1
|
Pundir A, Singh Thakur M, Prakash S, Kumari N, Sharma N, He Z, Nam S, Dhumal S, Sharma K, Saxena S, Kumar S, Deshmukh SV, Kumar M. Furfural as a low-volume, high-value asset from agricultural residues: A review on production, agricultural applications and environmental sustainability. Heliyon 2024; 10:e35077. [PMID: 39157344 PMCID: PMC11327586 DOI: 10.1016/j.heliyon.2024.e35077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
This comprehensive review explores furfural production from agricultural residues, focusing on its significance as a low-volume, high-value asset crucial for environmental sustainability. It covers diverse production technologies, recent advancements, and applications in agriculture, evaluating furfural's potential to enhance crop resilience and yield. Showing its role in a circular economy, the review discusses how furfural can replace conventional petrochemical processes, thereby reducing environmental impact. Case studies, such as successful implementations with cotton biomass byproducts, illustrate furfural's practical applications and environmental benefits. The study underscores the need for ongoing research, supportive policies, and furfural's growing role in sustainable agriculture and industry. It is focused on furfural's essential contribution to promoting environmental stewardship and sustainable practices. By examining furfural's role as a value-added product from agricultural residues, this review provides insights into its economic viability and potential challenges.
Collapse
Affiliation(s)
- Ashok Pundir
- School of Core Engineering, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Mohindra Singh Thakur
- School of Core Engineering, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Suraj Prakash
- School of Biological and Environmental Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Neeraj Kumari
- School of Biological and Environmental Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Niharika Sharma
- School of Biological and Environmental Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Zhongqi He
- USDA-ARS, Southern Regional Research Center, New Orleans, LA, 70124, USA
| | - Sunghyun Nam
- USDA-ARS, Southern Regional Research Center, New Orleans, LA, 70124, USA
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur, 416004, India
| | - Kanika Sharma
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Sujata Saxena
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Sunil Kumar
- ICAR-Indian Institute of Farming Systems Research, Modipuram, 250110, India
| | - Sheetal Vishal Deshmukh
- Bharati Vidyapeeth (Deemed to be) University, Yashwantrao Mohite Institute of Management, Karad, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| |
Collapse
|
2
|
Hoang TD, Van Anh N, Yusuf M, Ali S A M, Subramanian Y, Hoang Nam N, Minh Ky N, Le VG, Thi Thanh Huyen N, Abi Bianasari A, K Azad A. Valorization of Agriculture Residues into Value-Added Products: A Comprehensive Review of Recent Studies. CHEM REC 2024; 24:e202300333. [PMID: 39051717 DOI: 10.1002/tcr.202300333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/08/2024] [Indexed: 07/27/2024]
Abstract
Global agricultural by-products usually go to waste, especially in developing countries where agricultural products are usually exported as raw products. Such waste streams, once converted to "value-added" products could be an additional source of revenue while simultaneously having positive impacts on the socio-economic well-being of local people. We highlight the utilization of thermochemical techniques to activate and convert agricultural waste streams such as rice and straw husk, coconut fiber, coffee wastes, and okara power wastes commonly found in the world into porous activated carbons and biofuels. Such activated carbons are suitable for various applications in environmental remediation, climate mitigation, energy storage, and conversions such as batteries and supercapacitors, in improving crop productivity and producing useful biofuels.
