1
|
Sequeira SO, Pasnak E, Viegas C, Gomes B, Dias M, Cervantes R, Pena P, Twarużek M, Kosicki R, Viegas S, Caetano LA, Penetra MJ, Silva I, Caldeira AT, Pinheiro C. Microbial Assessment in A Rare Norwegian Book Collection: A One Health Approach to Cultural Heritage. Microorganisms 2024; 12:1215. [PMID: 38930597 PMCID: PMC11206040 DOI: 10.3390/microorganisms12061215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Microbial contamination poses a threat to both the preservation of library and archival collections and the health of staff and users. This study investigated the microbial communities and potential health risks associated with the UNESCO-classified Norwegian Sea Trade Archive (NST Archive) collection exhibiting visible microbial colonization and staff health concerns. Dust samples from book surfaces and the storage environment were analysed using culturing methods, qPCR, Next Generation Sequencing, and mycotoxin, cytotoxicity, and azole resistance assays. Penicillium sp., Aspergillus sp., and Cladosporium sp. were the most common fungi identified, with some potentially toxic species like Stachybotrys sp., Toxicladosporium sp., and Aspergillus section Fumigati. Fungal resistance to azoles was not detected. Only one mycotoxin, sterigmatocystin, was found in a heavily contaminated book. Dust extracts from books exhibited moderate to high cytotoxicity on human lung cells, suggesting a potential respiratory risk. The collection had higher contamination levels compared to the storage environment, likely due to improved storage conditions. Even though overall low contamination levels were obtained, these might be underestimated due to the presence of salt (from cod preservation) that could have interfered with the analyses. This study underlines the importance of monitoring microbial communities and implementing proper storage measures to safeguard cultural heritage and staff well-being.
Collapse
Affiliation(s)
- Sílvia O. Sequeira
- LAQV-REQUIMTE, Department of Conservation and Restoration, NOVA School of Sciences and Technology, NOVA University of Lisbon, Campus da Caparica, 2829-516 Caparica, Portugal;
- Laboratório José de Figueiredo, Museus e Monumentos de Portugal, Rua das Janelas Verdes, 1249-018 Lisbon, Portugal;
| | - Ekaterina Pasnak
- LAQV-REQUIMTE, Department of Conservation and Restoration, NOVA School of Sciences and Technology, NOVA University of Lisbon, Campus da Caparica, 2829-516 Caparica, Portugal;
| | - Carla Viegas
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (B.G.); (M.D.); (R.C.); (P.P.); (L.A.C.)
- Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA National School of Public Health, NOVA University Lisbon, 1099-085 Lisbon, Portugal;
| | - Bianca Gomes
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (B.G.); (M.D.); (R.C.); (P.P.); (L.A.C.)
- CE3C—Center for Ecology, Evolution and Environmental Change, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Marta Dias
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (B.G.); (M.D.); (R.C.); (P.P.); (L.A.C.)
- Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA National School of Public Health, NOVA University Lisbon, 1099-085 Lisbon, Portugal;
| | - Renata Cervantes
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (B.G.); (M.D.); (R.C.); (P.P.); (L.A.C.)
- Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA National School of Public Health, NOVA University Lisbon, 1099-085 Lisbon, Portugal;
| | - Pedro Pena
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (B.G.); (M.D.); (R.C.); (P.P.); (L.A.C.)
- Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA National School of Public Health, NOVA University Lisbon, 1099-085 Lisbon, Portugal;
| | - Magdalena Twarużek
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland; (M.T.); (R.K.)
| | - Robert Kosicki
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland; (M.T.); (R.K.)
| | - Susana Viegas
- Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA National School of Public Health, NOVA University Lisbon, 1099-085 Lisbon, Portugal;
| | - Liliana Aranha Caetano
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (B.G.); (M.D.); (R.C.); (P.P.); (L.A.C.)
- Research Institute for Medicines (iMed.uLisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Maria João Penetra
- HERCULES Laboratory, Évora University, Palácio do Vimioso, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal; (M.J.P.); (I.S.); (A.T.C.)
| | - Inês Silva
- HERCULES Laboratory, Évora University, Palácio do Vimioso, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal; (M.J.P.); (I.S.); (A.T.C.)
