1
|
Cui T, Yan S, Ding Y, Lin S, Chen Q, Hou Y, Ding L, Wang H, Xu R. Chromium immobilization from wastewater via iron-modified hydrochar: Different iron fabricants and practicality assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116132. [PMID: 38471342 DOI: 10.1016/j.ecoenv.2024.116132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/06/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024]
Abstract
The recycling of industrial solid by-products such as red mud (RM) has become an urgent priority, due to their large quantities and lack of reutilization methods can lead to resource wastage. In this work, RM was employed to fabricate green hydrochar (HC) to prepare zero-valent iron (ZVI) modified carbonous materials, and conventional iron salts (IS, FeCl3) was applied as comparison, fabricated HC labeled as RM/HC and IS/HC, respectively. The physicochemical properties of these HC were comprehensively characterized. Further, hexavalent chromium (Cr(VI)) removal performance was assessed (375.66 and 337.19 mg/g for RM/HC and IS/HC, respectively). The influence of dosage and initial pH were evaluated, while isotherms, kinetics, and thermodynamics analysis were also conducted, to mimic the surface interactions. The stability and recyclability of adsorbents also verified, while the practical feasibility was assessed by bok choy-planting experiment. This work revealed that RM can be used as a high value and green fabricant for HC the effective removal of chromium contaminants from the wastewater.
Collapse
Affiliation(s)
- Ting Cui
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| | - Song Yan
- Agency on Rural Energy Management of Yunnan Province, Kunming 650500, China
| | - Yu Ding
- Rural Energy Workstation of Baoshan City, Baoshan 678000, China
| | - Shaopeng Lin
- Rural Energy Workstation of Baoshan City, Baoshan 678000, China
| | - Qiuliang Chen
- Rural Energy Workstation of Honghe City, Honghe 661000, China
| | - Ying Hou
- Agricultural Environmental Protection and Rural Energy Workstation of Luoping, Qvjing 655800, China
| | - Lin Ding
- National-Local Joint Engineering Research Center for Heavy Metal Pollutant Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Huabin Wang
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China; Agency on Rural Energy Management of Yunnan Province, Kunming 650500, China.
| | - Rui Xu
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China; Agency on Rural Energy Management of Yunnan Province, Kunming 650500, China.
| |
Collapse
|
2
|
Ma M, Ke X, Wang T, Li J, Ye H. A novel double-network hydrogel made from electrolytic manganese slag and polyacrylic acid-polyacrylamide for removal of heavy metals in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132722. [PMID: 37865073 DOI: 10.1016/j.jhazmat.2023.132722] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/23/2023]
Abstract
Electrolytic manganese slag (EMS), a bulk waste generated in industrial electrolytic manganese production, can be a cost-effective adsorbent for heavy metals removal after appropriate modification. In this study, EMS was activated by NaOH and then used to make the EMS-based double-network hydrogel (an EMS/PAA hydrogel) via a one-pot method. The results showed that the EMS/PAA hydrogel exhibits a high selective adsorption capacity of 153.85, 113.63 and 54.35 mg·g-1 for Pb (II), Cd (II) and Cu (II), respectively. In addition, Density Functional Theory (DFT) suggests that the adsorption energies (Ead) of Pb, Cd and Cu on SiO2/PAA of the EMS/PAA gels are - 4.15, - 1.96, and - 2.83 eV, respectively, and SiO2/PAA, with a strong affinity to Pb2+, is one of the reasons for the selective adsorption capacity of EMS/PAA gel for Pb2+. The removal efficiency of the EMS/PAA gel for Pb2+, Cd2+, Cu2+ decreased after four adsorption-desorption cycles by 20.00 %, 24.56 % and 46.56 %, respectively. Mechanism studies suggested that the elimination of the heavy metals by EMS/PAA gels mainly involves electrostatic attraction, inner-sphere complexation, and coordination interactions. The EMS/PAA hydrogels not only have high adsorption capacity, but are also easy to prepare and circulate, making them ideal for practical applications.
Collapse
Affiliation(s)
- Mengyu Ma
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Xuan Ke
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Ting Wang
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Jia Li
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China.
| | - Hengpeng Ye
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China
| |
Collapse
|
3
|
Kang K, Hu Y, Khan I, He S, Fetahi P. Recent advances in the synthesis and application of magnetic biochar for wastewater treatment. BIORESOURCE TECHNOLOGY 2023; 390:129786. [PMID: 37758029 DOI: 10.1016/j.biortech.2023.129786] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
Magnetic biochar (MBC) is a novel bio-carbon material with both desired properties as adsorbent and magnetic characteristics. This review provides an up-to-date summary and discussion on the latest development of MBC, which covers the progress on its synthesis, application, and techno-economic analysis. The review indicates that the direct hydrothermal synthesis has been catching more research attention to produce MBC due to its mild reaction conditions. Instead of the Fe-loaded MBC, there is a trend of using Mn for the magnetization. For the MBC application, how to improve its adsorption performance for water decontamination, ideally to match that of the biochar (BC) or activated carbon, is important. In addition, more studies on the environmental impacts of MBC and life-cycle assessment decoding the process optimization options are necessary. This review will provide valuable references for the development of MBC and MBC-based materials for wastewater treatment.