Collapse
Affiliation(s)
- Tuan-Dung Hoang
- School of Chemistry and Life Science, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hai Ba Trung, Hanoi 10000, Vietnam
- Vietam National Univeristy Hanoi -, School of Interdisciplinary Sciences and Arts, 144 Cau Giay, Hanoi, 10000, Hanoi, Vietnam
| | - Nguyen Van Anh
- School of Chemistry and Life Science, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hai Ba Trung, Hanoi 10000, Vietnam
| | - Mohammad Yusuf
- Clean Energy Technologies Research Institute (CETRI), Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, 140401, Punjab, India
| | - Muhammed Ali S A
- Fuel Cell Institute, (CETRI), Universiti Kebangsasn Malaysia, 43600, Bangi, Malaysia
| | - Yathavan Subramanian
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, BE1410, Bandar Seri Begawan, Brunei Darussalam
| | - Nguyen Hoang Nam
- Faculty of Environment, Climate change and Urban Studies, National Economics University, 10000, Hanoi, Vietnam
| | - Nguyen Minh Ky
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 700000, Vietnam
| | - Van-Giang Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University (CRES-VNU), Hanoi, 111000, Vietnam
| | | | - Alien Abi Bianasari
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, BE1410, Bandar Seri Begawan, Brunei Darussalam
| | - Abul K Azad
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, BE1410, Bandar Seri Begawan, Brunei Darussalam
| |
Collapse
|
3
|
Kravchenko E, Dela Cruz TL, Sushkova S, Rajput VD. Effect of wood and peanut shell hydrochars on the desiccation cracking characteristics of clayey soils. CHEMOSPHERE 2024; 358:142134. [PMID: 38677609 DOI: 10.1016/j.chemosphere.2024.142134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/02/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Soil cracking can significantly alter the water and nutrient migration pathways in the soil, influencing plant growth and development. While biochar usage has effectively addressed soil cracking, the feasibility of using less energy-intensive hydrochars in desiccating soils remains unexplored. This study investigates the impact of wood and peanut shell hydrochars on the desiccation cracking characteristics of clayey soil. A series of controlled environmental laboratory incubations with regular imaging was conducted to determine crack development's dynamic in unamended and hydrochar-amended soils. The results reveal that the addition of wood hydrochar at 2% and 4% dosage reduced the crack intensity factor (CIF) by 22% and 43%, respectively, compared to the unamended control soil. Similarly, the inclusion of peanut shell hydrochar at 2% and 4% lowered the CIF by 22% and 51%, respectively. The presence of hydrophilic groups on the surface of hydrochars, such as O-H, CH, and C-O-C, enhanced the water retention capacity, as confirmed by Fourier-transform infrared analysis. The CIF decrease is attributed to mitigated water evaporation rates, enabled by enhanced water retention within the hydrochar pore spaces. These findings are supported by scanning electron microscopy analyses of the hydrochar morphology. Despite CIF reduction with hydrochar incorporation, the crack length density (CLD) increased across all hydrochar-amended series. In contrast to unamended soil which exhibited pronounced widening of large cracks and extensive inter-pore voids, the incorporation of hydrochar resulted in higher CLD due to the formation of finer interconnecting crack meshes. Consequently, the unamended control soil suffered greater water loss due to heightened evaporation rates. This study sheds new light on the potential of hydrochars in addressing desiccation-induced soil cracking and its implications for water conservation.
Collapse
Affiliation(s)
- Ekaterina Kravchenko
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China; Southern Federal University, Rostov-on-Don, Russian Federation.
| | - Trishia Liezl Dela Cruz
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | | | - Vishnu D Rajput
- Southern Federal University, Rostov-on-Don, Russian Federation
| |
Collapse
|
4
|
Musci JJ, Casoni AI, Gutiérrez VS, Ocsachoque MA, Merlo AB, Volpe MA, Lick ID, Casella ML. Upgrading of Tall Fescue Grass Pyrolytic Bioliquid and Catalytic Valorization of The Biofurfural Obtained. ChemistrySelect 2022. [DOI: 10.1002/slct.202202233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Juan J. Musci
- Departamento de Ciencias Básicas y Experimentales Universidad Nacional del Noroeste de la Provincia de Buenos Aires Roque Sáenz Peña 456 6000 Junín Argentina
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA) – UNNOBA-UNSAdA-CONICET Monteagudo 2772 2700 Pergamino Argentina
| | - Andrés I. Casoni
- Planta Piloto de Ingeniería Química (PLAPIQUI) (CCT CONICET-Bahía Blanca) Camino La Carrindanga Km 7, CC 717 8000 Bahía Blanca Argentina
| | - Victoria S. Gutiérrez
- Planta Piloto de Ingeniería Química (PLAPIQUI) (CCT CONICET-Bahía Blanca) Camino La Carrindanga Km 7, CC 717 8000 Bahía Blanca Argentina
| | - Marco A. Ocsachoque
- Centro de Investigación y Desarrollo en Ciencias Aplicadas “Dr. Jorge J. Ronco” (CINDECA) (CCT CONICET−La Plata) Universidad Nacional de La Plata Calle 47 No.257 1900 La Plata Argentina
| | - Andrea B. Merlo
- Centro de Investigación y Desarrollo en Ciencias Aplicadas “Dr. Jorge J. Ronco” (CINDECA) (CCT CONICET−La Plata) Universidad Nacional de La Plata Calle 47 No.257 1900 La Plata Argentina
