1
|
Cao Y, Sivaganesan M, Kelty CA, Wang D, Boehm AB, Griffith JF, Weisberg SB, Shanks OC. A human fecal contamination score for ranking recreational sites using the HF183/BacR287 quantitative real-time PCR method. WATER RESEARCH 2018; 128:148-156. [PMID: 29101858 PMCID: PMC7228037 DOI: 10.1016/j.watres.2017.10.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/25/2017] [Accepted: 10/31/2017] [Indexed: 05/05/2023]
Abstract
Human fecal pollution of recreational waters remains a public health concern worldwide. As a result, there is a growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for water quality research and management. However, there are currently no standardized approaches for field implementation and interpretation of qPCR data. In this study, a standardized HF183/BacR287 qPCR method was combined with a water sampling strategy and a novel Bayesian weighted average approach to establish a human fecal contamination score (HFS) that can be used to prioritize sampling sites for remediation based on measured human waste levels. The HFS was then used to investigate 975 study design scenarios utilizing different combinations of sites with varying sampling intensities (daily to once per week) and number of qPCR replicates per sample (2-14 replicates). Findings demonstrate that site prioritization with HFS is feasible and that both sampling intensity and number of qPCR replicates influence reliability of HFS estimates. The novel data analysis strategy presented here provides a prescribed approach for the implementation and interpretation of human-associated HF183/BacR287 qPCR data with the goal of site prioritization based on human fecal pollution levels. In addition, information is provided for future users to customize study designs for optimal HFS performance.
Collapse
Affiliation(s)
- Yiping Cao
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA 92626, USA
| | - Mano Sivaganesan
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Catherine A Kelty
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Dan Wang
- Department of Civil and Environmental Engineering, Stanford University, Stanford CA 94305, USA
| | - Alexandria B Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford CA 94305, USA
| | - John F Griffith
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA 92626, USA
| | - Stephen B Weisberg
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA 92626, USA
| | - Orin C Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA.
| |
Collapse
|
2
|
Habtom H, Demanèche S, Dawson L, Azulay C, Matan O, Robe P, Gafny R, Simonet P, Jurkevitch E, Pasternak Z. Soil characterisation by bacterial community analysis for forensic applications: A quantitative comparison of environmental technologies. Forensic Sci Int Genet 2017; 26:21-29. [DOI: 10.1016/j.fsigen.2016.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 09/20/2016] [Accepted: 10/06/2016] [Indexed: 12/01/2022]
|
3
|
Shanks OC, Kelty CA, Oshiro R, Haugland RA, Madi T, Brooks L, Field KG, Sivaganesan M. Data Acceptance Criteria for Standardized Human-Associated Fecal Source Identification Quantitative Real-Time PCR Methods. Appl Environ Microbiol 2016; 82:2773-2782. [PMID: 26921430 PMCID: PMC4836407 DOI: 10.1128/aem.03661-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/23/2016] [Indexed: 11/20/2022] Open
Abstract
There is growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for water quality management. The transition from a research tool to a standardized protocol requires a high degree of confidence in data quality across laboratories. Data quality is typically determined through a series of specifications that ensure good experimental practice and the absence of bias in the results due to DNA isolation and amplification interferences. However, there is currently a lack of consensus on how best to evaluate and interpret human fecal source identification qPCR experiments. This is, in part, due to the lack of standardized protocols and information on interlaboratory variability under conditions for data acceptance. The aim of this study is to provide users and reviewers with a complete series of conditions for data acceptance derived from a multiple laboratory data set using standardized procedures. To establish these benchmarks, data from HF183/BacR287 and HumM2 human-associated qPCR methods were generated across 14 laboratories. Each laboratory followed a standardized protocol utilizing the same lot of reference DNA materials, DNA isolation kits, amplification reagents, and test samples to generate comparable data. After removal of outliers, a nested analysis of variance (ANOVA) was used to establish proficiency metrics that include lab-to-lab, replicate testing within a lab, and random error for amplification inhibition and sample processing controls. Other data acceptance measurements included extraneous DNA contamination assessments (no-template and extraction blank controls) and calibration model performance (correlation coefficient, amplification efficiency, and lower limit of quantification). To demonstrate the implementation of the proposed standardized protocols and data acceptance criteria, comparable data from two additional laboratories were reviewed. The data acceptance criteria proposed in this study should help scientists, managers, reviewers, and the public evaluate the technical quality of future findings against an established benchmark.