- IN2PAST—Associate Laboratory for Research and Innovation in Heritage, Arts, Sustainability and Territory, University of Évora, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal
| | - Ana Teresa Caldeira
- HERCULES Laboratory, Évora University, Palácio do Vimioso, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal; (M.J.P.); (I.S.); (A.T.C.)
- IN2PAST—Associate Laboratory for Research and Innovation in Heritage, Arts, Sustainability and Territory, University of Évora, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal
| | - Catarina Pinheiro
- Laboratório José de Figueiredo, Museus e Monumentos de Portugal, Rua das Janelas Verdes, 1249-018 Lisbon, Portugal;
- HERCULES Laboratory, Évora University, Palácio do Vimioso, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal; (M.J.P.); (I.S.); (A.T.C.)
- IN2PAST—Associate Laboratory for Research and Innovation in Heritage, Arts, Sustainability and Territory, University of Évora, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal
| |
Collapse
|
2
|
Viegas C, Peixoto C, Gomes B, Dias M, Cervantes R, Pena P, Slezakova K, Pereira MDC, Morais S, Carolino E, Twarużek M, Viegas S, Caetano LA. Assessment of Portuguese fitness centers: Bridging the knowledge gap on harmful microbial contamination with focus on fungi. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123976. [PMID: 38657893 DOI: 10.1016/j.envpol.2024.123976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/24/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
The lack of knowledge regarding the extent of microbial contamination in Portuguese fitness centers (FC) puts attendees and athletes at risk for bioaerosol exposure. This study intends to characterize microbial contamination in Portuguese FC by passive sampling methods: electrostatic dust collectors (EDC) (N = 39), settled dust (N = 8), vacuum filters (N = 8), and used cleaning mops (N = 12). The obtained extracts were plated in selective culture media for fungi and bacteria. Filters, EDC, and mop samples' extracts were also screened for antifungal resistance and used for the molecular detection of the selected Aspergillus sections. The detection of mycotoxins was conducted using a high-performance liquid chromatograph (HPLC) system and to determine the cytotoxicity of microbial contaminants recovered by passive sampling, HepG2 (human liver carcinoma) and A549 (human alveolar epithelial) cells were employed. The results reinforce the use of passive sampling methods to identify the most critical areas and identify environmental factors that influence microbial contamination, namely having a swimming pool. The cardio fitness area presented the highest median value of total bacteria (TSA: 9.69 × 102 CFU m-2.day-1) and Gram-negative bacteria (VRBA: 1.23 CFU m-2.day-1), while for fungi it was the open space area, with 1.86 × 101 CFU m-2.day-1. Aspergillus sp. was present in EDC and in filters used to collect settled dust. Reduced azole susceptibility was observed in filters and EDC (on ICZ and VCZ), and in mops (on ICZ). Fumonisin B2 was the only mycotoxin detected and it was present in all sampling matrixes except settled dust. High and moderate cytotoxicity was obtained, suggesting that A549 cells were more sensitive to samples' contaminants. The observed widespread of critical toxigenic fungal species with clinical relevance, such as Aspergillus section Fumigati, as well as Fumonisin B2 emphasizes the importance of frequent and effective cleaning procedures while using shared mops appeared as a vehicle of cross-contamination.
Collapse
Affiliation(s)
- Carla Viegas
- H&TRC-Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096, Lisbon, Portugal; NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, 1600-560, Lisbon, Portugal.
