1
|
Wang Z, Wang S, Zhuang W, Liu J, Meng X, Zhao X, Zheng Z, Chen S, Ying H, Cai Y. Trace elements' deficiency in energy production through methanogenesis process: Focus on the characteristics of organic solid wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163116. [PMID: 36996981 DOI: 10.1016/j.scitotenv.2023.163116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/28/2023] [Accepted: 03/23/2023] [Indexed: 05/13/2023]
Abstract
Excessive or insufficient supplementation of trace elements (TEs) limits the progression of anaerobic digestion. The main reason for this is the lack of sufficient understanding of digestion substrate characteristics, which significantly affects the demand for TEs. In this review, the relationship between TEs requirements and substrate characteristics is discussed. We mainly focus on three aspects. 1) The basis for TE optimization and existing problems: The optimization of TEs often based on the total solids (TS) or volatile solids (VS) of substrates, does not fully consider substrate characteristics. 2) TE deficiency mechanisms for different types of substrates: nitrogen-rich, sulfur-rich, TE-poor, and easily hydrolyzed substrates are the four main types of substrates. The mechanisms underlying TEs deficiency in the different substrates are investigated. 3) Regulation of TE bioavailability: characteristics of substrates affect digestion parameters, which disturb the bioavailability TE. Therefore, methods for regulating bioavailability of TEs are discussed.
Collapse
Affiliation(s)
- Zhi Wang
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China
| | - Shilei Wang
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China
| | - Wei Zhuang
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China; National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Jinle Liu
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China
| | - Xingyao Meng
- Beijing Technology and Business University, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing 100048, China
| | - Xiaoling Zhao
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China
| | - Zehui Zheng
- College of Agronomy and Biotechnology/Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Shanshuai Chen
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya 572025, China
| | - Hanjie Ying
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China; National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yafan Cai
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China.
| |
Collapse
|
2
|
Phuttaro C, Krishnan S, Saritpongteeraka K, Charnnok B, Diels L, Chaiprapat S. Integrated poultry waste management by co-digestion with perennial grass: Effects of mixing ratio, pretreatments, reaction temperature, and effluent recycle on biomethanation yield. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
3
|
Low Indirect Land Use Change (ILUC) Energy Crops to Bioenergy and Biofuels—A Review. ENERGIES 2022. [DOI: 10.3390/en15124348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Energy crops are dedicated cultures directed for biofuels, electricity, and heat production. Due to their tolerance to contaminated lands, they can alleviate and remediate land pollution by the disposal of toxic elements and polymetallic agents. Moreover, these crops are suitable to be exploited in marginal soils (e.g., saline), and, therefore, the risk of land-use conflicts due to competition for food, feed, and fuel is reduced, contributing positively to economic growth, and bringing additional revenue to landowners. Therefore, further study and investment in R&D is required to link energy crops to the implementation of biorefineries. The main objective of this study is to present a review of the potential of selected energy crops for bioenergy and biofuels production, when cultivated in marginal/degraded/contaminated (MDC) soils (not competing with agriculture), contributing to avoiding Indirect Land Use Change (ILUC) burdens. The selected energy crops are Cynara cardunculus, Arundo donax, Cannabis sativa, Helianthus tuberosus, Linum usitatissimum, Miscanthus × giganteus, Sorghum bicolor, Panicum virgatum, Acacia dealbata, Pinus pinaster, Paulownia tomentosa, Populus alba, Populus nigra, Salix viminalis, and microalgae cultures. This article is useful for researchers or entrepreneurs who want to know what kind of crops can produce which biofuels in MDC soils.
Collapse
|
4
|
Biogas Production Enhancement through Chicken Manure Co-Digestion with Pig Fat. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094652] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chicken manure and pig fat are found abundantly around the globe, and there is a challenge to get rid of them. This waste has considerable energy potential to be recovered into fuel, but extracting this energy from some by-products, especially fat, isn’t an easy task. When anaerobic digestion technology stepped to the level of anaerobic co-digestion, the utilisation of hardly degradable waste became feasible. Our research was conducted on anaerobic co-digestion of chicken manure as the primary substrate with pig fat as a fat reach supplement in a semi-continuous mode at different organic load rates. The influence of fat waste on the process of biogas production from chicken manure and the composition of the obtained products was determined using an organic load rate of 3.0–4.5 kg VS·(m3·day)−1. A sturdy and continuously growing biogas production was observed at all organic load rates, implying the synergetic effect on chicken manure and pig fat co-digestion. The highest specific methane yield, 441.3 ± 7.6 L·kg VS−1, was observed at an organic load rate of 4.5 kg VS·(m3·day)−1. The research results showed that co-digestion of chicken manure with pig fat is an appropriate measure for fat utilisation and contributes to the increase in biogas yield, methane concentration, and overall methane yield at investigated organic load rates.
Collapse
|
5
|
Kalaiselvan N, Glivin G, Bakthavatsalam AK, Mariappan V, Premalatha M, Raveendran PS, Jayaraj S, Sekhar SJ. A waste to energy technology for Enrichment of biomethane generation: A review on operating parameters, types of biodigesters, solar assisted heating systems, socio economic benefits and challenges. CHEMOSPHERE 2022; 293:133486. [PMID: 35016951 DOI: 10.1016/j.chemosphere.2021.133486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Anaerobic Digestion (AD) is one of the promising wastestoenergy (WtE) technologies that convert organic wastes to useful gaseous fuel (biogas). In this process methane is produced in the presence of methanogens (bacteria). The survival and activities of methanogens are based on several parameters such as pH, temperature, organic loading rate, types of biodigester. Moreover, these parameters influence the production of biogas in terms of yield and composition. Maintaining an appropriate temperaturefor AD is highly critical and energy intensive. This study reviews the various hybrid technologies assistedbio gas production schemes particularly from renewable energy sources. Also discuss the direct and indirect solar assisted bio-digester impacts and recommendation to improve its performance. In addition, the performance analysis Solar Photovoltaic (PV) and thermal collector assisted bio gas plants; besides their impact on the performance of anaerobic digesters. Since opportunities of solar energy are attractive, the effective utilization of the same is selected for the discussion. Besides, the various constraints that affect the yield and composition of biogas are also evaluated along with the current biogas technologies and the biodigesters. The environmental benefits, challenges and socio-economic factors are also discussed for the successful implementation of various technologies.
Collapse
Affiliation(s)
- N Kalaiselvan
- Department of Energy and Environment, National Institute of Technology Tiruchirappalli, Tamilnadu, India
| | - Godwin Glivin
- Department of Energy and Environment, National Institute of Technology Tiruchirappalli, Tamilnadu, India.
| | - A K Bakthavatsalam
- Department of Energy and Environment, National Institute of Technology Tiruchirappalli, Tamilnadu, India
| | - V Mariappan
- Department of Mechanical Engineering, National Institute of Technology Tiruchirappalli, Tamil Nadu, India
| | - M Premalatha
- Department of Energy and Environment, National Institute of Technology Tiruchirappalli, Tamilnadu, India
| | - P Saji Raveendran
- Department of Mechanical Engineering, Kongu Engineering College, Erode, Tamil Nadu, India
| | - S Jayaraj
- Department of Mechanical Engineering, National Institute of Technology Calicut, Kerala, India
| | - S Joseph Sekhar
- Department of Engineering, University of Technology and Applied Sciences, Shinas, PC 324, Oman
| |
Collapse
|