1
|
Barrera JP, Miró G, Carmena D, Foncubierta C, Sarquis J, Marino V, Estévez-Sánchez E, Bailo B, Checa R, Montoya A. Enhancing diagnostic accuracy: Direct immunofluorescence assay as the gold standard for detecting Giardia duodenalis and Cryptosporidium spp. in canine and feline fecal samples. BMC Vet Res 2024; 20:445. [PMID: 39358726 PMCID: PMC11445881 DOI: 10.1186/s12917-024-04297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
The enteric protozoan parasites Giardia duodenalis and Cryptosporidium spp. are common cause of diarrhea in pet dogs and cats, affecting primarily young animals. This comparative study evaluates the diagnostic performance of conventional and molecular methods for the detection of G. duodenalis and Cryptosporidium spp. infection in dogs and cats.The compared diagnostic assays included merthiolate-iodine-formalin (MIF) method, lateral flow immunochromatography rapid test (ICT) and real-time PCR; using direct immunofluorescence assay (DFA) as golden standard. The study included the analysis of 328 fecal samples from different dog (n = 225) and cat (n = 103) populations.According to DFA, the overall prevalence of G. duodenalis was 24.4% (80/328, 95% CI: 19.8-29.4), varying from 11.6% (12/103, 95% CI: 6.2-19.5) in cats to 30.2% (68/225, 95% CI: 24.3-36.7) in dogs. The overall prevalence of Cryptosporidium spp. was 4.0% (13/328, 95% CI: 2.1-6.7), varying from 2.9% (3/103, 95% CI: 0.6-8.3) in cats to 4.4% (10/225, 95% CI: 2.1-8.0) in dogs. MIF was only used for the detection of G. duodenalis, which was identified by this method in 22.7% of dogs and 7.8% of cats, respectively. DFA was the most sensitive technique for detecting G. duodenalis in samples from dogs and cats (p-value: < 0.001), followed by real-time PCR. Identification of Cryptosporidium infections was most effectively accomplished by the combination of DFA and PCR technique (p-value: < 0.001). In addition, epidemiological (sex, age, origin) and clinical (fecal consistency) variables were collected to assess their potential associations with an increased likelihood of infection by G. duodenalis and/or Cryptosporidium spp. Breeder dogs were more likely to harbor G. duodenalis infection (p-value: 0.004), whereas female cats were significantly more infected with Cryptosporidium (p-value: 0.003).In conclusion, DFA (alone or in combination with PCR) has been identified as the most accurate and cost-effective method for detecting G. duodenalis and Cryptosporidium spp. in fecal samples from pet dogs and cats. This highlights their importance in both veterinary and clinical settings for enabling prompt treatment and preventing potential transmission to humans.
Collapse
Affiliation(s)
- Juan P Barrera
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Guadalupe Miró
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.
| | - David Carmena
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Carlos Foncubierta
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Juliana Sarquis
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Valentina Marino
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Efrén Estévez-Sánchez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Begoña Bailo
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Rocío Checa
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Montoya
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
2
|
Chassaing M, Robin M, Loutreul J, Majou D, Belliot G, de Rougemont A, Boudaud N, Gantzer C. The effect of proteolytic enzymes and pH on GII.4 norovirus, during both interactions and non-interaction with Histo-Blood Group Antigens. Sci Rep 2020; 10:17926. [PMID: 33087754 PMCID: PMC7578656 DOI: 10.1038/s41598-020-74728-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis worldwide. Histo-Blood Groups Antigens (HBGAs) have been described as attachment factors, promoting HuNoV infection. However, their role has not yet been elucidated. This study aims to evaluate the ability of HBGAs to protect HuNoVs against various factors naturally found in the human digestive system. The effects of acid pH and proteolytic enzymes (pepsin, trypsin, and chymotrypsin) on GII.4 virus-like particles (VLPs) and GII.4 HuNoVs were studied, both during interactions and non-interaction with HBGAs. The results showed that GII.4 VLPs and GII.4 HuNoVs behaved differently following the treatments. GII.4 VLPs were disrupted at a pH of less than 2.0 and in the presence of proteolytic enzymes (1,500 units/mL pepsin, 100 mg/mL trypsin, and 100 mg/mL chymotrypsin). VLPs were also partially damaged by lower concentrations of trypsin and chymotrypsin (0.1 mg/mL). Conversely, the capsids of GII.4 HuNoVs were not compromised by such treatments, since their genomes were not accessible to RNase. HBGAs were found to offer GII.4 VLPs no protection against an acid pH or proteolytic enzymes.