| | - María A. Volpe
- Planta Piloto de Ingeniería Química (PLAPIQUI) (CCT CONICET-Bahía Blanca) Camino La Carrindanga Km 7, CC 717 8000 Bahía Blanca Argentina
| | - Ileana D. Lick
- Centro de Investigación y Desarrollo en Ciencias Aplicadas “Dr. Jorge J. Ronco” (CINDECA) (CCT CONICET−La Plata) Universidad Nacional de La Plata Calle 47 No.257 1900 La Plata Argentina
| | - Mónica L. Casella
- Departamento de Ciencias Básicas y Experimentales Universidad Nacional del Noroeste de la Provincia de Buenos Aires Roque Sáenz Peña 456 6000 Junín Argentina
- Centro de Investigación y Desarrollo en Ciencias Aplicadas “Dr. Jorge J. Ronco” (CINDECA) (CCT CONICET−La Plata) Universidad Nacional de La Plata Calle 47 No.257 1900 La Plata Argentina
| |
Collapse
|
5
|
Yi W, Zheng D, Wang X, Chen Y, Hu J, Yang H, Shao J, Zhang S, Chen H. Biomass hydrothermal conversion under CO 2 atmosphere: A way to improve the regulation of hydrothermal products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150900. [PMID: 34653455 DOI: 10.1016/j.scitotenv.2021.150900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
In this study, batched hydrothermal experiments on corn stalk were conducted at 240-330 °C under CO2 or inert (N2) atmosphere. The distribution and characteristics of gaseous, solid, and liquid products were analyzed in detail to comprehensively investigate the effects of CO2 on the hydrothermal conversion of biomass, especially on the cellulose and lignin in biomass. The results demonstrate that compared with N2, CO2 slightly increased the liquid and gas yields and significantly improved the control effect of temperature on bio-oil components. Under CO2 atmosphere, bio-oil achieved effective enrichment of ketones and phenols at 240 °C and 300 °C, respectively, and their highest relative contents reached 44.8% and 62.0%, respectively. In addition, the hydrochar obtained under CO2 atmosphere showed higher crystallinity, which is conducive to its subsequent utilization. This study explored the feasibility of introducing CO2 into the biomass hydrothermal process to realize the high-value utilization of biomass waste and the reuse of CO2.
Collapse
Affiliation(s)
- Wei Yi
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Diweina Zheng
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Xianhua Wang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Yingquan Chen
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Junhao Hu
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Haiping Yang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Jingai Shao
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Shihong Zhang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Hanping Chen
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
6
|
Circular economy and secondary raw materials from fruits as sustainable source for recovery and reuse. A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
K N Y, T PD, P S, S K, R YK, Varjani S, AdishKumar S, Kumar G, J RB. Lignocellulosic biomass-based pyrolysis: A comprehensive review. CHEMOSPHERE 2022; 286:131824. [PMID: 34388872 DOI: 10.1016/j.chemosphere.2021.131824] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 05/26/2023]
Abstract
The efficacious application of lignocellulosic biomass for the new valuable chemicals generation curbs the excessive dependency on fossil fuels. Among the various techniques available, pyrolysis has garnered much attention for conversion of lignocellulosic biomass (encompasses cellulose, hemicellulose and lignin components) into product of solid, liquid and gases by thermal decomposition in an efficient manner. Pyrolysis conversion mechanism can be outlined as formation of char, depolymerisation, fragmentation and other secondary reactions. This paper gives a deep insight about the pyrolytic behavior of the lignocellulosic components accompanied by its by-products. Also several parameters such as reaction environment, temperature, residence time and heating rate which has a great impact on the pyrolysis process are also elucidated in a detailed manner. In addition the environmental and economical facet of lignocellulosic biomass pyrolysis for commercialization at industrial scale is critically analyzed. This article also illustrates the prevailing challenges and inhibition in implementing lignocellulosic biomass based pyrolysis with possible solution.
Collapse
Affiliation(s)
- Yogalakshmi K N
- Department of Environmental Science and Technology, School of Environment and Earth Sciences, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Poornima Devi T
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, 627007, Tamilnadu, India
| | - Sivashanmugam P
- Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, Tamilnadu, India
| | - Kavitha S
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, 627007, Tamilnadu, India
| | - Yukesh Kannah R
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, 627007, Tamilnadu, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382010, India
| | - S AdishKumar
- Department of Civil Engineering, University V.O.C College of Engineering, Anna University Thoothukudi Campus, Tamil Nadu, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Rajesh Banu J
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudy, Tiruvarur, 610005, India.
