1
|
Cao Q, You B, Liu W, Xu H, Ma S, Wang T. Using dredged sediments from Lake Taihu as a plant-growing substrate: Focusing on the impact of microcystins. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122927. [PMID: 39418707 DOI: 10.1016/j.jenvman.2024.122927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
Using dredged sediment as plant growth substrates is a promising way to deal with large amounts of excavated sediments. However, it is a big challenge to deal with various pollutants in sediments, among which microcystins (MCs) gained limited attention. In this study, sediments collected from Lake Taihu were mixed with agricultural soil at a 1:1 ratio to create various growing substrates for lettuce (Lactuca sativa L. var. ramosa Hort.). Results indicated that fresh weight and leaf area of lettuce increased in some sediment-amended treatments due to additional nutrients, but food quality was negatively affected by sediment amendment as suggested by the soluble sugar and Vitamin C levels. MCs were detected in all lettuce grown in sediment-amended substrates, particularly in treatments with sediments collected during the bloom. The highest MC contents were found in treatment amended with sediments collected from Meiliang Bay in August (88.6 μg kg-1 for MC-LR and 65.6 μg kg-1 for MC-RR). MC accumulation in lettuce and the associated human health risks were significant, especially in treatments with sediments from the bloom period. Ecological risk assessments revealed high RQ values, indicating potential harm to the soil ecosystem. This study underscores the importance of considering MC content in sediments when evaluating their use as growing substrates. The findings contribute to understanding the environmental and health implications of sediment reuse, offering insights for safer agricultural practices and sediment management.
Collapse
Affiliation(s)
- Qing Cao
- State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, Jiangsu Provincial Academy of Environmental Science, 176 North Jiangdong Road, Nanjing, 210036, China.
| | - Bensheng You
- State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, Jiangsu Provincial Academy of Environmental Science, 176 North Jiangdong Road, Nanjing, 210036, China
| | - Weijing Liu
- State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, Jiangsu Provincial Academy of Environmental Science, 176 North Jiangdong Road, Nanjing, 210036, China
| | - Haibo Xu
- State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, Jiangsu Provincial Academy of Environmental Science, 176 North Jiangdong Road, Nanjing, 210036, China
| | - Shuzhan Ma
- State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, Jiangsu Provincial Academy of Environmental Science, 176 North Jiangdong Road, Nanjing, 210036, China
| | - Tong Wang
- State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, Jiangsu Provincial Academy of Environmental Science, 176 North Jiangdong Road, Nanjing, 210036, China
| |
Collapse
|
2
|
Cristóbal J, Foster G, Caro D, Yunta F, Manfredi S, Tonini D. Management of excavated soil and dredging spoil waste from construction and demolition within the EU: Practices, impacts and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173859. [PMID: 38857794 DOI: 10.1016/j.scitotenv.2024.173859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/23/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024]
Abstract
Excavated soil and rock (ESR) and dredging spoils (DDS) account for 23 % of the total EU waste generation in 2020. This study performs a life cycle assessment and life cycle costing to quantify the potential environmental and cost savings resulting from increasing the level of ESR and DDS prepared for reuse and recycled in comparison to the business-as-usual practice. Scenarios for the waste management pathways based on the status quo, technical feasibility or normative impositions are assessed, including the potential contribution to achieving the European Green Deal goals. Results show that promoting preparing for reuse and recycling could lead to non-negligible GHG reductions (up to 3.6 Mt. CO2 eq.) and economic savings (EUR 12.3 billion) annually. Depending upon the scenario, 0.2 % to 1 % of the net annual GHG emissions reductions sought by the European Green Deal could be facilitated by scaling up improved circular management of ESR and DDS at the EU level. Finally, the study highlights the main barriers to scaling up to more circular (i.e., preparing for reuse and recycling) and better performing management options in Europe. The results provide new insights for the European Green Deal and circular economy policymaking for CDW.