Collapse
Affiliation(s)
- Manon Chassaing
- Food Safety Department, Actalia, 50000, Saint-Lô, France
- University of Lorraine, CNRS, LCPME, 54000, Nancy, France
| | - Maëlle Robin
- Food Safety Department, Actalia, 50000, Saint-Lô, France
| | - Julie Loutreul
- Food Safety Department, Actalia, 50000, Saint-Lô, France
| | | | - Gaël Belliot
- Laboratory of Virology, National Reference Centre for Gastroenteritis Viruses, University Hospital of Dijon, 21000, Dijon, France
- UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, 21000, Dijon, France
| | - Alexis de Rougemont
- Laboratory of Virology, National Reference Centre for Gastroenteritis Viruses, University Hospital of Dijon, 21000, Dijon, France
- UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, 21000, Dijon, France
| | | | | |
Collapse
|
3
|
Rousseau A, La Carbona S, Dumètre A, Robertson LJ, Gargala G, Escotte-Binet S, Favennec L, Villena I, Gérard C, Aubert D. Assessing viability and infectivity of foodborne and waterborne stages (cysts/oocysts) of Giardia duodenalis, Cryptosporidium spp., and Toxoplasma gondii: a review of methods. ACTA ACUST UNITED AC 2018; 25:14. [PMID: 29553366 PMCID: PMC5858526 DOI: 10.1051/parasite/2018009] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/09/2018] [Indexed: 11/14/2022]
Abstract
Giardia duodenalis, Cryptosporidium spp. and Toxoplasma gondii are protozoan parasites that have been highlighted as emerging foodborne pathogens by the Food and Agriculture Organization of the United Nations and the World Health Organization. According to the European Food Safety Authority, 4786 foodborne and waterborne outbreaks were reported in Europe in 2016, of which 0.4% were attributed to parasites including Cryptosporidium, Giardia and Trichinella. Until 2016, no standardized methods were available to detect Giardia, Cryptosporidium and Toxoplasma (oo)cysts in food. Therefore, no regulation exists regarding these biohazards. Nevertheless, considering their low infective dose, ingestion of foodstuffs contaminated by low quantities of these three parasites can lead to human infection. To evaluate the risk of protozoan parasites in food, efforts must be made towards exposure assessment to estimate the contamination along the food chain, from raw products to consumers. This requires determining: (i) the occurrence of infective protozoan (oo)cysts in foods, and (ii) the efficacy of control measures to eliminate this contamination. In order to conduct such assessments, methods for identification of viable (i.e. live) and infective parasites are required. This review describes the methods currently available to evaluate infectivity and viability of G. duodenalis cysts, Cryptosporidium spp. and T. gondii oocysts, and their potential for application in exposure assessment to determine the presence of the infective protozoa and/or to characterize the efficacy of control measures. Advantages and limits of each method are highlighted and an analytical strategy is proposed to assess exposure to these protozoa.
Collapse
Affiliation(s)
- Angélique Rousseau
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France - ACTALIA Food Safety Department, 310 Rue Popielujko, 50000 Saint-Lô, France - EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Rouen, 76183 Rouen Cedex, France
| | | | - Aurélien Dumètre
- Aix Marseille Univ, IRD (Dakar, Marseille, Papeete), AP-HM, IHU-Méditerranée Infection, UMR Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
| | - Lucy J Robertson
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, PO Box 8146 Dep., 0033, Oslo, Norway
| | - Gilles Gargala
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Rouen, 76183 Rouen Cedex, France
| | - Sandie Escotte-Binet
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France
| | - Loïc Favennec
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Rouen, 76183 Rouen Cedex, France
| | - Isabelle Villena
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France
| | - Cédric Gérard
- Food Safety Microbiology, Nestlé Research Center, PO Box 44, CH-1000 Lausanne 26, Switzerland
| | - Dominique Aubert
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France
| |
Collapse
|
4
|
Leifels M, Hamza IA, Krieger M, Wilhelm M, Mackowiak M, Jurzik L. From Lab to Lake - Evaluation of Current Molecular Methods for the Detection of Infectious Enteric Viruses in Complex Water Matrices in an Urban Area. PLoS One 2016; 11:e0167105. [PMID: 27880820 PMCID: PMC5120873 DOI: 10.1371/journal.pone.0167105] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/07/2016] [Indexed: 11/22/2022] Open
Abstract
Quantitative PCR methods are commonly used to monitor enteric viruses in the aquatic environment because of their high sensitivity, short reaction times and relatively low operational cost. However, conclusions for public health drawn from results of such molecular techniques are limited due to their inability to determine viral infectivity. Ethidium monoazide (EMA) and propidium monoazide (PMA) are capable to penetrate the damaged or compromised capsid of the inactivated viruses and bind to the viral nucleic acids. We assessed whether dye treatment is a suitable approach to improve the ability of qPCR to distinguish between infectious and non-infectious human adenovirus, enterovirus and rotavirus A in surface water of an urban river and sewage before and after UV disinfection. Like the gold standard of cell culture assays, pretreatment EMA-/PMA-qPCR succeeded in removing false positive results which would lead to an overestimation of the viral load if only qPCR of the environmental samples was considered. A dye pretreatment could therefore provide a rapid and relatively inexpensive tool to improve the efficacy of molecular quantification methods in regards to viral infectivity.
