province 730050, PR China
| | - Jinping Li
- School of Life Science and Engineering/Western China Energy & Environment Research Center, Lanzhou University of Technology, Lanzhou, Gansu Province 730050, PR China
| | - Zhiye Wang
- Institute of Biology, Gansu Academy of Sciences, Lanzhou 73000, China
| | - Shanfei Fu
- School of Environment and Civil Engineering, Jiangnan University, No 1800, Lihudadao Road, Wuxi, Jiangsu Province 214122, PR China.
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, 101C BIVAP, 1980 Kimball Avenue, Manhattan, KS 66506, USA
| | - Zhangpu Peng
- Institute of Biology, Gansu Academy of Sciences, Lanzhou 73000, China
| |
Collapse
|
19
|
Song KH, Woo JS, Kim JR, Ryu GL, Baek YC, Oh YK, Kwak WS, Park KK. Nutritional value and in situ degradability of fruit-vegetable byproducts and their feeding effects on performance of growing Hanwoo steers. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:973-980. [PMID: 32106658 PMCID: PMC7206375 DOI: 10.5713/ajas.19.0743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/28/2020] [Indexed: 11/27/2022]
Abstract
Objective This study was conducted to evaluate nutritional value and in situ degradability of fruit-vegetable byproducts and their feeding effects on performance of growing Hanwoo steers. Methods Nutritional value and in situ degradability of cabbage, Chinese cabbage and fruit-vegetable byproducts were assessed. In vivo feeding trial was also performed for 12 weeks. Thirty-six growing steers were randomly allocated into three groups according to body weight (BW) and age in 12 pens (4 replications/treatment) and assigned to one of the three dietary treatments: control (byproduct 0%), FV-B (fruit-vegetable byproduct 20%), and CA-B (cabbage peel 15% plus Chinese cabbage peel 15%, total byproduct 30%). Results The crude protein contents of cabbage, Chinese cabbage and fruit-vegetable byproducts were 18.69%, 20.20%, and 10.07%, respectively. Concentrations of neutral detergent fiber (NDF) were higher in cabbage (22.31%) and Chinese cabbage (28.83%) than fruit-vegetable (13.94%). Higher concentrations of non-fiber carbohydrate were observed for fruit-vegetable (66.72%) than cabbage (44.93%) and Chinese cabbage byproducts (24.69%). The effective degradability (ED) of both dry matter (DM) and NDF for fruit-vegetable byproduct (DM, 84.69%; NDF, 85.62%) was higher (p<0.05) than cabbage (DM, 68.47%; NDF, 55.97%) and Chinese cabbage byproducts (DM, 68.09%; NDF, 54.22%). The DM intake was not different among treatments because the amount of feed was kept constant according to the BW of growing steers to prevent overweight during the growing period. The average daily gain during the whole experimental period was not different among treatments (1.26, 1.25, and 1.34 kg/d for control, FV-B, and CA-B). The ED of both DM and NDF degradability of the total mixed ration (TMR) diets were very similar among treatments. Feed conversion ratio during the whole period showed no significant difference among treatments. Conclusion This study demonstrates that fruit-vegetable and cabbage byproducts up to 20% and 30% (as fed basis), respectively can be included in TMR diets for growing beef cattle.
Collapse
Affiliation(s)
- Keun Hong Song
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Jun Sik Woo
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Ju Ri Kim
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Gyeong Lim Ryu
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Youl Chang Baek
- National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Young Kyoon Oh
- National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Wan Sup Kwak
- College of Medical Life Sciences, Konkuk University, Chungju 27478, Korea
| | - Keun Kyu Park
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
20
|
Ahmadi F, Lee WH, Oh YK, Park K, Kwak WS. Fruit and vegetable discards preserved with sodium metabisulfite as a high-moisture ingredient in total mixed ration for ruminants: effect on in vitro ruminal fermentation and in vivo metabolism. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:446-455. [PMID: 32054208 PMCID: PMC7054629 DOI: 10.5713/ajas.19.0596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/21/2019] [Indexed: 11/27/2022]
Abstract
Objective Our recent series of laboratory- and large-scale experiments confirmed that under aerobic and anaerobic conditions, sodium metabisulfite (SMB) was effective in preserving nutrients and antioxidant capacity of highly perishable fruit and vegetable discards (FVD). Hence, the purpose of this study was to examine how partial inclusion of SMB-treated FVD in total mixed ration (TMR) influences in vitro ruminal fermentation, whole-tract digestibility, nitrogen metabolism, blood metabolites, and voluntary feed intake of sheep. Methods The FVD were mixed thoroughly with 6 g SMB/kg wet biomass and kept outdoors under aerobic conditions for 7 days. Four TMRs including four levels of SMB-treated FVD (as-fed basis) at 0%, 10%, 20%, and 30% (equaling to 0%, 1.9%, 3.8%, and 5.7% on dry matter basis, respectively), were prepared as replacement for corn grain. The ruminal fermentation metabolites were studied using an in vitro gas production test. Four mature male Corriedale sheep were assigned at random to the 4 diets for two separate sub-experiments; i) digestibility trial with four 21-d periods, and ii) voluntary feed intake trial with four 28-d periods. Results Inclusion of SMB-treated FVD in the TMR tended to quadratically increase partitioning factor. No effect was seen on total-tract digestibility of organic matter, ether extract, crude protein, and acid detergent fiber, except for neutral detergent fiber digestibility that tended to linearly increase with increasing SMB-treated FVD in the TMR. The progressive increase of FVD preserved with SMB in the diet had no effect on nitrogen metabolism. Treatment had no effect on serum antioxidant capacity and blood metabolites assayed. Voluntary feed intake was not impaired by inclusion of SMB-treated FVD in the TMR. Conclusion It appears that FVD preserved with SMB can be safely incorporated into TMR as replacement of corn grain without impairment of nutrient metabolism and feed intake.
Collapse
Affiliation(s)
- Farhad Ahmadi
- College of Medical Life Sciences and College of Sanghur Life Science, Konkuk University, Chungju 27478, Korea
| | - Won Hee Lee
- College of Medical Life Sciences and College of Sanghur Life Science, Konkuk University, Chungju 27478, Korea
| | - Young-Kyoon Oh
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Keunkyu Park
- College of Medical Life Sciences and College of Sanghur Life Science, Konkuk University, Chungju 27478, Korea
| | - Wan Sup Kwak
- College of Medical Life Sciences and College of Sanghur Life Science, Konkuk University, Chungju 27478, Korea
| |
Collapse
|