| | - Cátia Peixoto
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072, Porto, Portugal; LEPABE-ALiCE, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Bianca Gomes
- H&TRC-Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096, Lisbon, Portugal; CE3C-Center for Ecology, Evolution and Environmental Change, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Marta Dias
- H&TRC-Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096, Lisbon, Portugal; NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, 1600-560, Lisbon, Portugal
| | - Renata Cervantes
- H&TRC-Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096, Lisbon, Portugal; NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, 1600-560, Lisbon, Portugal
| | - Pedro Pena
- H&TRC-Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096, Lisbon, Portugal; NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, 1600-560, Lisbon, Portugal
| | - Klara Slezakova
- LEPABE-ALiCE, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Maria do Carmo Pereira
- LEPABE-ALiCE, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072, Porto, Portugal
| | - Elisabete Carolino
- H&TRC-Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096, Lisbon, Portugal
| | - Magdalena Twarużek
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Susana Viegas
- H&TRC-Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096, Lisbon, Portugal; NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, 1600-560, Lisbon, Portugal
| | - Liliana Aranha Caetano
- H&TRC-Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096, Lisbon, Portugal; Research Institute for Medicines (iMed.uLisboa), Faculty of Pharmacy, University of Lisbon, 1649-003, Lisbon, Portugal
| |
Collapse
|
3
|
Viegas C, Eriksen E, Gomes B, Dias M, Cervantes R, Pena P, Carolino E, Twarużek M, Caetano LA, Viegas S, Graff P, Afanou AK, Straumfors A. Comprehensive assessment of occupational exposure to microbial contamination in waste sorting facilities from Norway. Front Public Health 2023; 11:1297725. [PMID: 38179569 PMCID: PMC10766354 DOI: 10.3389/fpubh.2023.1297725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction It is of upmost importance to contribute to fill the knowledge gap concerning the characterization of the occupational exposure to microbial agents in the waste sorting setting (automated and manual sorting). Methods This study intends to apply a comprehensive field sampling and laboratory protocol (culture based-methods and molecular tools), assess fungal azole resistance, as well as to elucidate on potential exposure related health effects (cytotoxicity analyses). Skin-biota samples (eSwabs) were performed on workers and controls to identify other exposure routes. Results In personal filter samples the guidelines in one automated industry surpassed the guidelines for fungi. Seasonal influence on viable microbial contamination including fungi with reduced susceptibility to the tested azoles was observed, besides the observed reduced susceptibility of pathogens of critical priority (Mucorales and Fusarium sp.). Aspergillus sections with potential toxigenic effect and with clinical relevance were also detected in all the sampling methods. Discussion The results regarding skin-biota in both controls´ and workers´ hands claim attention for the possible exposure due to hand to face/mouth contact. This study allowed concluding that working in automated and manual waste sorting plants imply high exposure to microbial agents.
Collapse
Affiliation(s)
- Carla Viegas
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Elke Eriksen
- National Institute of Occupational Health (STAMI), Oslo, Norway
| | - Bianca Gomes
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- CE3C – Center for Ecology, Evolution and Environmental Change, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Marta Dias
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Renata Cervantes
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Pedro Pena
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Elisabete Carolino
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Magdalena Twarużek
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Chodkiewicza, Bydgoszcz, Poland
| | - Liliana Aranha Caetano
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- Research Institute for Medicines (iMed.uLisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Susana Viegas
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Pål Graff
- National Institute of Occupational Health (STAMI), Oslo, Norway
| | | | - Anne Straumfors
- National Institute of Occupational Health (STAMI), Oslo, Norway
| |
Collapse
|
4
|
Hansen KK, Schlünssen V, Broberg K, Østergaard K, Frederiksen MW, Madsen AM, Kolstad HA. Exposure levels of dust, endotoxin, and microorganisms in the Danish recycling industry. Ann Work Expo Health 2023; 67:816-830. [PMID: 37191914 PMCID: PMC10410489 DOI: 10.1093/annweh/wxad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023] Open
Abstract