Collapse
Affiliation(s)
- Orin C Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio, USA
| | - Catherine A Kelty
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio, USA
| | - Robin Oshiro
- U.S. Environmental Protection Agency, Office of Water, Washington DC, USA
| | - Richard A Haugland
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio, USA
| | - Tania Madi
- Source Molecular Corporation, Miami, Florida, USA
| | - Lauren Brooks
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Katharine G Field
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Mano Sivaganesan
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio, USA
| |
Collapse
|
4
|
Yuan Q, Wang H, Hang Q, Deng Y, Liu K, Li C, Zheng S. Comparison of the MBBR denitrification carriers for advanced nitrogen removal of wastewater treatment plant effluent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13970-13979. [PMID: 25953607 DOI: 10.1007/s11356-015-4546-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 04/14/2015] [Indexed: 06/04/2023]
Abstract
The moving bed biofilm reactors (MBBRs) were used to remove the residual NO3(-)-N of wastewater treatment plant (WWTP) effluent, and the MBBR carriers for denitrification were compared. The results showed that high denitrification efficiency can be achieved with polyethylene, polypropylene, polyurethane foam, and haydite carriers under following conditions: 7.2 to 8.0 pH, 24 to 26 °C temperature, 12 h hydraulic retention time (HRT), and 25.5 mg L(-1) external methanol dosage, while the WWTP effluent total nitrogen (TN) was between 2.6 and 15.4 mg L(-1) and NO3(-)-N was between 0.2 and 12.6 mg L(-1). The MBBR filled with polyethylene carriers had higher TN and NO3(-)-N removal rate (44.9 ± 19.1 and 83.4 ± 13.0%, respectively) than those with other carriers. The minimum effluent TN and NO3(-)-N of polyethylene MBBR were 1.6 and 0.1 mg L(-1), respectively, and the maximum denitrification rate reached 23.0 g m(-2) day(-1). When chemical oxygen demand (COD)/TN ratio dropped from 6 to 4, the NO3(-)- N and TN removal efficiency decreased significantly in all reactors except for that filled with polyethylene, which indicated that the polyethylene MBBR can resist influent fluctuation much better. The three-dimensional excitation-emission matrix analysis showed that all the influent and effluent of MBBRs contain soluble microbial products (SMPs)-like organics and biochemical oxygen demand (BOD), which can be removed better by MBBRs filled with haydite and polyethylene carriers. The nitrous oxide reductase (nosZ)-based terminal restriction fragment length polymorphism (T-RFLP) analysis suggested that the dominant bacteria in polyethylene MBBR are the key denitrificans.
Collapse
Affiliation(s)
- Quan Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, 100012, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
5
|
Temporal stability of the microbial community in sewage-polluted seawater exposed to natural sunlight cycles and marine microbiota. Appl Environ Microbiol 2015; 81:2107-16. [PMID: 25576619 DOI: 10.1128/aem.03950-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Billions of gallons of untreated wastewater enter the coastal ocean each year. Once sewage microorganisms are in the marine environment, they are exposed to environmental stressors, such as sunlight and predation. Previous research has investigated the fate of individual sewage microorganisms in seawater but not the entire sewage microbial community. The present study used next-generation sequencing (NGS) to examine how the microbial community in sewage-impacted seawater changes over 48 h when exposed to natural sunlight cycles and marine microbiota. We compared the results from microcosms composed of unfiltered seawater (containing naturally occurring marine microbiota) and filtered seawater (containing no marine microbiota) to investigate the effect of marine microbiota. We also compared the results from microcosms that were exposed to natural sunlight cycles with those from microcosms kept in the dark to investigate the effect of sunlight. The microbial community composition and the relative abundance of operational taxonomic units (OTUs) changed over 48 h in all microcosms. Exposure to sunlight had a significant effect on both community composition and OTU abundance. The effect of marine microbiota, however, was minimal. The proportion of sewage-derived microorganisms present in the microcosms decreased rapidly within 48 h, and the decrease was the most pronounced in the presence of both sunlight and marine microbiota, where the proportion decreased from 85% to 3% of the total microbial community. The results from this study demonstrate the strong effect that sunlight has on microbial community composition, as measured by NGS, and the importance of considering temporal effects in future applications of NGS to identify microbial pollution sources.