Collapse
Affiliation(s)
- Jorge Cristóbal
- European Commission, Joint Research Centre, Directorate D - Sustainable Resources, Unit D3 - Land Resources and Supply Chain Assessment, Via E. Fermi 2749, 21027 Ispra, (VA), Italy.
| | - Gillian Foster
- European Commission, Joint Research Centre, Directorate B - Growth and Innovation, Unit B5 - Circular Economy and Sustainable Industry, Calle Inca Garcilaso, 41092 Seville, Spain
| | - Dario Caro
- European Commission, Joint Research Centre, Directorate B - Growth and Innovation, Unit B5 - Circular Economy and Sustainable Industry, Calle Inca Garcilaso, 41092 Seville, Spain
| | - Felipe Yunta
- European Commission, Joint Research Centre, Directorate D - Sustainable Resources, Unit D3 - Land Resources and Supply Chain Assessment, Via E. Fermi 2749, 21027 Ispra, (VA), Italy
| | - Simone Manfredi
- European Commission, Joint Research Centre, Directorate D - Sustainable Resources, Unit D3 - Land Resources and Supply Chain Assessment, Via E. Fermi 2749, 21027 Ispra, (VA), Italy
| | - Davide Tonini
- European Commission, Joint Research Centre, Directorate B - Growth and Innovation, Unit B5 - Circular Economy and Sustainable Industry, Calle Inca Garcilaso, 41092 Seville, Spain
| |
Collapse
|
3
|
Dorleon G, Rigaud S, Techer I. Management of dredged marine sediments in Southern France: main keys to large-scale beneficial re-use. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33129-9. [PMID: 38616226 DOI: 10.1007/s11356-024-33129-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/25/2024] [Indexed: 04/16/2024]
Abstract
Fifty million cubic meters of marine sediments are dredged each year in France in order to maintain harbor activities and sustain the economy of littoral territories. Because of anthropogenic activities in and around harbors, sediments can contain significant amounts of chemical and organic pollutants whose behavior during dredging must be addressed in order to avoid releasing risks for humans and the environment. French regulations come to govern the management of dredged sediments, considering them "safe" and possible to be dumped at sea or "contaminated" and needed to be treated on land as waste. In recent years, new constraints have been pushed toward the management of land. This management is, however, challenging as few channels are proposed to reuse marine sediments, and elimination appears to be economically and environmentally unsustainable. This study provides an overview of the technical and regulatory aspects related to dredged marine sediment management in France and aims to identify and discuss the limits of their valorization. Dredged sediments are mainly composed of particles with heterogeneous grain size, some being known for many applications such as building materials and growing media. However, several reasons have been put forward to explain why these particles are not reused when extracted from dredged sediments. Several technical, socio-economic, and regulatory obstacles explain the low demand for dredged sediments. This demand can be stimulated by government incentives and a good regulatory framework. National regulations could help streamline their reuse by removing their "waste" status and creating a regulated market for dredged sediment.
Collapse
Affiliation(s)
- Garry Dorleon
- UPR 7352 CHROME, Laboratoire Géosciences de L'Environnement, Site Hoche - Université de Nîmes, 1 Place du Président Doumergue, 30000, Nîmes, France.
| | - Sylvain Rigaud
- UPR 7352 CHROME, Laboratoire Géosciences de L'Environnement, Site Hoche - Université de Nîmes, 1 Place du Président Doumergue, 30000, Nîmes, France
| | - Isabelle Techer
- UPR 7352 CHROME, Laboratoire Géosciences de L'Environnement, Site Hoche - Université de Nîmes, 1 Place du Président Doumergue, 30000, Nîmes, France
| |
Collapse
|
4
|
Tanner S, Laor Y, Egozi R, Cohen O, Matzrafi M. Assessing the weed infestation potential of dredged streambed sediments targeted for reuse in agricultural fields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168113. [PMID: 37884133 DOI: 10.1016/j.scitotenv.2023.168113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/02/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
One of the problematic outcomes of soil erosion is sedimentation in stream channels adjacent to agricultural areas. Excess sediments routinely dredged are subsequently dumped in the riparian zone, where the prolonged presence of dredged sediment piles threatens the eco-hydrological balance of the agricultural-riverine environments. Reusing dredged sediments as an amendment for adjacent agricultural fields may serve as an alternative solution. However, farmers are hesitant to use this material in their fields due to the potential for weed infestation, with the associated costs incurred by crop losses. Here, we investigate the potential for weed infestation associated with reusing dredged sediments in agriculture. The research findings validate farmers' concerns regarding the undesirable proliferation of weeds following soil amelioration with dredged sediments. We present a comprehensive protocol for assessing the necessity for weed management intervention, based on infestation potential of weeds, while specifically targeting the reduction of adverse effects caused by agricultural weeds.