INTRODUCTION Recycling of domestic waste and a number of employees in the recycling industry is expected to increase. This study aims to quantify current exposure levels of inhalable dust, endotoxin, and microorganisms and to identify determinants of exposure among recycling workers. METHODS This cross-sectional study included 170 full-shift measurements from 88 production workers and 14 administrative workers from 12 recycling companies in Denmark. The companies recycle domestic waste (sorting, shredding, and extracting materials from waste). We collected inhalable dust with personal samplers that were analysed for endotoxin (n = 170) and microorganisms (n = 101). Exposure levels of inhalable dust, endotoxin, and microorganisms and potential determinants of exposure were explored by mixed-effects models. RESULTS The production workers were 7-fold or higher exposed to inhalable dust, endotoxin, bacteria, and fungi than the administrative workers. Among production workers recycling domestic waste, the geometric mean exposure level was 0.6 mg/m3 for inhalable dust, 10.7 endotoxin unit (EU)/m3 for endotoxin, 1.6 × 104 colony forming units (CFU)/m³ of bacteria, 4.4 × 104 CFU/m³ of fungi (25 °C), and 1.0 × 103 CFU/m³ of fungi (37 °C). Workers handling paper or cardboard had higher exposure levels than workers handling other waste fractions. The temperature did not affect exposure levels, although there was a tendency toward increased exposure to bacteria and fungi with higher temperatures. For inhalable dust and endotoxin, exposure levels during outdoor work were low compared to indoor work. For bacteria and fungi, indoor ventilation decreased exposure. The work task, waste fraction, temperature, location, mechanical ventilation, and the company size explained around half of the variance of levels of inhalable dust, endotoxin, bacteria, and fungi. CONCLUSION The production workers of the Danish recycling industry participating in this study had higher exposure levels of inhalable dust, endotoxin, bacteria, and fungi than the administrative workers. Exposure levels of inhalable dust and endotoxin among recycling workers in Denmark were generally below established or suggested occupational exposure limits (OEL). However, 43% to 58% of the individual measurements of bacteria and fungi were above the suggested OEL. The waste fraction was the most influential determinant for exposure, and the highest exposure levels were seen during handling paper or cardboard. Future studies should examine the relationship between exposure levels and health effects among workers recycling domestic waste.
Collapse
Affiliation(s)
- Karoline Kærgaard Hansen
- Department of Occupational Medicine, Danish Ramazzini Centre, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Vivi Schlünssen
- Department of Public Health, Research Unit for Environment Occupation and Health, Danish Ramazzini Centre, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Lund University, SE-221 85 Lund, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Kirsten Østergaard
- Department of Public Health, Research Unit for Environment Occupation and Health, Danish Ramazzini Centre, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Margit W Frederiksen
- National Research Centre of the Working Environment, DK-2100 Copenhagen Ø, Denmark
| | - Anne Mette Madsen
- National Research Centre of the Working Environment, DK-2100 Copenhagen Ø, Denmark
| | - Henrik Albert Kolstad
- Department of Occupational Medicine, Danish Ramazzini Centre, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
- Institute of Clinical Medicine, Occupational Medicine, Aarhus University, DK-8200 Aarhus N, Denmark
| |
Collapse
|
5
|
Madsen AM, Moslehi-Jenabian S, Frankel M, White JK, Frederiksen MW. Airborne bacterial species in indoor air and association with physical factors. UCL OPEN ENVIRONMENT 2023; 5:e056. [PMID: 37229345 PMCID: PMC10208329 DOI: 10.14324/111.444/ucloe.000056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/25/2023] [Indexed: 05/27/2023]
Abstract
The aim of this study is to obtain knowledge about which cultivable bacterial species are present in indoor air in homes, and whether the concentration and diversity of airborne bacteria are associated with different factors. Measurements have been performed for one whole year inside different rooms in five homes and once in 52 homes. Within homes, a room-to-room variation for concentrations of airborne bacteria was found, but an overlap in bacterial species was found across rooms. Eleven species were found very commonly and included: Acinetobacter lowffii, Bacillus megaterium, B. pumilus, Kocuria carniphila, K. palustris, K. rhizophila, Micrococcus flavus, M. luteus, Moraxella osloensis and Paracoccus yeei. The concentrations of Gram-negative bacteria in general and the species P. yeei were significantly associated with the season with the highest concentrations in spring. The concentrations of P. yeei, K. rhizophila and B. pumilus were associated positively with relative humidity (RH), and concentrations of K. rhizophila were associated negatively with temperature and air change rate (ACR). Micrococcus flavus concentrations were associated negatively with ACR. Overall, this study identified species which are commonly present in indoor air in homes, and that the concentrations of some species were associated with the factors: season, ACR and RH.
Collapse
Affiliation(s)
- Anne Mette Madsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Saloomeh Moslehi-Jenabian
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Mika Frankel
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - John Kerr White
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
- Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Margit W. Frederiksen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| |
Collapse
|