Collapse
Affiliation(s)
- Kang Kang
- Biorefining Research Institute (BRI) and Chemical Engineering Department, Lakehead University, Thunder Bay, Ontario, P7B 5E1, 955 Oliver Road, Canada
| | - Yulin Hu
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown PE C1A 4P3, Prince Edward Island, Canada
| | - Iltaf Khan
- Biorefining Research Institute (BRI) and Chemical Engineering Department, Lakehead University, Thunder Bay, Ontario, P7B 5E1, 955 Oliver Road, Canada
| | - Sophie He
- Department of Engineering, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Pedram Fetahi
- Biorefining Research Institute (BRI) and Chemical Engineering Department, Lakehead University, Thunder Bay, Ontario, P7B 5E1, 955 Oliver Road, Canada.
| |
Collapse
|
4
|
Yan C, Cheng Z, Zhang X, Zhang Y, Chen X, Zeng G, Xu H. Highly efficient catalytic ozonation degradation of levofloxacin by facile hydrogenation-modified red mud wastes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122149. [PMID: 37433366 DOI: 10.1016/j.envpol.2023.122149] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/05/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023]
Abstract
Iron-rich red mud (RM) is a potential catalyst. However, as industrial waste, is strongly alkaline, low effectiveness, and safety concerns are problems that cannot be ignored, it is urgent to mine out a reasonable disposal and utilization technology for the waste. In this study, an effective catalyst (H-RM) was obtained by facile hydrogenation heating modification of red mud. Then above-prepared H-RM was applied in the catalytic ozonation degradation of levofloxacin (LEV). The H-RM exhibited more remarkable catalytic activities than the RM in terms of LEV degradation, and the optimal efficiency can reach over 90% within 50 min. The mechanism experiment proved that the concentration of dissolved ozone and hydroxyl radical (•OH) significantly increased, which enhanced the oxidation effect. Hydroxyl radical played a dominant role in the degradation of LEV. In the safety test, it is concluded that the concentration of total hexavalent chromium (total Cr(Ⅵ)) in the H-RM catalyst decreases and the leaching concentration of water-soluble Cr(Ⅵ) in aqueous solution is low. The results indicated that the hydrogenation technique is an available Cr (Ⅵ) detoxification method for RM. Moreover, the H-RM has excellent catalytic stability, which is beneficial to recycling and maintains high activity. This research provides an effective means to fulfill the reuse of industrial waste as an alternative to standard raw materials, and comprehensive utilization of the waste to attain the purpose of treating pollution with wastes.
Collapse
Affiliation(s)
- Chaoqun Yan
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China; School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China
| | - Zhiliang Cheng
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China
| | - Xuan Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China
| | - Yumei Zhang
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Xianghan Chen
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Guoquan Zeng
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Heng Xu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|
5
|
Yang J, Ma X, Xiong Q, Zhou X, Wu H, Yan S, Zhang Z. Functional biochar fabricated from red mud and walnut shell for phosphorus wastewater treatment: Role of minerals. ENVIRONMENTAL RESEARCH 2023:116348. [PMID: 37290621 DOI: 10.1016/j.envres.2023.116348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/10/2023]
Abstract
A novel functional biochar (BC) was prepared from industrial waste red mud (RM) and low-cost walnut shell by one facile-step pyrolysis method to adsorb phosphorus (P) in wastewater. The preparation conditions for RM-BC were optimized using Response Surface Methodology. The adsorption characteristics of P were investigated in batch mode experiments, while a variety of techniques were used to characterize RM-BC composites. The impact of key minerals (hematite, quartz, and calcite) in RM on the P removal efficiency of the RM-BC composite was studied. The results showed that RM-BC composite produced at 320 °C for 58 min, with a 1:1 mass ratio of walnut shell and RM, had a maximum P sorption capacity of 15.48 mg g-1, which was more than double that of the raw BC. The removal of P from water was found to be facilitated significantly by hematite, which forms Fe-O-P bonds, undergoes surface precipitation, and exchanges ligands. This research provides evidence for the effectiveness of RM-BC in treating P in water, laying the foundation for future scaling-up trials.
Collapse
Affiliation(s)
- Jie Yang
- College of Urban and Environmental Sciences, Hubei Normal University, 11 Cihu Road, Huangshi, 435002, PR China
| | - Xiao Ma
- College of Urban and Environmental Sciences, Hubei Normal University, 11 Cihu Road, Huangshi, 435002, PR China; Hubei Key Research Institute of Humanities & Social Science, 11 Cihu Road, Huangshi, 435002, PR China.
| | - Qiao Xiong
- College of Urban and Environmental Sciences, Hubei Normal University, 11 Cihu Road, Huangshi, 435002, PR China
| | - Xiangjun Zhou
- College of Urban and Environmental Sciences, Hubei Normal University, 11 Cihu Road, Huangshi, 435002, PR China
| | - HongTao Wu
- College of Urban and Environmental Sciences, Hubei Normal University, 11 Cihu Road, Huangshi, 435002, PR China
| | - Suding Yan
- College of Urban and Environmental Sciences, Hubei Normal University, 11 Cihu Road, Huangshi, 435002, PR China
| | - Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK.
| |
Collapse
|