Collapse
Affiliation(s)
- Smadar Tanner
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Newe-Ya'ar Research Center, Israel; Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Institute, Newe-Ya'ar Research Center, Israel
| | - Yael Laor
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Institute, Newe-Ya'ar Research Center, Israel
| | - Roey Egozi
- Department of Soil Conservation and Drainage, Soil Erosion Research Station, Ministry of Agriculture and Rural Development, Bet Dagan, Israel
| | - Oded Cohen
- The Laboratory of Invasive Plants, Shamir Research Institute, Haifa University, Haifa, Israel
| | - Maor Matzrafi
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Newe-Ya'ar Research Center, Israel.
| |
Collapse
|
5
|
Liu Q, Sheng Y, Wang Z. Co-pyrolysis with pine sawdust reduces the environmental risks of copper and zinc in dredged sediment and improves its adsorption capacity for cadmium. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117502. [PMID: 36796196 DOI: 10.1016/j.jenvman.2023.117502] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Proper treatment of heavy metal-contaminated dredged sediment (DS) is crucial to avoid secondary pollution. Effective and sustainable technologies are desired for the treatment of Zn- and Cu-contaminated DS. Due to the advantages of low energy consumption and time saving, co-pyrolysis technology was innovatively applied to treat Cu- and Zn-polluted DS in this study, and the effects of the co-pyrolysis conditions on Cu and Zn stabilization efficiencies, potential stabilization mechanisms, and the possibility for resource utilization of co-pyrolysis product were also investigated. The results showed that pine sawdust is an appropriate co-pyrolysis biomass for the stabilization of Cu and Zn based on the leaching toxicity analysis. The ecological risks of Cu and Zn in DS were reduced after co-pyrolysis treatment. The total concentrations of Zn and Cu in co-pyrolysis products were decreased by 5.87%-53.45% and 8.61%-57.45% of that in DS before co-pyrolysis. However, the total concentrations of Zn and Cu in DS remained basically unchanged after co-pyrolysis, which indicating the decreases in total concentrations of Zn and Cu in co-pyrolysis products were mainly related to dilution effect. Fraction analysis indicated that co-pyrolysis treatment contributed to transforming weakly bound Cu and Zn into stable fractions. The co-pyrolysis temperature and mass ratio of pine sawdust/DS had a greater influence than co-pyrolysis time on the fraction transformation of Cu and Zn. The leaching toxicity of Zn and Cu from the co-pyrolysis products was eliminated when the co-pyrolysis temperature reached 600 and 800 °C, respectively. Analysis of the X-ray photoelectron spectroscopy and X-ray diffraction results demonstrated that co-pyrolysis treatment could transform mobile Cu and Zn in DS into metal oxides, metal sulfides, phosphate compounds, etc. Batch adsorption procedures suggested that the co-pyrolysis product possessed a high adsorption capacity for Cd (95.70 mg/g at 318 K). The formation of CdCO3 precipitates and the complexation effects of oxygen-containing functional groups were the principal adsorption mechanisms of the co-pyrolysis product. Overall, this study provides new insights into sustainable disposal and resource utilization for heavy metal-contaminated DS.
Collapse
Affiliation(s)
- Qunqun Liu
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Yanqing Sheng
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Zheng Wang
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| |
Collapse
|
6
|
Beljin J, Arsenov D, Slijepčević N, Maletić S, Đukanović N, Chalot M, Župunski M, Tomašević Pilipović D. Recycling of polluted dredged sediment - Building new materials for plant growing. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 166:13-24. [PMID: 37141783 DOI: 10.1016/j.wasman.2023.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023]
Abstract
The worldwide concern is caused by a large quantity of dredged sediment. The issue becomes more severe when contaminated sediment has to be landfilled. Therefore, researchers involved in the dredged sediment management are increasingly motivated to improve circularity in sediment management processes. Prior to the dredged sediment usage in agriculture, its necessary to confirm conclusively its safety in the context of trace elements (TEs) levels. This study reports the use of different solidification/stabilization (S/S) sediment amendments (cement, clay, fly ash and green synthetized nano-zerovalent iron-nZVI) to remediate dredged sediment. The aim was to identify the effects of applied sediment S/S treatments on the growth and development of Brassica napus. The results showed that in all S/S mixtures TEs levels in the highly labile and bioavailable fraction were significantly decreased (less than 10%, while untreated sediment contained up to 36% of TEs). Simultaneously, the highest share of metals (69-92%) was in the residual fraction, which is considered as chemically stable and biologically inert fraction. Nevertheless, it was noticed that different S/S treatments trigger plants' functional traits indicating that plants' establishment in S/S treated sediment can be limited to certain extent. Besides, based on primary and secondary metabolites (elevated specific leaf area along with declined malondialdehyde content) it was concluded that Brassica plants employ a conservative resource use strategy aiming to buffer phenotypes against stress condition. Lastly, it was inferred that among all analyzed S/S treatments, green synthetized nZVI from oak leaves can effectively promote TEs stabilization in dredged sediment, concurrently enabling plant's establishment and fitness.