Collapse
Affiliation(s)
- Mats Leifels
- Ruhr-University Bochum, Department of Hygiene, Social- and Environmental Medicine, Bochum, Germany
| | - Ibrahim Ahmed Hamza
- Environmental Virology Laboratory, Department of Water Pollution Research, National Research Centre, Cairo, Egypt
| | - Marion Krieger
- Ruhr-University Bochum, Department of Hygiene, Social- and Environmental Medicine, Bochum, Germany
| | - Michael Wilhelm
- Ruhr-University Bochum, Department of Hygiene, Social- and Environmental Medicine, Bochum, Germany
| | - Martin Mackowiak
- University of Duisburg-Essen, Faculty of Chemistry, Biofilm Centre – Aquatic Microbiology, Essen, Germany
| | - Lars Jurzik
- Ruhr-University Bochum, Department of Hygiene, Social- and Environmental Medicine, Bochum, Germany
| |
Collapse
|
5
|
Garvey M, Coughlan G, Murphy N, Rowan N. The pulsed light inactivation of veterinary relevant microbial biofilms and the use of a RTPCR assay to detect parasite species within biofilm structures. Open Vet J 2016; 6:15-22. [PMID: 26862516 PMCID: PMC4744370 DOI: 10.4314/ovj.v6i1.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/05/2016] [Indexed: 12/23/2022] Open
Abstract
The presence of pathogenic organisms namely parasite species and bacteria in biofilms in veterinary settings, is a public health concern in relation to human and animal exposure. Veterinary clinics represent a significant risk factor for the transfer of pathogens from housed animals to humans, especially in cases of wound infection and the shedding of faecal matter. This study aims to provide a means of detecting veterinary relevant parasite species in bacterial biofilms, and to provide a means of disinfecting these biofilms. A real time PCR assay was utilized to detect parasite DNA in Bacillus cereus biofilms on stainless steel and PVC surfaces. Results show that both Cryptosporidium and Giardia attach to biofilms in large numbers (100-1000 oo/cysts) in as little as 72 hours. Pulsed light successfully inactivated all test species (Listeria, Salmonella, Bacillus, Escherichia) in planktonic and biofilm form with an increase in inactivation for every increase in UV dose.
Collapse
Affiliation(s)
- M Garvey
- Department of Life Sciences, Institute of Technology Sligo, Sligo, Ireland
| | - G Coughlan
- Department of Parasitology, National University of Ireland Maynooth, Maynooth, Ireland; Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - N Murphy
- Department of Parasitology, National University of Ireland Maynooth, Maynooth, Ireland
| | - N Rowan
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland
| |
Collapse
|
6
|
Leifels M, Jurzik L, Wilhelm M, Hamza IA. Use of ethidium monoazide and propidium monoazide to determine viral infectivity upon inactivation by heat, UV- exposure and chlorine. Int J Hyg Environ Health 2015; 218:686-93. [DOI: 10.1016/j.ijheh.2015.02.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/08/2015] [Accepted: 02/09/2015] [Indexed: 01/06/2023]
|
7
|
Garvey M, Stocca A, Rowan N. Development of a combined in vitro cell culture--quantitative PCR assay for evaluating the disinfection performance of pulsed light for treating the waterborne enteroparasite Giardia lamblia. Exp Parasitol 2014; 144:6-13. [PMID: 24929148 DOI: 10.1016/j.exppara.2014.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 05/31/2014] [Accepted: 06/02/2014] [Indexed: 11/25/2022]
Abstract
Giardia lamblia is a flagellated protozoan parasite that is recognised as a frequent cause of water-borne disease in humans and animals. We report for the first time on the use of a combined in vitro HCT-8 cell culture-quantitative PCR assay for evaluating the efficacy of using pulsed UV light for treating G. lamblia parasites. Findings showed that current methods that are limited to using vital stains before and after cyst excystation are not appropriate for monitoring or evaluating cyst destruction post PUV-treatments. Use of the human ileocecal HCT-8 cell line was superior to that of the human colon Caco-2 cell line for in vitro culture and determining PUV sensitivity of treated cysts. G. lamblia cysts were also shown to be more resistant to PUV irradiation compared to treating similar numbers of Cryptosporidium parvum oocysts. These observations also show that the use of this HCT-8 cell culture assay may replace use of animal models for determining disinfection performances of PUV for treating both C. parvum and G. lamblia.
