1
|
Serse F, Bjola A, Salvalaglio M, Pelucchi M. Unveiling Solvent Effects on β-Scissions through Metadynamics and Mean Force Integration. J Chem Theory Comput 2024; 20:6253-6262. [PMID: 38959515 PMCID: PMC11271823 DOI: 10.1021/acs.jctc.4c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024]
Abstract
This study introduces a methodology that combines accelerated molecular dynamics and mean force integration to investigate solvent effects on chemical reaction kinetics. The newly developed methodology is applied to the β-scission of butyl acrylate (BA) dimer in polar (water) and nonpolar (xylene and BA monomer) solvents. The results show that solvation in both polar and nonpolar environments reduces the free energy barrier of activation by ∼4 kcal/mol and decreases the pre-exponential factor 2-fold. Employing a hybrid quantum mechanics/molecular mechanics approach with explicit solvent modeling, we compute kinetic rate constants that better match experimental measurements compared to previous gas-phase calculations. This methodology presents promising potential for accurately predicting kinetic rate constants in liquid-phase polymerization and depolymerization processes.
Collapse
Affiliation(s)
- Francesco Serse
- Department
of Chemistry Materials and Chemical Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133, Italy
| | - Antoniu Bjola
- Thomas
Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, U.K.
| | - Matteo Salvalaglio
- Thomas
Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, U.K.
| | - Matteo Pelucchi
- Department
of Chemistry Materials and Chemical Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133, Italy
| |
Collapse
|
2
|
Rani S, Kathuria I, Kumar A, Kumar D, Kumar A, Kumar S, Nandan B, Srivastava RK. Valorised polypropylene waste based reversible sensor for copper ion detection in blood and water. ENVIRONMENTAL RESEARCH 2023; 228:115928. [PMID: 37076032 DOI: 10.1016/j.envres.2023.115928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Heavy metals and plastic pollutants are the two most disastrous challenges to the environment requiring immediate actions. In this work, a techno-commercially feasible approach to address both challenges is presented, where a waste polypropylene (PP) based reversible sensor is produced to selectively detect copper ions (Cu2+) in blood and water from different sources. The waste PP-based sensor was fabricated in the form of an emulsion-templated porous scaffold decorated with benzothiazolinium spiropyran (BTS), which produced a reddish colour upon exposure to Cu2+. The presence of Cu2+ was checked by naked eye, UV-Vis spectroscopy, and DC (Direct Current) probe station by measuring the current where the sensor's performance remained unaffected while analysing blood, water from different sources, and acidic or basic environment. The sensor exhibited 1.3 ppm as the limit of detection value in agreement with the WHO recommendations. The reversible nature of the sensor was determined by cyclic exposure of the sensor towards visible light turning it from coloured to colourless within 5 min and regenerated the sensor for the subsequent analysis. The reversibility of the sensor through exchange between Cu2+- Cu+ was confirmed by XPS analysis. A resettable and multi-readout INHIBIT logic gate was proposed for the sensor using Cu2+ and visible light as the inputs and colour change, reflectance band and current as the output. The cost-effective sensor enabled rapid detection of the presence of Cu2+ in both water and complex biological samples such as blood. While the approach developed in this study provides a unique opportunity to address the environmental burden of plastic waste management, it also allows for the possible valorization of plastics for use in enormous value-added applications.
Collapse
Affiliation(s)
- Sweety Rani
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Ishana Kathuria
- Department of Chemistry, St. Stephens College, University of Delhi, North Campus, New Delhi, 110007, India
| | - Arvind Kumar
- Department of Chemistry, St. Stephens College, University of Delhi, North Campus, New Delhi, 110007, India
| | - Dheeraj Kumar
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Advitiya Kumar
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Satish Kumar
- Department of Chemistry, St. Stephens College, University of Delhi, North Campus, New Delhi, 110007, India
| | - Bhanu Nandan
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Rajiv K Srivastava
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|