Collapse
Affiliation(s)
- J Beljin
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Novi Sad, Serbia
| | - D Arsenov
- Faculty of Sciences, Department of Biology and Ecology, University of Novi Sad, Novi Sad, Serbia.
| | - N Slijepčević
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Novi Sad, Serbia
| | - S Maletić
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Novi Sad, Serbia
| | - N Đukanović
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Novi Sad, Serbia
| | - M Chalot
- Chrono-Environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, F-25000 Besançon, France; Université de Lorraine, Faculté des Sciences et Technologies, 54000 Nancy, France
| | - M Župunski
- Faculty of Sciences, Department of Biology and Ecology, University of Novi Sad, Novi Sad, Serbia
| | - D Tomašević Pilipović
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
7
|
Bedell JP, Dendievel AM, Gosset A, Mourier B. Combined Chemical and Ecotoxicological Measurements for River Sediment Management in an On-Land Deposit Scenario. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:436-452. [PMID: 37097447 DOI: 10.1007/s00244-023-00997-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 04/03/2023] [Indexed: 06/01/2023]
Abstract
Sediment management along engineered river systems includes dredging operations and sediment deposition in the sea (capping) or on land. Thus, determining the ecotoxicological risk gradient associated with river sediments is critical. In this study, we investigated sediment samples along the Rhône River (France) and conducted environmental risk assessment tests with the idea to evaluate them in the future for deposit on soil. Based on an on-land deposit scenario, the capacity of the sediment samples from four sites (LDB, BER, GEC, and TRS) to support vegetation was evaluated by characterising the physical and chemical parameters (pH, conductivity, total organic carbon, grain size, C/N, potassium, nitrogen, and selected pollutants), including polychlorinated biphenyls (PCBs) and metal trace elements. All tested sediments were contaminated by metallic elements and PCBs as follows: LDB > GEC > TRS > BER, but only LDB had levels higher than the French regulatory threshold S1. Sediment ecotoxicity was then assessed using acute (plant germination and earthworm avoidance) and chronic (ostracod test and earthworm reproduction) bioassays. Two of the tested plant species, Lolium perenne (ray grass) and Cucurbita pepo (zucchini), were highly sensitive to sediment phytotoxicity. Acute tests also showed significant inhibition of germination and root growth, with avoidance by Eisenia fetida at the least contaminated sites (TRS and BER). Chronic bioassays revealed that LDB and TRS sediment were significantly toxic to E. fetida and Heterocypris incongruens (Ostracoda), and GEC sediment was toxic for the latter organism. In this on-land and spatialised deposit scenario, river sediment from the LDB site (Lake Bourget marina) presented the highest potential toxicity and required the greatest attention. However, low contamination levels can also lead to potential toxicity (as demonstrated for GEC and TRS site), underlining the importance of a multiple test approach for this scenario.