| |
Collapse
|
8
|
Valorization of Waste Lignocellulose to Furfural by Sulfonated Biobased Heterogeneous Catalyst Using Ultrasonic-Treated Chestnut Shell Waste as Carrier. Processes (Basel) 2021. [DOI: 10.3390/pr9122269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recently, the highly efficient production of value-added biobased chemicals from available, inexpensive, and renewable biomass has gained more and more attention in a sustainable catalytic process. Furfural is a versatile biobased chemical, which has been widely used for making solvents, lubricants, inks, adhesives, antacids, polymers, plastics, fuels, fragrances, flavors, fungicides, fertilizers, nematicides, agrochemicals, and pharmaceuticals. In this work, ultrasonic-treated chestnut shell waste (UTS-CSW) was utilized as biobased support to prepare biomass-based heterogeneous catalyst (CSUTS-CSW) for transforming waste lignocellulosic materials into furfural. The pore and surface properties of CSUTS-CSW were characterized with BET, SEM, XRD, and FT-IR. In toluene–water (2:1, v:v; pH 1.0), CSUTS-CSW (3.6 wt%) converted corncob into furfural yield in the yield of 68.7% at 180 °C in 15 min. CSUTS-CSW had high activity and thermostability, which could be recycled and reused for seven batches. From first to seventh, the yields were obtained from 68.7 to 47.5%. Clearly, this biobased solid acid CSUTS-CSW could be used for the sustainable conversion of waste biomasses into furfural, which had potential application in future.
Collapse
|
9
|
Li Y, Hagos FM, Chen R, Qian H, Mo C, Di J, Gai X, Yang R, Pan G, Shan S. Rice husk hydrochars from metal chloride-assisted hydrothermal carbonization as biosorbents of organics from aqueous solution. BIORESOUR BIOPROCESS 2021; 8:99. [PMID: 38650206 PMCID: PMC10991232 DOI: 10.1186/s40643-021-00451-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/29/2021] [Indexed: 11/10/2022] Open
Abstract
Hydrochar a carbon-rich material resulting from hydrothermal carbonization of biomass, has received substantial attention because of its potential application in various areas such as carbon sequestration, bioenergy production and environmental amelioration. A series of hydrochars were prepared by metal chloride-assisted hydrothermal carbonization of rice husk and characterized by elemental analysis, zeta potential, X-ray diffraction, Brunauer-Emmett-Teller measurements, Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy and scanning electron microscopy. The results reveal that the prepared hydrochars have carbon contents ranging from 45.01 to 58.71%, BET specific areas between 13.23 and 45.97 m2/g, and rich O-containing functional groups on the surfaces. The metal chlorides added in the feedwater could improve the degree of carbonization and show significant effects on the physical, chemical and adsorption properties of the hydrochars. The adsorption of the selected organics on the hydrochars is a spontaneous and physisorption-dominated process. The hydrochars possess larger adsorption capacities for 2-naphthol than for berberine hydrochloride and Congo red, and the modeling maximum adsorption capacities of 2-naphthol are in the range of 170.1-2680 mg/g. The adsorption equilibrium could be accomplished in 10, 40 and 30 min for 2-naphthol, berberine hydrochloride and Congo red, respectively. These results suggest metal chloride-assisted hydrothermal carbonization a promising method for converting biomass waste into effective adsorbents for wastewater treatment.
Collapse
Affiliation(s)
- Yin Li
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China.
| | - Fana Mulugeta Hagos
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Rongrong Chen
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Hanxin Qian
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Chengxing Mo
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Jing Di
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Xikun Gai
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China.
| | - Ruiqin Yang
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Genxing Pan
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| |
Collapse
|
10
|
Dai S, Korth B, Vogt C, Harnisch F. Microbial Electrochemical Oxidation of Anaerobic Digestion Effluent From Treating HTC Process Water. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.652445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hydrothermal carbonization (HTC) is a promising technology for chemical and material synthesis. However, HTC produces not only valuable solid coal-materials but also yields process water (PW) with high chemical oxygen demand (COD) that requires extensive treatment. Anaerobic digestion (AD) has been used for initial treatment of HTC-PW, but the AD effluent is still high in COD and particles. Here, we show that microbial electrochemical technologies (MET) can be applied for COD removal from AD effluent of HTC-PW. Bioelectrochemical systems (BES) treating different shares of AD effluent from HTC-PW exhibited similar trends for current production. Thereby, maximum current densities of 0.24 mA cm−2 and COD removal of 65.4 ± 4.4% were reached (n = 3). Microbial community analysis showed that the genus Geobacter dominated anode biofilm and liquid phase of all reactors indicating its central role for COD oxidation and current generation.
Collapse
|