Collapse
|
6
|
Ebentier DL, Hanley KT, Cao Y, Badgley BD, Boehm AB, Ervin JS, Goodwin KD, Gourmelon M, Griffith JF, Holden PA, Kelty CA, Lozach S, McGee C, Peed LA, Raith M, Ryu H, Sadowsky MJ, Scott EA, Santo Domingo J, Schriewer A, Sinigalliano CD, Shanks OC, Van De Werfhorst LC, Wang D, Wuertz S, Jay JA. Evaluation of the repeatability and reproducibility of a suite of qPCR-based microbial source tracking methods. WATER RESEARCH 2013; 47:6839-6848. [PMID: 23911226 DOI: 10.1016/j.watres.2013.01.060] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/17/2013] [Accepted: 01/20/2013] [Indexed: 06/02/2023]
Abstract
Many PCR-based methods for microbial source tracking (MST) have been developed and validated within individual research laboratories. Inter-laboratory validation of these methods, however, has been minimal, and the effects of protocol standardization regimes have not been thoroughly evaluated. Knowledge of factors influencing PCR in different laboratories is vital to future technology transfer for use of MST methods as a tool for water quality management. In this study, a blinded set of 64 filters (containing 32 duplicate samples generated from 12 composite fecal sources) were analyzed by three to five core laboratories with a suite of PCR-based methods utilizing standardized reagents and protocols. Repeatability (intra-laboratory variability) and reproducibility (inter-laboratory variability) of observed results were assessed. When standardized methodologies were used, intra- and inter-laboratory %CVs were generally low (median %CV 0.1-3.3% and 1.9-7.1%, respectively) and comparable to those observed in similar inter-laboratory validation studies performed on other methods of quantifying fecal indicator bacteria (FIB) in environmental samples. ANOVA of %CV values found three human-associated methods (BsteriF1, BacHum, and HF183Taqman) to be similarly reproducible (p > 0.05) and significantly more reproducible (p < 0.05) than HumM2. This was attributed to the increased variability associated with low target concentrations detected by HumM2 (approximately 1-2 log10copies/filter lower) compared to other human-associated methods. Cow-associated methods (BacCow and CowM2) were similarly reproducible (p > 0.05). When using standardized protocols, variance component analysis indicated sample type (fecal source and concentration) to be the major contributor to total variability with that from replicate filters and inter-laboratory analysis to be within the same order of magnitude but larger than inherent intra-laboratory variability. However, when reagents and protocols were not standardized, inter-laboratory %CV generally increased with a corresponding decline in reproducibility. Overall, these findings verify the repeatability and reproducibility of these MST methods and highlight the need for standardization of protocols and consumables prior to implementation of larger scale MST studies involving multiple laboratories.