Collapse
Affiliation(s)
- Jean-Philippe Bedell
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, 69518, Vaulx-en-Velin, France.
| | - André-Marie Dendievel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, 69518, Vaulx-en-Velin, France
| | - Antoine Gosset
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, 69518, Vaulx-en-Velin, France
| | - Brice Mourier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, 69518, Vaulx-en-Velin, France
| |
Collapse
|
8
|
Soleimani T, Hayek M, Junqua G, Salgues M, Souche JC. Environmental, economic and experimental assessment of the valorization of dredged sediment through sand substitution in concrete. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159980. [PMID: 36347296 DOI: 10.1016/j.scitotenv.2022.159980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
The integrated life cycle assessment (LCA), life cycle cost assessment (LCC) and laboratory-based experimental assessment were applied to provide insight for early stage decision-making on the valorization of the dredged sediments. The objective was to find a viable and sustainable solution for the valorization of the dredged sediment in concrete, holding up a certain level of standard concrete performance without compromising in terms of economy and environment. For the sensitivity analysis, parametric life cycle inventories were developed to assess the sensitivity of environmental and economic costs to the rate of sand substitution by sediment, as well as the variations in the concrete components. The workability of fresh concrete and the compressive strength of hardened concrete at 28 days were assigned as the quality indicators to evaluate the influence of sand substitution by sediment on the concrete performance. The compressive strength evaluation in the laboratory demonstrated that a maximum rate of sand substitution in concrete up to 40 % by predominantly sandy sediment could sustain the concrete strength class. However, LCA and LCC negated the rate of sand substitution by sediment higher than 20 %. The integrated environmental, economic, and experimental assessments demonstrated that the substitution of sand by predominantly fine sediment downgrades the strength class of concrete, even in the low rate of incorporation (10 %) and increases the environmental and economic costs. Inferred from the results, the maximum rate of sustainable sand substitution by sediment in concrete could be optimized through a compromise between the expected mechanical strength and workability of the concrete, the economic and environmental impacts of the superplasticiser and the sediment transport. Overall, integrating environmental and economic cost assessments into the laboratory-based assessment of the valorization scenarios would determine the threshold for the sustainable rate of incorporation of sediment in valorization scenarios.
Collapse
Affiliation(s)
- Tara Soleimani
- HSM, Univ Montpellier, IMT Mines Ales, CNRS, IRD, Ales, France.
| | - Mahmoud Hayek
- LMGC, Univ Montpellier, IMT Mines Ales, CNRS, Ales, France
| | | | - Marie Salgues
- LMGC, Univ Montpellier, IMT Mines Ales, CNRS, Ales, France
| | | |
Collapse
|
9
|
Maletić S, Isakovski MK, Sigmund G, Hofmann T, Hüffer T, Beljin J, Rončević S. Comparing biochar and hydrochar for reducing the risk of organic contaminants in polluted river sediments used for growing energy crops. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157122. [PMID: 35787901 DOI: 10.1016/j.scitotenv.2022.157122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/10/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
In Europe alone, >200 million m3 of river sediments are dredged each year, part of which are contaminated to such an extent that they have to be landfilled. This study compares the use of biochar and hydrochar for the remediation of sediment contaminated with pentachlorobenzene, hexachlorobenzene, lindane, trifluralin, alachlor, simazine, and atrazine with the motivation to make sediments contaminated by such priority substances usable as arable land for growing energy crops. Biochar and hydrochar originating from Miscanthus giganteus and Beta vulgaris shreds were compared for their potential to reduce contaminant associated risk in sediments. Specifically, by investigating the effects of sorbent amendment rate (1, 5, and 10 %) and incubation time (14, 30, and 180 d) on contaminant bioaccessibility, toxicity to the bacteria Vibrio fischeri, as well as toxicity and plant uptake in Zea mays. Biochar reduced contaminant bioaccessibility up to five times more than hydrochar. The bioaccessibility of contaminants decreased up to sevenfold with increasing incubation time, indicating that the performance of carbonaceous sorbents may be underestimated in short-term lab experiments. Biochar reduced contaminants toxicity to Vibrio fischeri, whereas hydrochar was itself toxic to the bacteria. Toxicity to Zea mays was determined by contaminant bioaccessibility but also sorbent feedstock with cellulose rich Beta vulgaris based sorbents exhibiting toxic effects. The plant uptake of all contaminants decreased after sorbent amendment.