Collapse
Affiliation(s)
- Mary Garvey
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Rd, Athlone, Westmeath, Ireland.
| | - Alessia Stocca
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Rd, Athlone, Westmeath, Ireland
| | - Neil Rowan
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Rd, Athlone, Westmeath, Ireland
| |
Collapse
|
8
|
Koehler AV, Jex AR, Haydon SR, Stevens MA, Gasser RB. Giardia/giardiasis — A perspective on diagnostic and analytical tools. Biotechnol Adv 2014; 32:280-9. [DOI: 10.1016/j.biotechadv.2013.10.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/08/2013] [Accepted: 10/27/2013] [Indexed: 12/28/2022]
|
9
|
Hamza IA, Jurzik L, Überla K, Wilhelm M. Methods to detect infectious human enteric viruses in environmental water samples. Int J Hyg Environ Health 2011; 214:424-36. [PMID: 21920815 PMCID: PMC7106513 DOI: 10.1016/j.ijheh.2011.07.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 07/24/2011] [Accepted: 07/28/2011] [Indexed: 02/06/2023]
Abstract
Currently, a wide range of analytical methods is available for virus detection in environmental water samples. Molecular methods such as polymerase chain reaction (PCR) and quantitative real time PCR (qPCR) have the highest sensitivity and specificity to investigate virus contamination in water, so they are the most commonly used in environmental virology. Despite great sensitivity of PCR, the main limitation is the lack of the correlation between the detected viral genome and viral infectivity, which limits conclusions regarding the significance for public health. To provide information about the infectivity of the detected viruses, cultivation on animal cell culture is the gold standard. However, cell culture infectivity assays are laborious, time consuming and costly. Also, not all viruses are able to produce cytopathic effect and viruses such as human noroviruses have no available cell line for propagation. In this brief review, we present a summary and critical evaluation of different approaches that have been recently proposed to overcome limitations of the traditional cell culture assay and PCR assay such as integrated cell culture-PCR, detection of genome integrity, detection of capsid integrity, and measurement of oxidative damages on viral capsid protein. Techniques for rapid detection of infectious viruses such as fluorescence microscopy and automated flow cytometry have also been suggested to assess virus infectivity in water samples.
Collapse
Affiliation(s)
- Ibrahim Ahmed Hamza
- Department of Hygiene, Social and Environmental Medicine, Ruhr-University Bochum, Germany.
| | | | | | | |
Collapse
|
10
|
Baque RH, Gilliam AO, Robles LD, Jakubowski W, Slifko TR. A real-time RT-PCR method to detect viable Giardia lamblia cysts in environmental waters. WATER RESEARCH 2011; 45:3175-84. [PMID: 21501854 DOI: 10.1016/j.watres.2011.03.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 03/16/2011] [Accepted: 03/16/2011] [Indexed: 05/19/2023]
Abstract
Currently, USEPA Method 1623 is the standard assay used for simultaneous detection of Giardia cysts and Cryptosporidium oocysts in various water matrices. However, the method is unable to distinguish between species, genotype, or to assess viability. Therefore, the objective of the present study was to address the shortcomings of USEPA Method 1623 by developing a novel molecular-based method that can assess viability of Giardia cysts in environmental waters and identify genotypes that pose a human health threat (assemblage groups A and B). Primers and TaqMan(®) probes were designed to target the beta-giardin gene in order to discriminate among species and assemblages. Viability was determined by detection of de-novo mRNA synthesis after heat induction. The beta-giardin primer/probe sets were able to detect and differentiate between Giardia lamblia assemblages A and B, and did not detect Giardia muris (mouse species) or G. lamblia assemblages C, D, E and F (non-human), with the exception of Probe A which did detect G. lamblia assemblage F DNA. Additionally, DNA or cDNA of other waterborne organisms were not detected, suggesting that the method is specific to Giardia assemblages. Assay applicability was demonstrated by detection of viable G. lamblia cysts in spiked (assemblage B) and unspiked (assemblage A and B) reclaimed water samples.
Collapse
Affiliation(s)
- Robert H Baque
- Orange County Utilities, 9124 Curry Ford Rd, Orlando, FL 32825, USA
| | | | | | | | | |
Collapse
|