Collapse
Affiliation(s)
- Darcy L Ebentier
- Department of Civil and Environmental Engineering, University of California Los Angeles, 5732 Boelter Hall, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Cao Y, Van De Werfhorst LC, Dubinsky EA, Badgley BD, Sadowsky MJ, Andersen GL, Griffith JF, Holden PA. Evaluation of molecular community analysis methods for discerning fecal sources and human waste. WATER RESEARCH 2013; 47:6862-72. [PMID: 23880215 DOI: 10.1016/j.watres.2013.02.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 02/02/2013] [Accepted: 02/07/2013] [Indexed: 05/12/2023]
Abstract
Molecular microbial community analyses provide information on thousands of microorganisms simultaneously, and integrate biotic and abiotic perturbations caused by fecal contamination entering water bodies. A few studies have explored community methods as emerging approaches for microbial source tracking (MST), however, an evaluation of the current state of this approach is lacking. Here, we utilized three types of community-based methods with 64 blind, single- or dual-source, challenge samples generated from 12 sources, including: humans (feces), sewage, septage, dogs, pigs, deer, horses, cows, chickens, gulls, pigeons, and geese. Each source was a composite from multiple donors from four representative geographical regions in California. Methods evaluated included terminal restriction fragment polymorphism (TRFLP), phylogenetic microarray (PhyloChip), and next generation (Illumina) sequencing. These methods correctly identified dominant (or sole) sources in over 90% of the challenge samples, and exhibited excellent specificity regardless of source, rarely detecting a source that was not present in the challenge sample. Sensitivity, however, varied with source and community analysis method. All three methods distinguished septage from human feces and sewage, and identified deer and horse with 100% sensitivity and 100% specificity. Method performance improved if the composition of blind dual-source reference samples were defined by DNA contribution of each single source within the mixture, instead of by Enterococcus colony forming units. Data analysis approach also influenced method performance, indicating the need to standardize data interpretation. Overall, results of this study indicate that community analysis methods hold great promise as they may be used to identify any source, and they are particularly useful for sources that currently do not have, and may never have, a source-specific single marker gene.
Collapse
Affiliation(s)
- Yiping Cao
- Southern California Coastal Water Research Project Authority, 3535 Harbor Blvd, Suite 110, Costa Mesa, CA 92626, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Boehm AB, Van De Werfhorst LC, Griffith JF, Holden PA, Jay JA, Shanks OC, Wang D, Weisberg SB. Performance of forty-one microbial source tracking methods: a twenty-seven lab evaluation study. WATER RESEARCH 2013; 47:6812-28. [PMID: 23880218 DOI: 10.1016/j.watres.2012.12.046] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/13/2012] [Accepted: 12/01/2012] [Indexed: 05/20/2023]
Abstract
The last decade has seen development of numerous new microbial source tracking (MST) methodologies, but many of these have been tested in just a few laboratories with a limited number of fecal samples. This method evaluation study examined the specificity and sensitivity of 41 MST methodologies by analyzing data generated in 27 laboratories. MST methodologies that targeted human, cow, ruminant, dog, gull, pig, horse, and sheep were tested against sewage, septage, human, cow, dog, deer, pig, chicken, pigeon, gull, horse, and goose fecal samples. Each laboratory received 64 blind samples containing a single source (singletons) or two sources (doubletons), as well as diluted singleton samples to assess method sensitivity. Laboratories utilized their own protocols when performing the methods and data were deposited in a central database before samples were unblinded. Between one and seven laboratories tested each method. The most sensitive and specific assays, based on an analysis of presence/absence of each marker in target and non-target fecal samples, were HF183 endpoint and HF183SYBR (human), CF193 and Rum2Bac (ruminant), CowM2 and CowM3 (cow), BacCan (dog), Gull2SYBR and LeeSeaGull (gull), PF163 and pigmtDNA (pig), HoF597 (horse), PhyloChip (pig, horse, chicken, deer), Universal 16S TRFLP (deer), and Bacteroidales 16S TRFLP (pig, horse, chicken, deer); all had sensitivity and specificity higher than 80% in all or the majority of laboratories. When the abundance of MST markers in target and non-target fecal samples was examined, some assays that performed well in the binary analysis were found to not be sensitive enough as median concentrations fell below a minimum abundance criterion (set at 50 copies per colony forming units of enterococci) in target fecal samples. Similarly, some assays that cross-reacted with non-target fecal sources in the binary analysis were found to perform well in a quantitative analysis because the cross-reaction occurred at very low levels. Based on a quantitative analysis, the best performing methods were HF183Taqman and BacH (human), Rum2Bac and BacR (ruminant), LeeSeaGull (gull), and Pig2Bac (pig); no cow or dog-specific assay met the quantitative specificity and sensitivity criteria. Some of the best performing assays in the study were run by just one laboratory so further testing of assay portability is needed. While this study evaluated the marker performance in defined samples, further field testing as well as development of frameworks for fecal source allocation and risk assessment are needed.
Collapse
Affiliation(s)
- Alexandria B Boehm
- Environmental and Water Studies, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA.
| | | | | | | | | | | | | | | |
Collapse
|