Collapse
Affiliation(s)
- Snežana Maletić
- University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21102 Novi Sad, Serbia
| | | | - Gabriel Sigmund
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department of Environmental Geosciences, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Thilo Hofmann
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department of Environmental Geosciences, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Thorsten Hüffer
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department of Environmental Geosciences, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Jelena Beljin
- University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21102 Novi Sad, Serbia
| | - Srđan Rončević
- University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21102 Novi Sad, Serbia
| |
Collapse
|
10
|
Life Cycle Assessment (LCA) of Substrate Mixes Containing Port Sediments for Sustainable 'Verna' Lemon Production. Foods 2022; 11:foods11193053. [PMID: 36230129 PMCID: PMC9563032 DOI: 10.3390/foods11193053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
The increase in maritime trade and its global economic importance have forced port management actors to carry out the periodic dredging of their sediments to maintain an adequate depth for the passage of large ships to maintain their operation and competitiveness. During the dredging process, large volumes of port sediment are generated. Dredged port sediment is currently considered a waste material and its disposal is regulated. Finding ways to safely reuse port sediments is necessary for sustainable development. In this study, a life cycle assessment (LCA) methodology was applied to identify the environmental impact of port sediments when used as a culture medium for lemon trees. A total of 90 lemon trees (Citrus limon L. Burm var ‘Verna’) were used in the trial. The trees were grown under controlled conditions using three substrates, with different portions of peat and port sediment (25%, 50%, and 75%) to identify the real impacts of the culture media on the growth process. The LCA was calculated and analyzed according to the ISO 14040:2006 standard, using the SimaPro v. 9.3 software (PRé Sustainability B.V, Amersfoort, The Netherlands). The functional unit defined for the three-culture media was 1 kg of lemons. The LCA results showed a significant increase in the environmental impact of lemon cultivation proportional to port sediment content (75%), due to the decrease in fruit production caused by the sediment. However, the least impact was identified for the culture medium at 50% peat and 50% port sediment. The greatest impacts were more related to crop management rather than the port sediment content. The results showed that the use of the port sediment, mixed with other substrates as an agricultural medium amendment, is a viable option for lemon growers.
Collapse
|
11
|
Impact of Suspended Sediment Diffusion from the Implementation of Arresting Facilities on Cross-Sea Bridges. SUSTAINABILITY 2022. [DOI: 10.3390/su14159559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In order to ensure the safety of bridges and ships, non-navigable channel arresting facilities for ships have become an important part of cross-sea bridges, and the diffusion of suspended sediment caused by their implementation has an impact on seawater quality. Taking the Jintang bridge as an example, a two-dimensional tidal current and sediment numerical model was applied to predict the distribution of suspended sediment diffusion caused by the implementation of arresting facilities, in order to analyze seawater quality. We adopted a new formula for the equivalent roughness method, to generalize the bridge piers, and obtained good results. The results showed that the zone where the SSC (suspended sediment concentration) reached 10 mg/L was concentrated in the area from 4.5 km north to 6.5 km south of the arresting facility, when it was implemented near the western channel. The sea area by the main channel was concentrated within 500 m of the arresting facility. The impact of the implementation of the arresting facility on seawater quality was relatively limited. Only the protected marine area in the Zhenhai Section of the Hangzhou Bay Estuary Coastal Wetland was affected by the suspended sediment from the construction of the western channel.
Collapse
|
12
|
Enhanced Electroremediation of Metals from Dredged Marine Sediment under Periodic Voltage Using EDDS and Citric Acid. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10040553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The electrokinetic remediation (EKR) method has been extensively considered for the removal of inorganic pollutants from contaminated dredged sediment. In addition, the use of chelating agents as electrolyte solutions has been beneficial in increasing the mobility of metals. This study investigated the metals’ (Cd, Cr, Cu, Pb, and Zn) mobilities by assessing the effect of two environmentally friendly chelating agents, ethylenediaminedisuccinic acid (EDDS) and citric acid (CA), in enhancing the EKR efficiency under a periodic voltage gradient. The results showed that, for the same concentration (0.1 mol L−1), CA is more suitable for enhancing the removal of Cr (67.83%), Cu (59.77%), and Pb (32.05%) by chelating and desorbing them from the sediment matrix and concentrating them in the electrode compartments. EDDS provided efficiency to improve the Cd extraction percentage (45.87%), whereas CA and EDDS had comparable improvement removal impacts on Zn EKR (39.32% and 41.37%, respectively). From the comparison with previous results obtained with a continuous voltage, applying a periodic voltage gradient associated with a low concentration of chelating agents led to a promising result.
Collapse
|